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Chapter 1

Introduction

In this thesis we show the existence and obtain representations of solutions of the
algebraic Riccati equation

A∗X +XA+XQ1X −Q2 = 0 (1.1)

where the coefficients A, Q1, Q2 and the solution X are linear operators on a Hilbert
space, which are unbounded in general, and Q1, Q2 are selfadjoint. The existence
of solutions is a major problem because Riccati equations are quadratic operator
equations and the involved operators do not commute in general. Our approach uses
the well-known relation between solutions of (1.1) and invariant graph subspaces of
the associated Hamiltonian operator matrix

T =
(
A Q1

Q2 −A∗
)
. (1.2)

To obtain a description of the invariant subspaces of T , we introduce the concept of
finitely determining l2-decompositions and apply perturbation theory to prove their
existence for Hamiltonian operators.

In Theorem 4.4.1 we show the existence of infinitely many selfadjoint solutions
of the Riccati equation for the case that Q1 and Q2 are unbounded and nonnegative.
The known existence results from control theory (see e.g. [14]) and by Langer, Ran
and van de Rotten [31] and Bubák, van der Mee and Ran [10] only apply to the case
of bounded Q1, Q2 and only yield a nonnegative and a nonpositive solution. For
bounded Q1, Q2 we derive characterisations of all bounded solutions of (1.1), see
Theorems 4.4.4 and 4.4.5. Similar characterisations were obtained by Kuiper and
Zwart [29] for Riesz-spectral Hamiltonians and by Curtain, Iftime and Zwart [13]
under the assumption of the existence of a bounded, boundedly invertible solution
of (1.1). Our notion of finitely determining l2-decompositions is more general than
that of Riesz-spectral operators, and we prove the existence of bounded, boundedly
invertible solutions for the case that Q1 and Q2 are uniformly positive.
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6 1. Introduction

The Riccati equation (1.1) and the associated Hamiltonian operator play a key
role in the theory of linear quadratic optimal control, see e.g. the monographs of
Curtain and Zwart [14], Lasiecka and Triggiani [34], and Lancaster and Rodman [30].
Besides that, Riccati equations of the type (1.1) are also important in areas such as
total least squares techniques (cf. [30]) and inverse problems involving Neumann-to-
Dirichlet maps, see [8].

Before describing the results of this thesis in greater detail, we sketch the relation
between the theory of optimal control and the Riccati equation, see also [14] and
Section 5.2. A control system is a linear system of the form

ż(t) = Az(t) +Bu(t), z(0) = z0,

y(t) = Cz(t).

The state z of the system evolves in time subject to a parameter u, the control, and
determines the output y. The state, control and output are functions in respective
Hilbert spaces Z, U and Y . For systems described by ordinary differential equations
these spaces are usually finite-dimensional and A, B, C are matrices.

By contrast, systems governed by partial differential equations lead to an infinite-
dimensional Hilbert space of states, A becomes the generator of a strongly continuous
semigroup, and B and C are typically bounded operators. In this case, the control
system has a unique so-called mild solution z ∈ C0([0,∞[ , Z) for every z0 ∈ Z and
u ∈ L2([0,∞[ , U), see [14].

The problem of linear quadratic optimal control on the infinite-time horizon is
then the following: For given initial state z0 minimise the cost functional

J(z0, u) =
∫ ∞

0

(
‖y(t)‖2 + ‖u(t)‖2

)
dt (1.3)

among all controls u ∈ L2([0,∞[ , U). Essentially, this amounts to bringing the
output back to the stationary point y = 0. The first term in (1.3) measures how
fast this is achieved, while the second term accounts for how much effort is needed.

The Riccati equation is connected to the problem of optimal control as follows:
For a bounded selfadjoint operator X we compute

d

dt
(Xz|z) = (Az +Bu|Xz) + (Xz|Az +Bu) (1.4)

= (Az|Xz) + (Xz|Az) + ‖u+B∗Xz‖2 − ‖B∗Xz‖2 − ‖u‖2

=
(
(A∗X +XA−XBB∗X + C∗C)z

∣∣z)+ ‖u+B∗Xz‖2 − ‖Cz‖2 − ‖u‖2.

So if X is a bounded nonnegative solution of the Riccati equation

A∗X +XA−XBB∗X + C∗C = 0, (1.5)
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then, integrating (1.4), we obtain

J(z0, u) =
∫ ∞

0

(
‖Cz‖2 + ‖u‖2

)
dt

≤ sup
t1≥0

(∫ t1

0

(
‖Cz‖2 + ‖u‖2

)
dt+ (Xz(t1)|z(t1))

)
=
∫ ∞

0
‖u+B∗Xz‖2 dt+ (Xz0|z0).

For the case of feedback control ufb = −B∗Xz, this yields J(z0, ufb) ≤ (Xz0|z0).
In particular, for every z0 there exists a control u such that J(z0, u) is finite; the
system is said to be optimisable. In control theory the order of arguments is now
reversed: An orthogonal projection method is used to show that if the system is
optimisable, then there exists a minimal nonnegative solution X+ of (1.5) and the
problem of optimal control has a solution given by feedback control using X+; see
[29, §6] and Theorem 5.2.2.

Our approach of solving the Riccati equation uses the well-known relation to
invariant graph subspaces of the associated Hamiltonian operator matrix and its
symmetry with respect to two indefinite inner products. For the brief discussion here,
we assume for simplicity that all operators are bounded. For unbounded operators,
the relations continue to hold formally but are much more subtle to formulate, see
Sections 4.2 and 4.3 for more details. In particular, there are several non-equivalent
notions of solutions of the Riccati equation in the unbounded case.

Consider an operator X whose graph

Γ(X) =
{( u

Xu

) ∣∣∣u ∈ H}
is invariant under T , i.e., for every u ∈ H there exists v ∈ H such that(

A Q1

Q2 −A∗
)(

u
Xu

)
=
(
Au+Q1Xu
Q2u−A∗Xu

)
=
(
v
Xv

)
.

Inserting the expression for v from the first component into the second one, we
obtain

Q2u−A∗Xu = X(Au+Q1Xu) = XAu+XQ1Xu for all u ∈ H;

X is a solution of (1.1). Obviously the other implication also holds: If X is a
solution of (1.1), then Γ(X) is T -invariant; we have a one-to-one correspondence
between solutions of the Riccati equation and graph subspaces invariant under the
Hamiltonian.

Note that the Hamiltonian corresponding to the Riccati equation (1.5) from the
problem of optimal control is

T =
(

A −BB∗

−C∗C −A∗
)
.
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Because of the minus signs in the off-diagonal entries, a general Hamiltonian is
sometimes denoted by (

A −D
−Q −A∗

)
,

for example in [29] and [31]. Our sign convention in (1.2) was also used by Azizov,
Dijksma and Gridneva [4] and appears to be more natural in view of the J2-accre-
tivity of the Hamiltonian discussed next.

Connected to both the Hamiltonian operator matrix and to graph subspaces are
two indefinite inner products on H ×H defined by

〈x|y〉 = (J1x|y), [x, y] = (J2x|y)

where (·|·) is the standard scalar product on H ×H and

J1 =
(

0 −iI
iI 0

)
, J2 =

(
0 I
I 0

)
;

the pairs (H ×H, 〈·|·〉) and (H ×H, [·|·]) are Krein spaces. We then have〈
T

(
u
v

) ∣∣∣(x
y

)〉
= i(Au+Q1v|y)− i(Q2u−A∗v|x)

= i(u|A∗y −Q2x)− i(v| −Q1y −Ax) = −
〈(u

v

) ∣∣∣T (x
y

)〉
,

and hence T is skew-symmetric with respect to 〈·|·〉 or simply J1-skew-symmetric.
Moreover, from 〈( u

Xu

) ∣∣∣( u
Xu

)〉
= i(u|Xu)− i(Xu|u)

it follows that X is symmetric if and only if 〈x|x〉 = 0 for all x ∈ Γ(X); the graph
Γ(X) is so-called J1-neutral. For the inner product [·|·] we have

Re
[
T

(
u
v

) ∣∣∣(u
v

)]
= Re

(
(Au|v) + (Q1v|v) + (Q2u|u)− (v|Au)

)
= (Q1v|v) + (Q2u|u).

So if Q1 and Q2 are nonnegative, then Re[Tx|x] ≥ 0 for all x ∈ H × H and T is
called J2-accretive. Furthermore, for symmetric X we find[( u

Xu

) ∣∣∣( u
Xu

)]
= 2(Xu|u);

hence X is nonnegative if and only if [x|x] ≥ 0 for all x ∈ Γ(X); the graph is
J2-nonnegative. In fact, we will use the J1-skew-symmetry and J2-accretivity of
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the Hamiltonian to obtain J1-neutral as well as J2-nonnegative and J2-nonpositive
invariant subspaces.

In the finite-dimensional case, the method of solving Riccati equations using in-
variant subspaces of T is well known in control theory. It goes back to Potter [41] in
1966, who considered diagonalisable Hamiltonians and gave an explicit formula for
every possible solution X of (1.1) in terms of eigenvectors of T . He also obtained
conditions such that X is symmetric or nonnegative. The case of generalised eigen-
vectors of T was then studied by Mårtensson [38] in 1971. A comprehensive account
of the theory may be found in the monograph of Lancaster and Rodman [30].

The connection of J1 to the Hamiltonian is also well known: It was used for
example by Potter [41], Lancaster and Rodman [30], Kuiper and Zwart [29], and
Langer, Ran and van de Rotten [31]. By contrast, the relation of J2 to the Hamilto-
nian was first exploited by Langer, Ran and Temme [32] in 1997, followed by Langer,
Ran and van de Rotten [31] in 2001, Azizov, Dijksma and Gridneva [4] in 2003, and
Bubák, van der Mee and Ran [10] in 2005. The equivalences between properties of
an operator X and its graph Γ(X) with respect to J1 and J2 have been studied by
Dijksma and de Snoo [16] and Langer, Ran and van de Rotten [31].

The correspondence between solutions of Riccati equations and invariant graph
subspaces holds for general block operator matrices(

A B
C D

)
.

Invariant subspaces of dichotomous block operator matrices have been used to prove
the existence of bounded solutions of Riccati equations by Langer and Tretter [33]
and Ran and van der Mee [42]. Kostrykin, Makarov and Motovilov [26] obtained a
characterisation of all (possibly unbounded) solutions of the Riccati equation asso-
ciated with a bounded selfadjoint block operator matrix.

A different method to prove the existence and also uniqueness of solutions of
Riccati equations uses fixed point iterations, see e.g. Motovilov [39] and Adamjan,
Langer and Tretter [1].

In the following we give a more detailed description of the main results of this
thesis including remarks on the actual state of research.

One major problem in our approach of solving the Riccati equation is the exis-
tence of invariant subspaces of the Hamiltonian. For a normal operator the spectral
theorem yields a complete description of all invariant subspaces of the operator.
However, Hamiltonian operators are non-normal in general, and the existence of in-
variant subspaces has only been proved for certain classes of non-normal operators,
e.g. spectral operators [18, 20], Riesz-spectral operators [14, 29] and dichotomous
operators [7, 31, 42].

In Chapter 2 we introduce the concept of a finitely determining l2-decomposi-
tion for an operator T . It yields a large class of invariant subspaces and amounts
to an l2-decomposition of the Hilbert space into a sequence of finite-dimensional



10 1. Introduction

T -invariant subspaces Vk such that the restrictions T |Vk
determine the properties of

the whole operator T . If the spectra of the restrictions are pairwise disjoint, we say
that the l2-decomposition is finitely spectral.

The notion of a finitely determining l2-decomposition is equivalent to the exis-
tence of a Riesz basis with parentheses of Jordan chains with the additional property
that each Jordan chain is completely contained inside some parenthesis. Riesz bases
of this kind are frequently used in the literature, for example by Markus [36] and
Tretter [47]. Sometimes the term “Riesz basis with parentheses of root vectors”
can be found: While strictly speaking this is a more general notion (see Exam-
ple 2.3.12), the operators in question usually have a Riesz basis with parentheses of
Jordan chains of the above kind.

Since for an operator T with a finitely determining l2-decomposition the spec-
trum of a restriction T |Vk

may be any finite subset of C, cf. Example 2.3.5, the
class of such operators generalises Riesz-spectral operators, for which each Vk is one-
dimensional, and spectral operators with compact resolvent, for which each T |Vk

has
one eigenvalue only. It also allows for non-dichotomous operators, cf. Corollary 2.4.9
and Example 5.1.1. The relations of finitely determining l2-decompositions to other
classes of non-normal operators including the above ones are summarised in Theo-
rem 2.3.17.

In Section 2.4 we show the existence of so-called compatible T -invariant sub-
spaces generated by the choice of an invariant subspace in each Vk. In particular,
for every subset of the point spectrum we obtain an associated compatible subspace;
these associated subspaces naturally generalise spectral subspaces for the class of op-
erators with a finitely determining l2-decomposition.

Finitely determining l2-decompositions are then applied to symmetric and ac-
cretive operators in Krein spaces. In Theorem 2.5.16 we consider a J-symmetric
operator T with a finitely spectral l2-decomposition and no eigenvalues on the imag-
inary axis. We show the symmetry of the point spectrum σp(T ) with respect to the
real axis and that the compatible subspaces associated with a partition of σp(T )
which separates conjugate points are hypermaximal neutral; i.e., the subspaces co-
incide with their J-orthogonal complement. In Proposition 2.6.6 we show that for
a J-accretive operator the compatible subspaces associated with the right and left
half-plane are J-nonnegative and J-nonpositive, respectively. The corresponding
result for J-accretive dichotomous operators was obtained by Langer, Ran and van
de Rotten [31] and Langer and Tretter [33]. For a J-skew-symmetric dichotomous
operator the hypermaximal neutrality of the spectral subspaces associated with the
right and left half-plane, respectively, was shown in [31].

In Chapter 3 we use an approach due to Markus and Matsaev [37] to prove
the existence of finitely spectral l2-decompositions for non-normal operators. We
consider an operator T = G+S where G is normal with compact resolvent and S is
p-subordinate to G with 0 ≤ p < 1. As an example of p-subordinate perturbations,
an ordinary differential operator of order k with bounded coefficient functions on
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a compact interval is k/n-subordinate to an nth order differential operator; if the
coefficients are L2-functions, it is (k+1)/n-subordinate, see Propositions 3.2.15 and
3.2.16.

The first perturbation result, Proposition 3.4.1 and Theorem 3.4.4, is a refor-
mulation of [36, Theorem 6.12]: If the eigenvalues of G lie on a finite number of
rays from the origin and the density of the eigenvalues has an appropriate asymp-
totic behaviour depending on p, then T has a compact resolvent, almost all of its
eigenvalues lie inside parabolas surrounding the rays, and T admits a finitely spectral
l2-decomposition. In Theorem 3.4.7 we make the stronger assumption that the spec-
trum of G has sequences of gaps on the rays, whose size depends on p. This allows us
to control the multiplicities of the eigenvalues of T and, under an additional assump-
tion, to show that T is a spectral operator. This additional assumption is satisfied
for example if almost all eigenvalues of G are simple, which reestablishes results due
to Kato [24, Theorem V.4.15a], Dunford and Schwartz [20, Theorem XIX.2.7], and
Clark [11]. Moreover, the assumption also holds in cases where the eigenvalues of G
have multiplicity greater than one, provided we have a priori knowledge about the
separation of the eigenvalues of T ; this is an important ingredient in the proof of
Theorem 4.4.5.

As an application of the perturbation results, we obtain finitely spectral l2-
decompositions for a class of diagonally dominant block operator matrices (Proposi-
tion 3.4.5) and for ordinary differential operators on a compact interval with bounded
as well as unbounded coefficient functions, see Section 3.5. The existence of a Riesz
basis (possibly with parentheses) of root vectors is well known for differential op-
erators with bounded coefficients and regular boundary conditions [11], [20, Theo-
rem XIX.4.16], [43]. Unbounded coefficients are treated in [44].

In Chapter 4 we apply the results of the previous two chapters to Hamiltonian
operator matrices to obtain solutions of Riccati equations. We first derive results
about the symmetry and separation of the spectrum of the Hamiltonian with re-
spect to the imaginary axis (Corollary 4.1.3, Proposition 4.1.6) and conditions on
the Hamiltonian implying that all neutral invariant subspaces are graph subspaces
(Propositions 4.2.5, 4.2.6). Similar conditions were considered by Langer, Ran and
van de Rotten [31]. For the case that A, Q1, Q2 and X are all unbounded, we
introduce the concept of a core solution of the Riccati equation, which implies that
a variant of (1.1) holds on a core of X. Unbounded solutions were also considered
in [31] for bounded Q1, Q2 and by Kostrykin, Makarov and Motovilov [26] for the
Riccati equation associated with a bounded selfadjoint block operator matrix.

The main theorems of this thesis are then established in Section 4.4. In Theo-
rem 4.4.1 we consider a Hamiltonian such that A is normal with compact resolvent,
the eigenvalues of A lie on finitely many rays from the origin, Q1, Q2 are nonnegative
and p-subordinate to A, and the density of the spectrum of A has an appropriate
asymptotic behaviour depending on p. We show that the Hamiltonian has a finitely
spectral l2-decomposition which is then used to prove the existence of infinitely
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many selfadjoint core solutions of (1.1), among them a nonnegative solution X+ and
a nonpositive solution X−. In Theorem 4.4.4 we consider bounded, not necessarily
nonnegative operators Q1, Q2 and derive a characterisation of all bounded solutions
of (1.1) in terms of invariant subspaces compatible with the l2-decomposition. In
Theorem 4.4.5 we assume that Q1, Q2 are bounded and uniformly positive, A is
skew-adjoint, and almost all of its eigenvalues are simple and sufficiently separated.
We then obtain the existence of infinitely many bounded, boundedly invertible so-
lutions and show that every bounded solution has the representation

X = X+P +X−(I − P )

with some projection P . Moreover, every bounded selfadjoint solution is also bound-
edly invertible and satisfies

X− ≤ X ≤ X+ and X−1
− ≤ X−1 ≤ X−1

+ .

For dichotomous Hamiltonian operators with bounded nonnegative Q1, Q2, the
existence of a selfadjoint nonnegative and a selfadjoint nonpositive solution was
obtained by Langer, Ran and van de Rotten [31]. The two solutions were shown to
be bounded and boundedly invertible, respectively, for the case that −A is maximal
uniformly sectorial, which implies that the spectrum of A is contained in a sector in
the right half-plane strictly separated from the imaginary axis. A similar result was
proved by Bubák, van der Mee and Ran [10] for a Hamiltonian which is exponentially
dichotomous with Q1 compact.

For a Riesz-spectral Hamiltonian, Kuiper and Zwart [29, Theorem 5.6] obtained
a representation of all bounded solutions of the Riccati equation in terms of eigenvec-
tors of the Hamiltonian. Under the assumption that all eigenvalues of T are simple,
the authors gave conditions such that T is Riesz-spectral. Theorem 4.4.4 applies to
the more general class of Hamiltonians with a finitely spectral l2-decomposition and
requires no assumption on the eigenvalue multiplicities.

For the Riccati equation from optimal control, i.e. Q1 = −BB∗, Q2 = −C∗C,
the representation X = X+P + X−(I − P ) was obtained by Curtain, Iftime and
Zwart [13] for all bounded selfadjoint solutions under the assumption that there
exists a bounded, boundedly invertible, negative solution of the Riccati equation.
On the other hand, they did not have to assume that the operators Q1, Q2 are
uniformly positive. In the finite-dimensional case, the above representation was
derived by Willems [51] in 1971.

In Chapter 5 we first consider examples in which finitely spectral l2-decomposi-
tions and solutions of the Riccati equation can be calculated explicitly. The examples
illustrate phenomena such as unbounded solutions, non-selfadjoint solutions, solu-
tions depending on a continuous parameter, and Hamiltonians with Jordan chains of
arbitrary length. Then we consider two non-trivial Riccati equations: Example 5.1.6
features unbounded differential operators Q1, Q2, whereas in Example 5.1.7 Q1 and
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Q2 are bounded multiplication operators, and bounded, boundedly invertible solu-
tions are obtained.

Finally we apply our theory to the problem of optimal control. In Theorem 5.2.3
we assume that A is normal with compact resolvent and B, C are bounded. We
show the existence of infinitely many selfadjoint core solutions of the Riccati equation
and obtain a representation of all bounded solutions in terms of compatible invariant
subspaces of the Hamiltonian. The theorem is applied to the two-dimensional heat
and the one-dimensional wave equation with distributed control. In Example 5.2.7
we consider the heat equation with an unbounded control operator B and also prove
the existence of solutions of the associated Riccati equation in this case.

Preliminaries

Throughout this thesis, the term operator will denote a (generally unbounded) linear
operator. For an introduction to the theory of unbounded linear operators we refer
to the books of Davies [15], Dunford and Schwartz [19, Chapter XII], Gohberg,
Goldberg and Kaashoek [21], and Kato [24]. Here, we only recall and fix notions
and notations which are not always present in textbooks or occasionally differ among
them.

Let V be a Banach space. We say that a subset U ⊂ V is a subspace of V if it
is a linear subspace in the algebraic sense, not necessarily closed with respect to the
topology1. For a linear operator from a Banach space V into another Banach space
W , i.e., a linear mapping T : D(T ) → W with domain of definition D(T ) ⊂ V , we
use the notation T (V → W ). The range of T is denoted by R(T ), the kernel by
kerT . For injective T , the inverse T−1(W → V ) is an operator with D(T−1) = R(T )
and R(T−1) = D(T ).

A subspace U ⊂ V is called T -invariant if x ∈ U ∩ D(T ) implies Tx ∈ U . We
say that a subspace D ⊂ D(T ) is a core for T if for every x ∈ D(T ) there exists a
sequence (xk)k∈N in D such that xk → x and Txk → Tx.

For an operator T (V → V ) on a Banach space V , we define the resolvent set
%(T ) to be the set of those z ∈ C for which T − z : D(T ) → V is bijective with
bounded inverse. Then %(T ) 6= ∅ implies that T is closed. On the other hand, if
T is closed and T − z : D(T ) → V is bijective, then z ∈ %(T ) by the closed graph
theorem.

For λ ∈ C, the root subspace L(λ) of T is defined by the formula

L(λ) =
⋃
k∈N

ker(T − λ)k. (1.6)

In particular L(λ) 6= {0} if and only if λ is an eigenvalue of T . The non-zero elements
of L(λ) are called root vectors. A finite sequence (x1, . . . , xn) of non-zero vectors in

1Another term used in this situation is linear (sub)manifold.
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L(λ) is called a Jordan chain if

(T − λ)x1 = 0 and (T − λ)xk = xk−1 for k = 2, . . . , n. (1.7)

The Jordan chain is said to be generated by xn, and the elements x2, . . . , xn are
called generalised eigenvectors. Note that a Jordan chain need not be maximal. In
particular, every non-zero element x of a root subspace is contained in a Jordan
chain, the Jordan chain generated by x.

Suppose σ ⊂ σ(T ) is a compact isolated component of the spectrum of T . Let Γ
be the positively oriented piecewise regular boundary2 of a bounded open set U ⊂ C
with σ ⊂ U and σ(T ) \ σ ⊂ C \ U . Then the operator

P =
i

2π

∫
Γ
(T − λ)−1 dλ (1.8)

is a projection, R(P ) and kerP are T -invariant, R(P ) ⊂ D(T ), T |R(P ) is bounded,
and

σ(T |R(P )) = σ, σ(T |ker P ) = σ(T ) \ σ .

P does not depend on the particular choice of Γ and is called the Riesz projection
associated with the component σ of the spectrum; for a proof see [15, Theorem 1.5.4],
[21, Theorem XV.2.1], or [24, Theorem III.6.17].

If (T − z0)−1 is compact for some z0 ∈ %(T ), we say that T is an operator
with compact resolvent . In this case, (T − z)−1 is compact for all z ∈ %(T ), σ(T )
is a discrete set and every λ ∈ σ(T ) is an eigenvalue with dimL(λ) < ∞, see
[24, Theorem III.6.29]. If Pλ is the Riesz projection associated with {λ}, then
R(Pλ) = L(λ).

Let H be a Hilbert space with scalar product (·|·) and T a densely defined
operator on H. The adjoint operator T ∗(H → H) is defined by

D(T ∗) =
{
y ∈ H

∣∣D(T ) 3 x 7→ (Tx|y) is bounded
}
,

(Tx|y) = (x|T ∗y) for all x ∈ D(T ), y ∈ D(T ∗).

We have z ∈ %(T ) ⇔ z̄ ∈ %(T ∗) and ((T − z)−1)∗ = (T ∗ − z̄)−1 for z ∈ %(T ). In
particular, T has a compact resolvent if and only if T ∗ has one.

An operator T on a Hilbert space is called Hermitian if (Tx|y) = (x|Ty) for all
x, y ∈ D(T ). A densely defined operator T is Hermitian if and only if T ⊂ T ∗; it is
said to be symmetric in this case. The operator is called selfadjoint (skew-adjoint) if
T = T ∗ (T = −T ∗) and normal if it is closed and satisfies TT ∗ = T ∗T . If T is normal
with compact resolvent, then there exists an orthonormal basis of H consisting of
eigenvectors of T , see [24, §III.3.8].

2That is, Γ = ∂U is a finite union of simply closed curves. Each curve γ is piecewise continuously
differentiable with γ′(t) 6= 0 always and oriented in such a way that U lies left of γ.
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Chapter 2

Operators with determining
l2-decompositions

The spectral theorem provides a complete description of all properties of a normal
operator. For example it yields the existence of invariant subspaces and a formula for
the resolvent. For non-normal operators, tools similar to the spectral measure only
exist for certain classes, for example spectral operators [18, 20] and Riesz-spectral
operators [14, 29].

In order to obtain invariant subspaces of non-normal operators, we introduce the
concepts of finitely determining and spectral l2-decompositions for operators. They
are a generalisation of Riesz-spectral operators and spectral operators with compact
resolvent and equivalent to the existence of a Riesz basis with parentheses of Jordan
chains where each Jordan chain lies inside some parenthesis.

In the first two sections we present results about l2-decompositions of Banach and
Hilbert spaces. In Section 2.3, finitely determining and spectral l2-decompositions
are defined, formulas for the spectrum and the resolvent are proved, and the relation
to other classes of non-normal operators is investigated. Invariant and spectral
subspaces are treated in Section 2.4. In the last two sections we apply the theory to
symmetric and accretive operators in Krein spaces.

2.1 l2-decompositions of Banach spaces

In this and the next section we study the well-known concept of an l2-decomposi-
tion of a Banach or Hilbert space into a sequence of subspaces and the relation of
l2-decompositions to Riesz bases. The presentation unifies material from the mono-
graphs of Gohberg and Krein [22, Chapter VI], Singer [46, §15], and Markus [36,
pages 25–27]. The term “l2-decomposition” is used in [46], other notions are “basis
of subspaces equivalent to an orthogonal one” [22] and “Riesz basis of subspaces”
[50]. An l2-decomposition into finite-dimensional subspaces is equivalent to an un-

17
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conditional or Riesz basis with parentheses after choosing a basis in each of the
subspaces, see Proposition 2.2.12.

Although later we will always deal with countable l2-decompositions of Hilbert
spaces, the general case of Banach spaces and decompositions of arbitrary cardinality
is considered first. We study expansions in terms of the l2-decomposition and inves-
tigate how an l2-decomposition of the entire space gives rise to l2-decompositions of
certain subspaces. To start with, we recall some facts about bases in Banach spaces,
see also the books of Singer [45] or Davies [15, Chapter 3].

Definition 2.1.1 Let (xk)k∈N be a sequence in a complex Banach space V . We say
that (xk)k∈N is

(i) finitely linearly independent if (x0, . . . , xn) is linearly independent for every
n ∈ N;

(ii) complete if span{xk | k ∈ N} ⊂ V is dense;

(iii) a basis if every x ∈ V has a unique representation

x =
∞∑

k=0

αkxk with αk ∈ C; (2.1)

(iv) an unconditional basis if it is a basis and the convergence in (2.1) is uncondi-
tional.

A sequence (xk)k∈N in a Hilbert space H is called a Riesz basis if there exists an
isomorphism T : H → H such that (Txk)k∈N is an orthonormal basis of H. y

Every basis is finitely linearly independent and complete. However, not every
finitely linearly independent complete sequence is also a basis. In a Hilbert space
the notions of unconditional and Riesz bases are equivalent, up to a normalisation
of the basis. For this and other equivalent conditions for a sequence to be a Riesz
basis, see Bari [6], Gohberg and Krein [22, §VI.2], and Proposition 2.2.10.

We recall some facts about direct sums of subspaces. By a subspace of a Banach
space V we understand a linear subspace in the algebraic sense, i.e., it need not
be topologically closed. For a finite system U1, . . . , Un ⊂ V of subspaces, the sum
U1 + · · ·+ Un is called algebraic direct , denoted

U1 u · · ·u Un ,

if x1 + · · · + xn = 0 with xj ∈ Uj implies x1 = · · · = xn = 0. The corresponding
projections Pj : U1 u · · · u Un → Uj are not necessarily bounded and we shall use
the term algebraic projection in this context. The sum is called topological direct ,
denoted

U1 ⊕ · · · ⊕ Un ,
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if it is algebraic direct and the algebraic projections P1, . . . , Pn are bounded. In this
case, the sum is closed (and thus a Banach space) if and only if every Uj is closed.
The notion “projection on a Banach space V ” will always refer to a bounded operator
P : V → V satisfying P 2 = P ; such a projection gives rise to the topological direct
sum V = kerP ⊕R(P ).

Let (Vλ)λ∈Λ be a family of subspaces of a Banach space V with Λ an arbitrary
index set. We will denote by∑

λ∈Λ

Vλ =
{
xλ1 + · · ·+ xλn

∣∣n ∈ N, xλj
∈ Vλj

}
the sum of the family (Vλ)λ∈Λ in the algebraic sense. There is an obvious generali-
sation of algebraic direct sums to the case of infinitely many subspaces:

Definition 2.1.2 The family (Vλ)λ∈Λ of subspaces of a Banach space V is called
finitely linearly independent if

xλ1 + · · ·+ xλn = 0 , xλj
∈ Vλj

⇒ xλ1 = · · · = xλn = 0

for every finite subset {λ1, . . . , λn} ⊂ Λ. y

Lemma 2.1.3 For a family (Vλ)λ∈Λ of subspaces of a Banach space V , the following
properties are equivalent:

(i) (Vλ)λ∈Λ is finitely linearly independent.

(ii) Every x ∈
∑

λ∈Λ Vλ has a unique representation x =
∑

λ∈Λ xλ with xλ ∈ Vλ

and almost all xλ zero.

(iii) There is a family of algebraic projections (Pλ)λ∈Λ corresponding to (Vλ)λ∈Λ

with domain D(Pλ) =
∑

µ∈Λ Vµ, range R(Pλ) = Vλ, and the property that
PµPλ = 0 whenever µ 6= λ.

Proof. The implication (i)⇒(ii) is clear; for (ii)⇒(iii) define Pλ(
∑

µ xµ) = xλ for
each λ ∈ Λ.

(iii)⇒(i): From R(Pλ) = Vλ and PµPλ = 0 for µ 6= λ we obtain Pλxµ = 0 for
xµ ∈ Vµ and µ 6= λ. Hence xλ1 + · · ·+xλn = 0 implies xλj

= Pλj
(xλ1 + · · ·+xλn) = 0.

�

Because of the uniqueness of the expansion x =
∑

λ∈Λ xλ, we call the sum of the
finitely linearly independent family (Vλ)λ∈Λ algebraic direct and use the notation∑u

λ∈Λ

Vλ .
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Definition 2.1.4 We say that a family (Vλ)λ∈Λ of closed subspaces of a Banach
space V forms an l2-decomposition of V if

(i) the sum
∑

λ∈Λ Vλ ⊂ V is dense and

(ii) there exists c ≥ 1 such that

c−1
∑
λ∈F

‖xλ‖2 ≤
∥∥∥∑

λ∈F

xλ

∥∥∥2
≤ c

∑
λ∈F

‖xλ‖2 (2.2)

for all finite subsets F ⊂ Λ and xλ ∈ Vλ.

If we want to explicitly specify the value of c, we shall speak of a decomposition with
constant c. y

From (2.2) it follows that if a family (Vλ)λ∈Λ forms an l2-decomposition then it
is finitely linearly independent. The corresponding algebraic projections Pλ onto Vλ

are densely defined. As the next lemma shows, they are even bounded and can thus
be extended to the entire space V .

Lemma 2.1.5 Let the family (Vλ)λ∈Λ form an l2-decomposition of a Banach space
V . Then we have:

(i) For every subset J ⊂ Λ there is a projection PJ : V → V with PJ |Vλ
= IVλ

for
λ ∈ J , PJ |Vλ

= 0 for λ 6∈ J , and ‖PJ‖ ≤ c.

(ii) For λ ∈ Λ let Pλ be the projection corresponding to the subset {λ} ⊂ Λ. Then
R(Pλ) = Vλ. Moreover, Pλx = 0 for all λ implies x = 0.

(iii) For every x ∈ V , if J = {λ ∈ Λ |Pλx 6= 0} then PJx = x.

Proof. (i): Since (Vλ)λ∈Λ is finitely linearly independent, we may consider the
algebraic projection P̃J with domain D(P̃J) =

∑u
λ∈Λ Vλ defined by

P̃Jxλ =

{
xλ if xλ ∈ Vλ, λ ∈ J,
0 if xλ ∈ Vλ, λ 6∈ J.

An arbitrary x ∈ D(P̃J) is of the form x =
∑

λ∈F xλ, xλ ∈ Vλ, with some finite
F ⊂ Λ, and (2.2) yields∥∥P̃Jx

∥∥2 =
∥∥∥ ∑

λ∈F∩J

xλ

∥∥∥2
≤ c

∑
λ∈F∩J

‖xλ‖2 ≤ c
∑
λ∈F

‖xλ‖2 ≤ c2‖x‖2.

Hence, the densely defined operator P̃J has a bounded linear extension PJ ∈ L(V )
with ‖PJ‖ ≤ c. The identity P 2

J = PJ holds on the dense subspace D(P̃J) and thus
on V ; so PJ is a projection.
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(ii): By (i), Pλ is the bounded extension of P̃{λ} with R(P̃{λ}) = Vλ. Since Vλ is
closed, this implies R(Pλ) = Vλ. Now let x ∈ V with Pλx = 0 for all λ, ε > 0, and
y ∈

∑
λ∈Λ Vλ such that ‖x − y‖ < ε. Then y =

∑
λ∈F yλ, yλ ∈ Vλ, for some finite

F = {λ1, . . . , λn}. We have PF = Pλ1 + · · · + Pλn since this relation holds on the
dense subspace

∑
λ∈Λ Vλ. Therefore y = PF y, PFx = 0, and

‖y‖ = ‖PF y‖ ≤ ‖PFx‖+ ‖PF ‖‖x− y‖ ≤ c ‖x− y‖.

This implies
‖x‖ ≤ ‖x− y‖+ ‖y‖ ≤ (1 + c)‖x− y‖ < (1 + c)ε

and we conclude x = 0.
(iii): First observe that PλPJ = Pλ for λ ∈ J and PλPJ = 0 for λ 6∈ J since

these relations hold on
∑u

λ∈Λ Vλ. Hence Pλ(PJx−x) = 0 for all λ, and using (ii) we
obtain PJx− x = 0. �

Proposition 2.1.6 Let the family (Vλ)λ∈Λ form an l2-decomposition of a Banach
space V .

(i) Let Pλ be the projection onto Vλ defined in the previous lemma. Then for
every x ∈ V the relation

c−1
∑
λ∈Λ

‖Pλx‖2 ≤ ‖x‖2 ≤ c
∑
λ∈Λ

‖Pλx‖2 (2.3)

holds; in particular Pλx 6= 0 for at most countably many λ.

(ii) If xλ ∈ Vλ with
∑

λ∈Λ ‖xλ‖2 <∞, then the series
∑

λ∈Λ xλ converges uncon-
ditionally.

(iii) Every x ∈ V has a unique expansion

x =
∑
λ∈Λ

xλ with xλ ∈ Vλ ; (2.4)

its members are given by xλ = Pλx.

Because of the uniqueness of the expansion x =
∑

λ∈Λ xλ, we use the notation

V =
⊕2

λ∈Λ

Vλ (2.5)

for an l2-decomposition. In terms of this expansion, the projections PJ defined above
are of the form

PJ :
∑
λ∈Λ

xλ 7−→
∑
λ∈J

xλ .
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Moreover, (2.3) shows that the original norm on V is equivalent to the l2-type norm
(
∑

λ∈Λ ‖Pλx‖2)1/2, hence the notion “l2-decomposition”.

Proof of the proposition. For every x ∈ V we first show that Pλx 6= 0 for at
most countably many λ. Consider a finite subset F ⊂ Λ. For x ∈

∑u
λ∈Λ Vλ, i.e.

x =
∑

λ∈F0
xλ, xλ ∈ Vλ, for some finite F0 ⊂ Λ, we know from (2.2) that

∑
λ∈F

‖Pλx‖2 =
∑

λ∈F∩F0

‖xλ‖2 ≤
∑
λ∈F0

‖xλ‖2 ≤ c
∥∥∥ ∑

λ∈F0

xλ

∥∥∥2
,

i.e.
∑

λ∈F ‖Pλx‖2 ≤ c‖x‖2. By continuity, this relation is valid for all x ∈ V . For
every n ≥ 1 it follows that ‖Pλx‖ ≥ n−1 holds for at most finitely many λ; hence
Pλx 6= 0 for at most countably many λ.

Now we want to prove the expansion (2.4). Let (λj)j∈N be an enumeration of

J = {λ ∈ Λ |Pλx 6= 0}

and consider ε > 0. We know that x = limn→∞ yn where (yn)n∈N is a sequence in∑
λ∈Λ Vλ. With the help of the previous lemma we have x = PJx = limn→∞ PJyn.

Hence, there exists y ∈
∑

λ∈J Vλ with ‖x − y‖ ≤ ε and y =
∑n0

j=0 yj , yj ∈ Vλj
, for

some n0. For every n ≥ n0 we obtain

∥∥∥ n∑
j=0

Pλj
x− x

∥∥∥ ≤ ∥∥∥ n∑
j=0

Pλj
(x− y)

∥∥∥+
∥∥∥ n∑

j=0

Pλj
y − x

∥∥∥
≤
(∥∥∥ n∑

j=0

Pλj

∥∥∥+ 1
)
‖x− y‖ ≤ (c+ 1)ε.

Therefore
∑n

j=0 Pλj
x converges to x as n tends to infinity. Since the enumeration

of J was arbitrary, the convergence is even unconditional. The inequality (2.3) now
follows from (2.2) if we set xλ = Pλx, F = {λ1, . . . , λn}, and then take the limit
n→∞. Finally, given any expansion x =

∑
λ xλ, xλ ∈ Vλ, we have xλ = Pλx; thus

the uniqueness of the expansion.
Only (ii) remains to be shown. The assumption

∑
λ∈Λ ‖xλ‖2 < ∞ implies that

the set J = {λ ∈ Λ |xλ 6= 0} is at most countable. Choosing an enumeration of J ,
we obtain ∥∥∥ n2∑

j=n1

xλj

∥∥∥2
≤ c

n2∑
j=n1

‖xλj
‖2;

hence (
∑n

j=0 xλj
)n∈N is a Cauchy sequence. Therefore we have a converging series

x =
∑∞

j=0 xλj
, and as we have seen in the previous paragraph, this expansion is

unique and unconditional. �
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Remark 2.1.7 The family (Vk)k=1,...,n of closed subspaces forms an l2-decomposi-
tion if and only if we have the topological direct sum

V = V1 ⊕ · · · ⊕ Vn .

Indeed for Λ = {1, . . . , n} finite, (2.2) just means that on V1 u · · ·u Vn the original
norm ‖ · ‖ of V is equivalent to the norm

‖x1 + · · ·+ xn‖2 =
√
‖x1‖2 + · · ·+ ‖xn‖2 , xj ∈ Vj ;

and this is the case if and only if the sum V1 u · · ·u Vn is topological direct. Since
V1 ⊕ · · · ⊕ Vn is closed, it is dense if and only if it is equal to V .

If P1, . . . , Pn are the projections corresponding to the topological direct sum, the
constant in (2.2) can be chosen as

c = ‖P1‖2 + · · ·+ ‖Pn‖2.

This follows from the fact that if x = x1 + · · ·+ xn with xj ∈ Vj , then

n∑
j=1

‖xj‖2 =
n∑

j=1

‖Pjx‖2 ≤
n∑

j=1

‖Pj‖2 · ‖x‖2 and

‖x‖2 ≤
( n∑

j=1

‖xj‖
)2

≤ n

n∑
j=1

‖xj‖2 ≤
n∑

j=1

‖Pj‖2 ·
n∑

j=1

‖xj‖2.

For the Hilbert space case, a sharper constant will be obtained in Lemma 2.2.6. y

Now we turn to the question of how an existing l2-decomposition V =
⊕2

λ∈Λ Vλ

gives rise to other decompositions. Let Uλ ⊂ Vλ be closed subspaces. As we can
restrict the relation (2.2) to the subspaces Uλ, we clearly obtain the l2-decomposition∑

λ∈Λ

Uλ =
⊕2

λ∈Λ

Uλ . (2.6)

In particular, if J ⊂ Λ and we have Uλ = Vλ for λ ∈ J and Uλ = {0} otherwise, we
shall write ⊕2

λ∈J

Vλ .

For the projection PJ associated with the subset J , this yields

R(PJ) =
⊕2

λ∈J

Vλ , kerPJ =
⊕2

λ∈Λ\J

Vλ ,

and we get the topological direct sum

V =
⊕2

λ∈J

Vλ ⊕
⊕2

λ∈Λ\J

Vλ . (2.7)
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So we have split the l2-decomposition into two parts with every Vλ entirely belonging
to one part. Alternatively, we may split each subspace Vλ itself:

Proposition 2.1.8 Suppose that for the l2-decomposition V =
⊕2

λ∈Λ Vλ we have
Vλ = Uλ ⊕Wλ. Then the sum⊕2

λ∈Λ

Uλ u
⊕2

λ∈Λ

Wλ ⊂ V (2.8)

is algebraic direct and dense.

Proof. Let x ∈
⊕2

λ Uλ ∩
⊕2

λWλ. We thus have the expansions x =
∑

λ uλ with
uλ ∈ Uλ and x =

∑
λwλ with wλ ∈Wλ. As both are also expansions with respect to⊕2

λ Vλ, they must be identical, uλ = wλ. Since Uλ ∩Wλ = {0}, this implies uλ = 0;
hence x = 0. Moreover, the sum

⊕2
λ Uλ u

⊕2
λWλ is dense since it contains every

subspace Vλ. �

Remark 2.1.9 The sum (2.8) is not topological direct in general, see 5.1.1 as an
example of such a situation. In fact, (2.8) is topological direct if and only if the
projections Uλ⊕Wλ → Uλ are uniformly bounded in λ ∈ Λ, and this is the case if and
only if the system (Uλ,Wλ)λ∈Λ forms an l2-decomposition; compare Lemma 2.1.10
and Remark 2.1.7. y

The decomposition (2.7) can be generalised: Suppose Λ is written as a dis-
joint union Λ = ·⋃

γ∈Γ Jγ . Then the closed subspaces
⊕2

λ∈Jγ
Vλ constitute an l2-

decomposition of V ,

V =
⊕2

γ∈Γ

(⊕2

λ∈Jγ

Vλ

)
; (2.9)

we omit the simple proof. The next lemma analyses the reversed situation:

Lemma 2.1.10 Let V =
⊕2

λ∈ΛWλ be an l2-decomposition with constant c0. Let
Wλ =

⊕2
µ∈Jλ

Vλµ be l2-decompositions for all λ ∈ Λ with common constant c1.
Then the family (Vλµ)λ∈Λ, µ∈Jλ

forms an l2-decomposition of V with constant c0c1.

Proof. Since
∑

λ∈ΛWλ is dense in V and for every λ ∈ Λ the subspace
∑

µ∈Jλ
Vλµ

is dense in Wλ, we see that
∑

λ∈Λ,µ∈Jλ
Vλµ is dense in V . Consider F ⊂ Λ finite,

Fλ ⊂ Jλ finite for each λ ∈ F , and xλµ ∈ Vλµ. Then∥∥∥∥ ∑
λ∈F
µ∈Fλ

xλµ

∥∥∥∥2

≤ c0
∑
λ∈F

∥∥∥∥ ∑
µ∈Fλ

xλµ

∥∥∥∥2

≤ c0
∑
λ∈F

c1
∑
µ∈Fλ

‖xλµ‖2 = c0c1
∑
λ∈F
µ∈Fλ

‖xλµ‖2

and similarly ‖
∑

λ∈F,µ∈Fλ
xλµ‖2 ≥ c−1

0 c−1
1

∑
λ∈F,µ∈Fλ

‖xλµ‖2. �
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Note that in the previous lemma the existence of the common constant c1 is guar-
anteed if |Jλ| = 1 for almost all λ, that is, if only finitely many subspaces Wλ are
decomposed.

2.2 l2-decompositions of Hilbert spaces

In this section we focus on countable l2-decompositions of separable Hilbert spaces.
Following again Gohberg and Krein [22], Markus [36], and Singer [46], we ob-
tain several equivalent conditions for a sequence of closed subspaces to form an
l2-decomposition and also relations to Riesz bases.

The following observation shows that it is often natural to consider l2-decompo-
sitions of a Hilbert space:

Remark 2.2.1 Let V =
⊕2

λ∈Λ Vλ be an l2-decomposition of a Banach space such
that each Vλ is isomorphic to a Hilbert spaceHλ. Then V is isomorphic to the Hilbert
space orthogonal sum

⊕
λ∈ΛHλ by (2.3). This isomorphism induces a scalar product

on V giving it the structure of a Hilbert space with an orthogonal decomposition
V =

⊕
λ∈Λ Vλ. An example of such a situation is the case where all Vλ are finite-

dimensional. y

Up to an isomorphism, an l2-decomposition of a separable Hilbert space is com-
pletely determined by the dimensions of its constituting subspaces:

Proposition 2.2.2 Let H =
⊕2

k∈N Vk be an l2-decomposition of a separable Hilbert
space and (Wk)k∈N a sequence of closed subspaces of H. Then (Wk)k∈N forms an
l2-decomposition of H with dimVk = dimWk if and only if there is an isomorphism
T : H → H with T (Vk) = Wk.

Proof. (⇒): Since the subspaces Vk and Wk are both closed and of the same Hilbert
space dimension (either finite or countable since H is separable) there exist isometric
isomorphisms Tk : Vk → Wk. Define T̃ with D(T̃ ) =

∑u
k∈N Vk and T̃ |Vk

= Tk. Let
cV and cW be the constants of the decompositions

⊕2
k Vk and

⊕2
k Wk, respectively.

For x =
∑n

k=0 xk ∈
∑u

k Vk we have

‖T̃ x‖2 =
∥∥∥ n∑

k=0

Tkxk

∥∥∥2
≤ cW

n∑
k=0

‖Tkxk‖2 = cW

n∑
k=0

‖xk‖2 ≤ cW cV ‖x‖2

and similarly ‖T̃ x‖2 ≥ c−1
W c−1

V ‖x‖2. Thus T̃ extends to an isomorphism T of H with
the desired property.

(⇐): Since the subspace
∑

k Vk is dense in H and T is an isomorphism,
∑

k Wk =
T (
∑

k Vk) ⊂ H is dense as well. Now, for k = 1, . . . , n, let yk ∈ Wk and yk = Txk.
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Then ∥∥∥ n∑
k=0

yk

∥∥∥2
=
∥∥∥T n∑

k=0

xk

∥∥∥2
≤ ‖T‖2cV

n∑
k=0

‖xk‖2 = cV ‖T‖2
n∑

k=0

‖T−1yk‖2

≤ cV ‖T‖2‖T−1‖2
n∑

k=0

‖yk‖2

and ∥∥∥ n∑
k=0

yk

∥∥∥2
≥ 1
‖T−1‖2

∥∥∥T−1
n∑

k=0

yk

∥∥∥2
≥

c−1
V

‖T−1‖2

n∑
k=0

‖xk‖2

≥
c−1
V

‖T‖2‖T−1‖2

n∑
k=0

‖Txk‖2 =
c−1
V

‖T‖2‖T−1‖2

n∑
k=0

‖yk‖2.

Hence (Wk)k∈N forms an l2-decomposition. �

Corollary 2.2.3 A sequence (Wk)k∈N of closed subspaces in a separable Hilbert
space H forms an l2-decomposition if and only if there exists an orthogonal decom-
position H =

⊕
k∈N Vk and an isomorphism T with Wk = T (Vk), k ∈ N.

Proof. Note that for any sequence dk ∈ N ∪ {∞} with
∑

k∈N dk = dimH (in
particular for dk = dimWk) we can find an orthogonal decomposition H =

⊕
k∈N Vk

with dk = dimVk. Since every orthogonal decomposition is also an l2-decomposition,
the claim is an immediate consequence of the previous proposition. �

This last characterisation explains the notion “basis of subspaces equivalent to an
orthogonal one” used by Gohberg and Krein [22, §VI.5].

Our next aim is to derive a condition for the existence of an l2-decomposition in
terms of norms of the associated projections.

Lemma 2.2.4 Let V be a Banach space and (xn)n∈N a sequence in V . If there

exists C ≥ 0 such that for every reordering φ : N
bij−→ N and every n ∈ N we have

‖
∑n

k=0 xφ(k)‖ ≤ C, then

sup
n∈N,εk=±1

∥∥∥ n∑
k=0

εkxk

∥∥∥ ≤ 2C.

Proof. Let ε0, . . . , εn ∈ {−1, 1} and consider reorderings φ1 and φ2 that move all +1
and all −1 in the sequence (ε0, . . . , εn), respectively, to its beginning. Then, with
n1, n2 appropriate, we obtain∥∥∥ n∑

k=0

εkxk

∥∥∥ ≤ ∥∥∥∥ n∑
k=0

εk=+1

xk

∥∥∥∥+
∥∥∥∥ n∑

k=0
εk=−1

xk

∥∥∥∥ =
∥∥∥ n1∑

k=0

xφ1(k)

∥∥∥+
∥∥∥ n2∑

k=0

xφ2(k)

∥∥∥ ≤ 2C.

�
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Lemma 2.2.5 Let H be a Hilbert space, x0, . . . , xn ∈ H, and

E =
{
(ε0, . . . , εn)

∣∣ εk = ±1
}
.

Then

2n+1
n∑

k=0

‖xk‖2 =
∑
ε∈E

‖ε0x0 + · · ·+ εnxn‖2.

Proof. We use induction on n. The statement is true for the case n = 0 since
2‖x0‖2 = ‖x0‖2 + ‖ − x0‖2. Now suppose the statement holds for some n ≥ 0; let

Ẽ =
{
(ε0, . . . , εn+1)

∣∣ εk = ±1
}

and write xε = ε0x0 + · · ·+ εnxn. Then∑
ε∈ eE

‖ε0x0 + · · ·+ εn+1xn+1‖2 =
∑
ε∈E

(
‖xε + xn+1‖2 + ‖xε − xn+1‖2

)
=
∑
ε∈E

(
2‖xε‖2 + 2‖xn+1‖2

)
= 2

∑
ε∈E

‖xε‖2 + 2 · 2n+1‖xn+1‖2

= 2n+2

(
n∑

k=0

‖xk‖2 + ‖xn+1‖2

)
.

�

Lemma 2.2.6 Let P0, . . . , Pn be projections in a Hilbert space H with PjPk = 0
for j 6= k. Then

C−2
n∑

k=0

‖Pkx‖2 ≤
∥∥∥ n∑

k=0

Pkx
∥∥∥2
≤ C2

n∑
k=0

‖Pkx‖2 for all x ∈ H

where C = max
{
‖
∑n

k=0 εkPk‖
∣∣ εk = ±1

}
.

Proof. We write xk = Pkx and use the last lemma considering that ε ∈ E for which
‖ε0x0 + · · ·+ εnxn‖ becomes maximal. Then we obtain

n∑
k=0

‖Pkx‖2 ≤ ‖ε0x0 + · · ·+ εnxn‖2 =
∥∥∥( n∑

k=0

εkPk

)( n∑
k=0

xk

)∥∥∥2
≤ C2

∥∥∥ n∑
k=0

Pkx
∥∥∥2
.

On the other hand, if we choose ε ∈ E such that ‖ε0x0 + · · ·+ εnxn‖ is minimal, we
find ∥∥∥ n∑

k=0

Pkx
∥∥∥2

=
∥∥∥( n∑

k=0

εkPk

)( n∑
k=0

εkxk

)∥∥∥2

≤ C2 ‖ε0x0 + · · ·+ εnxn‖2 ≤ C2
n∑

k=0

‖Pkx‖2.

�
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The following statement yields a sufficient condition for a sequence of projections
to generate an l2-decomposition. It is a slight modification1 of a result by Markus
[36, Lemma 6.2] and will be used in the next chapter to obtain determining l2-
decompositions for non-normal operators.

Proposition 2.2.7 Let H be a Hilbert space with scalar product (·|·) and (Pk)k∈N
a sequence of projections in H satisfying PjPk = 0 for j 6= k. Suppose that∑

k∈NR(Pk) ⊂ H is dense and that

∞∑
k=0

|(Pkx|y)| ≤ C‖x‖‖y‖ for all x, y ∈ H (2.10)

with some constant C ≥ 0. Then the projections generate an l2-decomposition

H =
⊕2

k∈N
R(Pk)

with constant c = 4C2.

Proof. From ∣∣∣( n∑
k=0

Pkx
∣∣∣y)∣∣∣ ≤ n∑

k=0

|(Pkx|y)| ≤ C‖x‖‖y‖

we conclude that ‖
∑n

k=0 Pk‖ ≤ C for all n ∈ N. This assertion remains valid after
an arbitrary rearrangement of the sequence (Pk)k∈N since the assumptions of the
proposition still hold for the rearranged sequence. An application of Lemmas 2.2.4
and 2.2.6 now completes the proof. �

Remark 2.2.8 Suppose that we have a sequence (Qk)k∈N of orthogonal projections
with QjQk = 0 for j 6= k. Then∑

k

|(Pkx|y)| ≤
∑

k

∣∣((Pk −Qk)x
∣∣y)∣∣+∑

k

|(Qkx|y)|

≤
∑

k

∣∣((Pk −Qk)x
∣∣y)∣∣+ ‖x‖‖y‖.

Therefore, in order to show
∑∞

k=0 |(Pkx|y)| ≤ C‖x‖‖y‖, it is also possible to show

∞∑
k=0

∣∣((Pk −Qk)x
∣∣y)∣∣ ≤ C̃‖x‖‖y‖ for all x, y ∈ H (2.11)

with some constant C̃. y
1Under the weaker assumption

P∞
k=0 |(Pkx|y)| < ∞ for all x, y ∈ H, Markus proved the existence

of the decomposition H =
L2

k∈NR(Pk), but without obtaining a formula for the constant c.
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The conditions in Proposition 2.2.7 are actually one of several equivalent criteria
for a sequence of subspaces to form an l2-decomposition. We say that the sequence
(Vk)k∈N is an unconditional basis for H if every x ∈ H can be uniquely written as
x =

∑∞
k=0 xk, xk ∈ Vk, and the convergence of the series

∑∞
k=0 xk is unconditional;

compare Singer [46, page 534].

Theorem 2.2.9 For a sequence of closed subspaces (Vk)k∈N in a separable Hilbert
space H the following conditions are equivalent:

(i) (Vk)k∈N forms an l2-decomposition for H.

(ii) There is an isomorphism T : H → H such that the subspaces T (Vk), k ∈ N,
form an orthogonal decomposition of H.

(iii) (Vk)k∈N is an unconditional basis for H.

(iv) The sum
∑

k Vk ⊂ H is dense and there exist projections Pk, k ∈ N, such that
Vk = R(Pk), PjPk = 0 for j 6= k, and there is a constant C > 0 with∥∥∥∑

k∈F

Pk

∥∥∥ ≤ C for every finite F ⊂ N.

(v) The sum
∑

k Vk ⊂ H is dense and there exist projections Pk, k ∈ N, such that
Vk = R(Pk), PjPk = 0 for j 6= k, and there is a constant C > 0 with

∞∑
k=0

|(Pkx|y)| ≤ C‖x‖‖y‖ for all x, y ∈ H.

Moreover, in the two last statements the density condition can be replaced by the
condition that Pkx = 0 for all k implies x = 0.

Proof. We already know that

(i) ⇔ (ii) and (v) ⇒ (iv) ⇒ (i) ⇒ (iii),

compare Proposition 2.1.6, Corollary 2.2.3, and the proof of Proposition 2.2.7. We
only sketch the remaining implications, see Gohberg and Krein [22, §VI.5] and
Singer [46, §15] for more details:

(ii) ⇒ (v): Let Wk = T (Vk) and denote by Qk the orthogonal projections
corresponding to the decomposition H =

⊕
k Wk. Then

⊕2
k Vk and

⊕2
k T

∗(Wk) are
both l2-decompositions with corresponding projections Pk = T−1QkT and P ∗k =
T ∗QkT

−∗ and constants c and c̃, respectively. This yields∑
k

|(Pkx|y)| =
∑

k

|(Pkx|P ∗k y)| ≤
∑

k

‖Pkx‖‖P ∗k y‖

≤
(∑

k

‖Pkx‖2

)1/2(∑
k

‖P ∗k y‖2

)1/2

≤
√
cc̃ ‖x‖‖y‖.
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(iii) ⇒ (i): Since (Vk)k∈N is a basis, the sum
∑

k Vk is dense in H and the
projections Pk onto the components xk given by the unique expansion x =

∑∞
k=0 xk

are bounded. Moreover, the projections
∑n

k=0 Pk are uniformly bounded in n. Since
the basis is even unconditional, this remains true after an arbitrary rearrangement
of the sequence (Pk)k∈N. Using the principle of uniform boundedness in the version
for continuous, convex, positively homogeneous functionals (cf. [3, §18]), one can
deduce that2

sup
n∈N,εk=±1

∥∥∥ n∑
k=0

εkPk

∥∥∥ <∞.

Then Lemma 2.2.6 yields the l2-property.
Now suppose we have (iv) with the density condition replaced by the assumption

that Pkx = 0 for all k implies x = 0. By Lemmas 2.2.4 and 2.2.6 we have, for every
x ∈ H,

1
4C2

n∑
k=0

‖Pkx‖2 ≤
∥∥∥ n∑

k=0

Pkx
∥∥∥2
≤
∥∥∥ n∑

k=0

Pk

∥∥∥2
‖x‖2 for all n ∈ N

=⇒
∞∑

k=0

‖Pkx‖2 ≤ 4C4‖x‖2 <∞

=⇒
∥∥∥ m∑

k=n

Pkx
∥∥∥2
≤ 4C2

m∑
k=n

‖Pkx‖2 → 0 as n,m→∞.

Consequently,
∑∞

k=0 Pkx converges for every x ∈ H. Let y = x−
∑∞

k=0 Pkx. Then

Pjy = Pjx−
∞∑

k=0

PjPkx = Pjx− Pjx = 0 for all j ∈ N

and thus x =
∑∞

k=0 Pkx. In particular,
∑

k Vk is dense in H.
Finally, if

⊕2
k Vk is an l2-decomposition, we know that Pkx = 0 for all k implies

x = 0. �

We end this section with statements about the connection between l2-decompo-
sitions and Riesz bases, see also Gohberg and Krein [22, §VI.2].

Proposition 2.2.10 For a sequence (xk)k∈N in a Hilbert space the following prop-
erties are equivalent:

(i) (xk)k∈N is a Riesz basis.

2Note that we can not use Lemma 2.2.4 here since a priori we have different bounds for each
rearrangement.
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(ii) (xk)k∈N is complete and there exist constants m,M > 0 such that

m

n∑
k=0

|αk|2 ≤
∥∥∥ n∑

k=0

αkxk

∥∥∥2
≤M

n∑
k=0

|αk|2 (2.12)

holds for all n ∈ N, αk ∈ C.

(iii) (xk)k∈N is an unconditional basis with infk∈N ‖xk‖ > 0, supk∈N ‖xk‖ <∞.

(iv) The subspaces Vk = Cxk form an l2-decomposition and infk∈N ‖xk‖ > 0,
supk∈N ‖xk‖ <∞.

Proof. The equivalence (i) ⇔ (iv) is immediate from Definition 2.1.1 and Corol-
lary 2.2.3. (ii) ⇔ (iv) holds by definition of an l2-decomposition and (iii) ⇔ (iv)
follows from Theorem 2.2.9 and Definition 2.1.1. �

A generalisation of the concept of bases are bases with parentheses, see e.g.
Markus [36, page 27] and Vizitei and Markus [50, §1].

Definition 2.2.11 A sequence (xk)k∈N in a Banach space V is called a basis with
parentheses if there is a strictly increasing sequence kn ∈ N with k0 = 0 such that
every x ∈ V has a unique representation

x =
∞∑

n=0

(
kn+1−1∑
k=kn

αkxk

)
, αk ∈ C, (2.13)

i.e., instead of (2.1) only the subsequence
(∑kn−1

k=0 αkxk

)
n∈N of the sequence of all

partial sums converges to x. If the convergence in (2.13) is unconditional, (xk)k∈N
is called an unconditional basis with parentheses. y

In a Hilbert space an unconditional basis with parentheses is also called a Riesz
basis with parentheses (or brackets), see Shkalikov [43].

Proposition 2.2.12 The sequence (xk)k∈N in a Hilbert space is an unconditional
basis with parentheses if and only if it is finitely linearly independent and the sub-
spaces Vn = span{xkn , . . . , xkn+1−1} form an l2-decomposition.

Proof. This is immediate from Theorem 2.2.9. �

2.3 Finitely determining l2-decompositions

In this section we introduce the class of (generally non-normal) operators with a
finitely determining l2-decomposition. This amounts to the existence of an l2-decom-
position into finite-dimensional invariant subspaces such that the properties of the
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whole operator are determined by its restriction to these subspaces. For example,
we obtain formulas for the domain of definition, the spectrum, and the resolvent.
If the spectra of the restrictions are pairwise disjoint, the decomposition is called
finitely spectral.

The notion of a finitely determining l2-decomposition is equivalent to the exis-
tence of a Riesz basis with parentheses of Jordan chains such that each Jordan chain
is contained inside some parenthesis, see Proposition 2.3.11. Riesz bases of this kind
are frequently used in the literature, e.g. by Markus [36] and Tretter [47].

Other classes of non-normal operators that provide similar descriptions of prop-
erties of the operator are spectral and Riesz-spectral operators. The notion of a
spectral operator was introduced by Dunford [18] (see [20] for a comprehensive pre-
sentation) and is in general not comparable with a finitely determining or spectral
l2-decomposition. However, a spectral operator with compact resolvent has a finitely
spectral l2-decomposition such that all restrictions of the operator to the subspaces
of the decomposition have one eigenvalue only. Riesz-spectral operators are used
for example in control theory (see [14] and [29]) and allow for a finitely spectral
l2-decomposition where all subspaces are one-dimensional.

The relations of finitely determining l2-decompositions to the above and other
classes of non-normal operators are summarised in Theorem 2.3.17.

Definition 2.3.1 Let T (H → H) be a closed operator on a separable Hilbert space
H. We say that an l2-decomposition H =

⊕2
k∈N Vk is finitely determining for T if

dimVk <∞, Vk ⊂ D(T ), T (Vk) ⊂ Vk,

and
∑

k∈N Vk is a core for T . y

A finitely determining l2-decomposition is not uniquely determined since any finite
collection of the subspaces Vk can be replaced by its sum.

Note that the restrictions T |Vk
: Vk → Vk are bounded since the Vk are finite-

dimensional. The assumption of
∑

k Vk being a core for T will then enable us to
carry over results for the finite-dimensional parts T |Vk

to the whole operator T . In
Proposition 2.3.8 we show that this “core property” is automatically satisfied for
operators with non-empty resolvent set. Without the core property, the theory still
applies to an operator generated by the parts T |Vk

:

Lemma 2.3.2 Let T (H → H) be an operator and H =
⊕2

k∈N Vk an l2-decom-
position with dimVk < ∞, Vk ⊂ D(T ), and T (Vk) ⊂ Vk. Then the restriction
T0 = T |P

k∈N Vk
is closable and

⊕2
k∈N Vk is finitely determining for the closure T0.

Proof. Let Pk be the projection onto Vk corresponding to the given l2-decompo-
sition. Suppose we have yn ∈ D(T0) with yn → 0 and T0yn → z. We may write
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yn =
∑

j∈N Pjyn, where the sum is actually finite since D(T0) =
∑

k Vk. The T -
invariance of the Vk’s yields PkT0yn = Pk

∑
j TPjyn = TPkyn. Therefore

Pkz = Pk lim
n→∞

T0yn = lim
n→∞

PkT0yn = lim
n→∞

T |Vk
Pkyn

= T |Vk
lim

n→∞
Pkyn = T |Vk

(0) = 0,

where we have used the fact that T |Vk
is a bounded operator because Vk is finite-

dimensional. Now, from Pkz = 0 for all k we conclude that z = 0, i.e., T0 is closable.∑
k Vk is then a core for T0 and the assertion follows. �

The next proposition shows that an operator with a finitely determining l2-
decomposition is in fact determined by its finite-dimensional parts T |Vk

. For the
case of an orthogonal decomposition, the spectrum of an operator defined by (2.14)
and (2.15) was calculated by Davies [15, Theorem 8.1.12].

Proposition 2.3.3 Let T (H → H) be a closed operator with finitely determining
l2-decomposition H =

⊕2
k∈N Vk. Then

D(T ) =
{∑

k∈N
xk ∈

⊕2

k∈N
Vk

∣∣∣∣ ∑
k∈N

‖Txk‖2 <∞
}
, (2.14)

Tx =
∑
k∈N

Txk for x =
∑
k∈N

xk ∈ D(T ) . (2.15)

T is bounded if and only if the restrictions T |Vk
are uniformly bounded and in this

case
‖T‖ ≤ c sup

k∈N
‖T |Vk

‖.

The point spectrum, residual spectrum and resolvent set are given by

σp(T ) =
⋃
k∈N

σ(T |Vk
), σr(T ) = ∅,

%(T ) =
{
z ∈ C \ σp(T )

∣∣∣ sup
k∈N

‖(T |Vk
− z)−1‖ <∞

}
. (2.16)

Proof. We denote again by Pk the projections onto Vk corresponding to the l2-
decomposition.

(i): We derive (2.14) and (2.15). Let y ∈ D(T ). Since
∑

k Vk is a core for T ,
there is a sequence yn ∈

∑
k Vk with yn → y, Tyn → Ty. Analogously to the proof

of Lemma 2.3.2, we obtain PkTyn = TPkyn and

PkTy = Pk lim
n→∞

Tyn = lim
n→∞

PkTyn = T |Vk
lim

n→∞
Pkyn = TPky.
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Hence
∑

k ‖TPky‖2 =
∑

k ‖PkTy‖2 ≤ c‖Ty‖2 <∞ and

y =
∑

k

Pky ∈
{∑

k

xk ∈
⊕2

k∈N
Vk

∣∣∣∣ ∑
k

‖Txk‖2 <∞
}

with

Ty =
∑

k

PkTy =
∑

k

TPky.

If on the other hand
∑

k xk ∈
⊕2

k Vk with
∑

k ‖Txk‖2 <∞, then

D(T ) 3
n∑

k=0

xk →
∞∑

k=0

xk and T

n∑
k=0

xk =
n∑

k=0

Txk →
∞∑

k=0

Txk.

Hence
∑

k xk ∈ D(T ) since T is closed.
(ii): Suppose that L = supk ‖T |Vk

‖ <∞. Then for x =
∑

k xk ∈ D(T ):

‖Tx‖2 =
∥∥∑

k

T |Vk
xk

∥∥2 ≤ c
∑

k

‖T |Vk
xk‖2

≤ cL2
∑

k

‖xk‖2 ≤ c2L2‖x‖2;

thus T is bounded with norm ≤ cL.
(iii): Next we compute the point spectrum. We use the notation σk = σ(T |Vk

).
Evidently σk ⊂ σp(T ) for all k ∈ N. Now suppose that λ ∈ σp(T ). Then there exists∑

k xk ∈ D(T ) \ {0} such that

0 = (T − λ)
∑
k∈N

xk =
∑
k∈N

(T − λ)xk ,

i.e. (T |Vk
− λ)xk = 0 for all k. Since xk0 6= 0 for some k0, we find λ ∈ σk0 .

(iv): To see that σr(T ) = ∅, note that for z 6∈ σp(T ) the injective operator
T −z maps each finite-dimensional T -invariant subspace Vk onto itself. This implies∑

k Vk ⊂ R(T − z); the range is thus dense.
(v): Now we want to derive the formula for the resolvent set. For one inclusion,

consider z ∈ C \
⋃

k σk such that L = supk ‖(T |Vk
− z)−1‖ <∞. Using steps (i) and

(ii), we see that
S :
∑
k∈N

xk 7→
∑
k∈N

(T |Vk
− z)−1xk

defines a bounded operator S : V → V , which has the finitely determining decompo-
sition

⊕2
k Vk and R(S) ⊂ D(T −z). Obviously, we have (T −z)Sx = x for all x ∈ V .

Since z 6∈ σp(T ), i.e., T − z is injective, we obtain z ∈ %(T ) with (T − z)−1 = S. For
the other inclusion, if z ∈ %(T ) then clearly z 6∈ σk for all k. Since T |Vk

⊂ T , we
also have (T |Vk

− z)−1 ⊂ (T − z)−1 and thus

‖(T |Vk
− z)−1‖ ≤ ‖(T − z)−1‖ for all k.

�



2.3. Finitely determining l2-decompositions 35

Corollary 2.3.4 If T is closed with a finitely determining decomposition
⊕2

k∈N Vk,
then the point spectrum of T is non-empty and at most countably infinite. For
x =

∑
k xk ∈

⊕2
k Vk we have

x ∈ L(λ) ⇔ xk ∈ L(λ) for all k ∈ N. (2.17)

Moreover,
⊕2

k∈N Vk is finitely determining for (T − z)−1, z ∈ %(T ), and

(T − z)−1x =
∑
k∈N

(T |Vk
− z)−1xk for x =

∑
k∈N

xk ∈
⊕2

k∈N
Vk . (2.18)

�

Example 2.3.5 Let H =
⊕

k∈N Vk be an orthogonal decomposition of a Hilbert
space into finite-dimensional subspaces Vk and Tk : Vk → Vk linear. We can define
an operator T (H → H) by

D(T ) =
∑u

k∈N
Vk , T |Vk

= Tk.

Lemma 2.3.2 implies that T is closable and that
⊕

k Vk is a finitely determining
l2-decomposition for T . Proposition 2.3.3 then yields σp(T ) =

⋃
k σ(Tk).

In particular, for any given non-empty subset σ ⊂ C which is at most countable,
we may choose the operators Tk such that σp(T ) = σ. y

Proposition 2.3.6 Let H =
⊕2

k∈N Vk be a finitely determining l2-decomposition
for a closed operator T (H → H).

(i) If dimVk = 1 for almost all k, then

%(T ) =
{
z ∈ C

∣∣∣ dist
(
z,
⋃
k∈N

σ(T |Vk
)
)
> 0
}
, i.e. σ(T ) =

⋃
k∈N

σ(T |Vk
) .

(ii) (T − z)−1 compact ⇔ limk→∞ ‖(T |Vk
− z)−1‖ = 0.

Proof. (i): Let J ⊂ N be the subset of those k for which dimVk = 1 and let λk be
the corresponding eigenvalues. Then

‖(T |Vk
− z)−1‖ = |λk − z|−1 for k ∈ J.

With σk = σ(T |Vk
) and since {σk | k ∈ N \ J} is a finite collection of finite sets, we

have ⋃
k∈N

σk = {λk | k ∈ J} ∪
⋃

k∈N\J

σk .
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For z ∈ C \
⋃

k σk we thus obtain

z 6∈
⋃
k

σk ⇔ z 6∈ {λk | k ∈ J}

⇔ inf
k∈J

|λk − z| > 0 ⇔ sup
k∈N

‖(T |Vk
− z)−1‖ <∞ ;

for the last equivalence, we used again that N \ J is finite. Applying the character-
isation (2.16) of the resolvent set, the proof is complete.

(ii): Suppose first that ‖(T |Vk
− z)−1‖ → 0 as k → ∞. Then the sequence of

finite-rank operators
∑n

k=0(T |Vk
−z)−1, n ∈ N, converges uniformly to the resolvent

(T − z)−1 since∥∥∥∑
k>n

(T |Vk
− z)−1

∥∥∥ ≤ c sup
k>n

‖(T |Vk
− z)−1‖ → 0 as n→∞

by Proposition 2.3.3. The resolvent is thus compact. If on the other hand we have
‖(T |Vk

− z)−1‖ 6→ 0, there is a monotonically increasing sequence of indices kl and
elements xl ∈ Vkl

with ‖xl‖ = 1 such that yl = (T − z)−1xl satisfies inf l ‖yl‖ > 0.
Let Pk be the projections corresponding to the l2-decomposition. From yl ∈ Vkl

it follows that liml→∞ Pkyl = 0. Consequently every converging subsequence of
(yl)l∈N must converge to zero. But this is impossible, so (yl)l∈N has no converging
subsequence. Therefore (T − z)−1 is not compact. �

Now we show that the “core property” from Definition 2.3.1 is automatically
satisfied if T has a point of regular type.

Definition 2.3.7 For an operator T on a Banach space we say that z ∈ C is a point
of regular type of T if there is a constant C > 0 such that

‖(T − z)x‖ ≥ C‖x‖ for all x ∈ D(T ).

The set of all points of regular type of T will be denoted by r(T ). y

Evidently z ∈ r(T ) if and only if T − z is injective with bounded inverse (T − z)−1.
The set r(T ) is open and satisfies %(T ) ⊂ r(T ) and σp(T ) ∩ r(T ) = ∅, see Akhiezer
and Glazman [3, §78].

Proposition 2.3.8 Let T (H → H) be a closed operator satisfying r(T ) 6= ∅ and
H =

⊕2
k∈N Vk an l2-decomposition into finite-dimensional T -invariant subspaces

such that Vk ⊂ D(T ). Then
⊕2

k∈N Vk is finitely determining for T .

Proof. By Lemma 2.3.2, the restriction T0 = T |P
k Vk

is closable, and
⊕2

k Vk is
finitely determining for T0. Let z ∈ r(T ). As T0 ⊂ T we have z 6∈ σp(T0) and

‖(T |Vk
− z)−1‖ ≤ ‖(T − z)−1‖ for all k ∈ N.
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Hence z ∈ %(T0) by (2.16). Now if T0 $ T then the surjectivity of T0 − z would
imply that T − z could not be injective, which is a contradiction; thus T0 = T . �

As a consequence of the previous proposition, T = T |P
k Vk

is the only possible
extension of T |P

k Vk
with %(T ) 6= ∅. Also note that in the proof we have shown

that r(T ) = %(T ). This property actually holds for a larger class of operators:

Definition 2.3.9 We say that an operator T on a Banach space V has a dense
system of root subspaces if ∑

λ∈σp(T )

L(λ) ⊂ V is dense.

y

Obviously, the density of the system of root subspaces is equivalent to the com-
pleteness of the family of root vectors. Also observe that an operator with a finitely
determining l2-decomposition has a dense system of root subspaces.

Lemma 2.3.10 If T (V → V ) is closed with a dense system of root subspaces, then
r(T ) = %(T ).

Proof. Let z ∈ r(T ), i.e., the operator (T − z)−1 : R(T − z) → D(T ) exists and is
bounded. It is also closed since T is closed. Consequently R(T − z) is closed. Now
let λ ∈ σp(T ) and consider the T -invariant subspace U generated by a Jordan chain
in L(λ). Then U is finite-dimensional and the injective operator T − z maps U onto
itself; in particular U ⊂ R(T − z). Therefore R(T − z) ⊂ V is dense, which implies
R(T − z) = V and z ∈ %(T ). �

Another class of operators related to finitely determining l2-decompositions are
operators having a Riesz basis with parentheses of root vectors.

Proposition 2.3.11 Let T (H → H) be an operator with %(T ) 6= ∅. Then T
has a finitely determining l2-decomposition if and only if T has a Riesz basis with
parentheses of Jordan chains such that each Jordan chain is entirely contained in
some parenthesis.

Proof. If H =
⊕2

k∈N Vk is finitely determining for T , the choice of a basis of
Jordan chains in every subspace Vk yields the desired Riesz basis with parentheses
by Proposition 2.2.12. On the other hand, suppose that T has a Riesz basis with
parentheses of Jordan chains where each Jordan chain lies inside some parenthesis.
Then the subspaces generated by the parentheses are T -invariant and form an l2-
decomposition which is finitely determining for T by Proposition 2.3.8. �

Riesz bases with parentheses of Jordan chains are frequently constructed in the
literature, see e.g. Markus [36, §6] or Tretter [47]; the condition that each chain lies
inside some parenthesis is typically satisfied due to the methods used for constructing
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the basis. However, not every Riesz basis with parentheses of root vectors needs to
satisfy this additional condition:

Example 2.3.12 Consider the shift operator S : l2 → l2, Se0 = 0, Sek+1 = ek,
where (ek)k∈N is the standard orthonormal basis of l2. Then we have 0 ∈ σp(S) and
ek ∈ L(0) for every k. Hence (ek)k∈N is an orthonormal basis of root vectors, but it
is not possible to place parentheses such that the corresponding subspaces become
S-invariant. y

A natural subclass of finitely determining l2-decompositions are finitely spectral
l2-decompositions:

Definition 2.3.13 If
⊕2

k∈N Vk is a finitely determining l2-decomposition for a closed
operator T with the additional property that the sets σ(T |Vk

) are pairwise disjoint,
then we say that

⊕2
k∈N Vk is finitely spectral . y

As for the case of finitely determining decompositions, finitely spectral l2-decompo-
sitions are not uniquely determined.

Lemma 2.3.14 Let T (H → H) be a closed operator. A finitely determining de-
composition H =

⊕2
k∈N Vk for T is finitely spectral if and only if

Vk =
∑

λ∈σ(T |Vk
)

L(λ) for all k ∈ N. (2.19)

In this case σp(T ) is countably infinite (provided dimH = ∞) and all root subspaces
L(λ) are finite-dimensional.

Proof. Let the l2-decomposition
⊕2

k Vk be spectral for T . Let λ ∈ σ(T |Vk
) and

x ∈ L(λ) with x =
∑

j xj , xj ∈ Vj . Then xj ∈ L(λ) for all j by (2.17). Since
the decomposition is spectral, we have λ 6∈ σ(T |Vj ) for j 6= k and hence xj = 0
for j 6= k. This implies x = xk, i.e. L(λ) ⊂ Vk. As Vk is the sum of all the root
subspaces of T |Vk

, (2.19) holds. On the other hand, if (2.19) holds, then each L(λ)
is completely contained in some Vk. Hence the σ(T |Vk

) are pairwise disjoint and the
decomposition is spectral. The other assertions are immediate. �

Lemma 2.3.15 Consider an operator T (H → H) with %(T ) 6= ∅.

(i) If T has a Riesz basis of Jordan chains, then there exists a finitely determining
l2-decomposition for T . If in addition dimL(λ) < ∞ for all λ ∈ σp(T ), then
the root subspaces L(λ) form a finitely spectral l2-decomposition for T .

(ii) T admits a finitely spectral l2-decomposition H =
⊕2

k∈N Vk that satisfies
dimVk = 1 for almost all k if and only if almost all eigenvalues of T are
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simple, dimL(λ) <∞ for all λ ∈ σp(T ), and T has a Riesz basis of eigenvec-
tors and at most finitely many Jordan chains. The subspaces Vk can be chosen
as the root subspaces of T .

Proof. (i): If T has a Riesz basis of Jordan chains, the subspaces Vk generated by
each Jordan chain form an l2-decomposition of H, see Proposition 2.2.10 and (2.9);
it is finitely determining by Proposition 2.3.8. Now suppose that dimL(λ) <∞ for
all λ. Since every T |Vk

has only one eigenvalue λk, (2.17) implies

L(λ) =
∑
λk=λ

Vk for all λ ∈ σp(T ),

where the sum is finite. Using again (2.9), we see that the root subspaces form a
finitely spectral l2-decomposition.

(ii): If
⊕2

k Vk is finitely spectral for T , Lemma 2.3.14 yields dimL(λ) <∞ and
that each Vk is the sum of root subspaces. Then dimVk = 1 for almost all k implies
that almost all root subspaces are one-dimensional, i.e., the corresponding eigenval-
ues are simple. To construct the Riesz basis, we choose a normalised eigenvector in
every Vk with dimension one and a basis of Jordan chains in those finitely many Vk

with dimension bigger than one. Due to Lemma 2.1.10 and Proposition 2.2.10 this
procedure yields a Riesz basis.

For the other implication, the system of root subspaces forms a finitely spectral
l2-decomposition by (i), and since almost all eigenvalues λ are simple, the corre-
sponding L(λ) are one-dimensional. �

The classes of spectral operators (see Dunford and Schwartz [20]) and operators
with finitely determining or spectral l2-decomposition are in general not comparable.
On the one hand, spectral operators (which include selfadjoint operators) may have
empty point spectrum which is not possible for operators with a finitely determining
l2-decomposition. On the other hand, there are operators with a finitely spectral
l2-decomposition whose spectrum is separated into two parts but corresponding spec-
tral subspaces do not exist (cf. Section 2.4 and Example 5.1.1); spectral operators
always have corresponding spectral subspaces.

For the case of operators with compact resolvent, the situation is different:

Proposition 2.3.16 Let T be an operator with compact resolvent and Pk, k ∈ N,
the Riesz projections associated with its eigenvalues. Then T is spectral if and only
if

(i) there exists C > 0 such that ‖
∑

k∈F Pk‖ ≤ C for every finite F ⊂ N and

(ii) Pkx = 0 for all k ∈ N implies x = 0.

Proof. This is an immediate consequence of the definition of a spectral operator in
[20, Definition XVIII.2.1]. �
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With Theorem 2.2.9 we conclude that operators with compact resolvent are spectral
if and only if their root subspaces form an l2-decomposition.3

A closed operator T is called Riesz-spectral (see Curtain and Zwart [14] and
Kuiper and Zwart [29]) if all its eigenvalues are simple, T has a Riesz basis of
eigenvectors, and σp(T ) is totally disconnected4. In [29, Corollary 4.6] it is shown
that the Riesz-spectral operators with compact resolvent are exactly the spectral
operators with compact resolvent and simple eigenvalues.

The various classes of operators considered so far can be put into a hierarchy as
follows:

Theorem 2.3.17 Let T (H → H) be an operator with %(T ) 6= ∅ and dimL(λ) <∞
for all λ ∈ σp(T ). For the properties

(i) T has a dense system of root subspaces,

(ii) T has a Riesz basis with parentheses of root vectors,

(iii) T has a finitely determining l2-decomposition,
( ⇔ T has a Riesz basis with parentheses of Jordan chains such

that each Jordan chain lies inside some parenthesis)

(iv) T has a finitely spectral l2-decomposition,
( ⇔ T has an l2-decomposition of finite sums of root subspaces)

(v) T has an l2-decomposition of root subspaces,
( If T has a compact resolvent, this is equivalent to T being a

spectral operator.)

(vi) T has a Riesz basis of Jordan chains,

(vii) T has a Riesz basis of eigenvectors and finitely many Jordan chains, and almost
all eigenvalues are simple,

( ⇔ T has a finitely spectral l2-decomposition with almost all
subspaces one-dimensional)

(viii) T is a Riesz-spectral operator,

we have the implications

(viii) ⇒ (vii) ⇒ (vi) ⇒ (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒ (i).

If we drop the assumption dimL(λ) <∞, we still have the implications

(vi) ⇒ (iii) ⇒ (ii) ⇒ (i).
�

3Spectral operators with compact resolvent are also called “discrete spectral”.
4A set S ⊂ C is totally disconnected if no two points from S can be joined by a path lying in S.
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In this thesis, the properties (iii), (iv), (vi), and (occasionally) (i) will be used as
assumptions in theorems. The perturbation results from Sections 3.4 and 4.4 yield
operators of type (iv), (v), and (vii).

With the help of Example 2.3.5 it is not hard to see that the implications (viii) ⇒
· · · ⇒ (iii) in Theorem 2.3.17 are strict. An example of an operator with compact
resolvent and a finitely spectral l2-decomposition that is not a spectral operator is
the Hamiltonian operator in Example 5.1.1.

We end this section with the example of an operator with a finitely spectral
l2-decomposition whose spectrum is not the closure of its point spectrum, compare
(2.16) and Proposition 2.3.6(i).

Example 2.3.18 Consider an orthogonal decomposition H =
⊕

k≥1 Vk such that
dimVk = 2 and an operator T0(H → H) with D(T0) =

∑
k Vk such that all Vk are

invariant and the restrictions T0|Vk
have eigenvalues k and k + i. By Lemma 2.3.2

and Proposition 2.3.3, T0 is closable and σp(T0) =
⋃

k{k, k + i}. Moreover, if there
are unit length eigenvectors vk, wk ∈ Vk corresponding to k and k + i, respectively,
which satisfy

(vk|wk) = 1− k−q

with q > 6, then σ(T0) = C.

Proof. Let z ∈ C \
⋃

k{k, k + i}. Consider some k ≥ 1 and let

λ1 = k − z, λ2 = k + i− z, ω = (vk|wk).

Then we get

‖vk − wk‖2 = ‖vk‖2 − 2(vk|wk) + ‖wk‖2 = 2(1− ω),(
T0|Vk

− z
)−1(vk − wk) = λ−1

1 vk − λ−1
2 wk,

and, using 0 ≤ ω ≤ 1,

∥∥(T0|Vk
− z
)−1∥∥2 ≥ ‖λ−1

1 vk − λ−1
2 wk‖2

‖vk − wk‖2
=
|λ−1

1 |2 − 2 Re
(
λ−1

1 λ−1
2

)
ω + |λ−1

2 |2

2(1− ω)

≥ |λ−1
1 |2 − 2|λ−1

1 | · |λ−1
2 |+ |λ−1

2 |2

2(1− ω)
=

(|λ−1
1 | − |λ−1

2 |)2

2(1− ω)
.

With z = x+ iy, x, y ∈ R, we find

|λ−1
1 | − |λ−1

2 |√
1− ω

=
|λ2|2 − |λ1|2√

1− ω |λ1| · |λ2| · (|λ1|+ |λ2|)

=
(k − x)2 + (1− y)2 −

(
(k − x)2 + y2

)
√
k−q |k − z| · |k + i− z|

(
|k − z|+ |k + i− z|

)
=

kq/2(1− 2y)
|k − z| · |k + i− z|

(
|k − z|+ |k + i− z|

) .
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Since q/2 > 3 and if y 6= 1/2, this last expression tends to ±∞ as k →∞ and we can
conclude that supk≥1 ‖(T0|Vk

− z)−1‖ = ∞ in this case. Using the characterisation
(2.16) of the resolvent set, we see that

{z ∈ C | Im z 6= 1/2} ⊂ σ(T0) .

Since the spectrum is a closed set, this implies σ(T0) = C. �

2.4 Compatible subspaces of determining
l2-decompositions

In this section we show that for every operator with a finitely determining l2-decom-
position there exists a large class of invariant subspaces, so-called compatible sub-
spaces. In particular we obtain compatible subspaces associated with arbitrary
subsets of the point spectrum. We argue that these associated subspaces are a nat-
ural generalisation of spectral subspaces for operators with a finitely determining
l2-decomposition.

Existence results for invariant and spectral subspaces of unbounded non-normal
operators are known in special cases only: For a bounded isolated component of the
spectrum the corresponding Riesz projection yields a spectral subspace. Dichoto-
mous operators as defined by Langer, Ran and van de Rotten [31], see also Langer
and Tretter [33] and Definition 2.4.8, have spectral subspaces associated with the
spectrum in the right and left half-plane.

Lemma 2.4.1 Let H =
⊕2

k∈N Vk be a finitely determining l2-decomposition for a
closed operator T (H → H). If Uk ⊂ Vk are T -invariant subspaces, then the subspace⊕2

k∈N
Uk is T -invariant and (T − λ)−1-invariant for all λ ∈ %(T ).

In particular,
⊕2

k∈J Vk is T - and (T − λ)−1-invariant for every J ⊂ N.

Proof. This is evident from the formulas (2.15) and (2.18) for T and (T − λ)−1. �

The statement of the lemma suggests the next definition.

Definition 2.4.2 We say that a T -invariant subspace U ⊂ H is compatible with
the finitely determining decomposition H =

⊕2
k∈N Vk if

U =
⊕2

k∈N
Uk with Uk ⊂ Vk T -invariant.

y
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Let σ ⊂ σp(T ) be an arbitrary subset of the point spectrum of an operator
T (H → H). A subspace naturally associated with σ is the closure of the sum of the
root subspaces corresponding to σ,

U =
∑
λ∈σ

L(λ).

If T is bounded, it is immediate that U is T -invariant; for unbounded T this need not
be the case. However, U is (T − λ)−1-invariant for every λ ∈ %(T ) and

∑
λ∈σ L(λ)

is T -invariant.
Now let us assume that H =

⊕2
k∈N Vk is a finitely determining l2-decomposi-

tion for T . Since Vk is finite-dimensional, σ(T |Vk
) is a finite set consisting of the

eigenvalues of T |Vk
, and we can decompose Vk into the invariant subspaces Uk and

Wk corresponding to the eigenvalues in σ and σp(T ) \ σ, respectively:

Vk = Uk ⊕Wk, σ(T |Uk
) = σ(T |Vk

) ∩ σ, σ(T |Wk
) = σ(T |Vk

) \ σ . (2.20)

We can then show that U is compatible with
⊕2

k∈N Vk:

Proposition 2.4.3 Let T (H → H) be an operator with a finitely determining l2-
decomposition H =

⊕2
k∈N Vk and σ ⊂ σp(T ) a subset of its point spectrum. Let

Uk, Wk be the invariant subspaces of Vk corresponding to σ and τ = σp(T ) \ σ, as
defined in (2.20). Then the subspaces

U =
∑
λ∈σ

L(λ) and W =
∑
λ∈τ

L(λ)

are T -invariant compatible with
⊕2

k Vk,

U =
⊕2

k∈N
Uk, W =

⊕2

k∈N
Wk, (2.21)

and we have σp(T |U ) = σ, σp(T |W ) = τ . Moreover,

(i) U uW ⊂ H is algebraic direct and dense and

(ii) (D(T ) ∩ U) u (D(T ) ∩W ) ⊂ D(T ) is a core for T .

Proof. First we derive (2.21). Let x ∈ L(λ) with λ ∈ σ. Applying (2.17) to
the decomposition x =

∑
k xk, xk ∈ Vk, we obtain xk ∈ Uk for all k. Therefore

L(λ) ⊂
⊕2

k Uk. Together with the inclusion Uk ⊂
∑

λ∈σ L(λ) this yields (2.21).
Hence U is a compatible T -invariant subspace and σp(T |U ) = σ. The sum U +W is
algebraic direct and dense by (2.8), and

∑
k Vk is a core for T which is contained in

(D(T ) ∩ U) u (D(T ) ∩W ). �

The above invariance result justifies the following definition:
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Definition 2.4.4 Let T (H → H) be an operator with a finitely determining l2-
decomposition. For a subset σ ⊂ σp(T ) of the point spectrum we call

U =
∑
λ∈σ

L(λ) (2.22)

the compatible subspace associated with σ. y

If the l2-decomposition of the operator is finitely spectral, the subspace U defined
by (2.22) has the following uniqueness property:

Proposition 2.4.5 Suppose that T has a compact resolvent and a finitely spectral
l2-decomposition

⊕2
k∈N Vk. Then the compatible subspace U associated with a subset

σ ⊂ σp(T ) is the unique maximal closed T -invariant subspace with σ(T |U ) = σ that
is also (T − λ)−1-invariant for all λ ∈ %(T ).

Proof. Suppose that U is closed, T - and (T −λ)−1-invariant, and σ(T |U ) = σ. Note
that the projections Pk onto Vk corresponding to the decomposition are the Riesz
projections of T associated with the respective part of the spectrum. The invariance
of U then implies Pk(U) ⊂ U and hence U =

⊕2
k(U ∩ Vk). Moreover with Uk from

(2.20) we have U ∩ Vk ⊂ Uk and the claim follows by (2.21). �

For unbounded operators, the notion of a spectral subspace is typically used only
for certain classes of operators. Often it comes in conjunction with a corresponding
class of projections whose images are the spectral subspaces. For example, if the
spectrum of an operator has a bounded isolated component, then the range and ker-
nel of the associated Riesz projection are spectral subspaces. For normal operators,
spectral subspaces appear as images of the spectral projections.

The notion of an exponentially dichotomous operator T (V → V ) was introduced
by Bart, Gohberg and Kaashoek [7], see also Krein and Savčenko [28]. Such an
operator admits a decomposition V = U+⊕U− into T -invariant subspaces such that
−T |U+ and T |U− are generators of C0-semigroups of negative exponential type. As
a consequence, a strip around the imaginary axis belongs to %(T ), and σ(T |U+) and
σ(T |U−) lie in the right and left half-plane, respectively. Here U+ and U− are the
spectral subspaces.

The properties shared by the above examples may be used to give a general
definition of a spectral subspace:

Definition 2.4.6 Consider an operator T (V → V ) on a Banach space, a partition
C = Σ1 ·∪Σ2, and a topological direct sum V = U1 ⊕ U2 such that

D(T ) = (D(T ) ∩ U1)⊕ (D(T ) ∩ U2) (2.23)

and U1, U2 are T -invariant. If

σp(T |Uj ) ⊂ Σj and σ(T |Uj ) ⊂ Σj for j = 1, 2,
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then V = U1 ⊕ U2 is called a spectral decomposition corresponding to the partition
and Uj is the spectral subspace associated with Σj . y

It is easy to see that (2.23) implies that the subspaces U1, U2 are also (T − λ)−1-
invariant for every λ ∈ %(T ) and

σ(T ) = σ(T |U1) ∪ σ(T |U2), σp(T ) = σp(T |U1) ∪ σp(T |U2). (2.24)

In particular σp(T |Uj ) = σp(T ) ∩ Σj for a spectral decomposition.
The next proposition shows that, for operators with a finitely determining l2-

decomposition, compatible subspaces associated with subsets of the point spectrum
are a natural generalisation of spectral subspaces.

Proposition 2.4.7 Let T (H → H) be an operator on a Hilbert space and consider
a partition C = Σ1 ·∪Σ2 of the complex plane.

(i) If H = U1⊕U2 is a spectral decomposition for T corresponding to Σ1, Σ2 and
T has a dense system of root subspaces, then

Uj =
∑

λ∈σp(T |Uj
)

L(λ) for j = 1, 2.

(ii) Let T have a compact resolvent and a finitely determining l2-decomposition
H =

⊕2
k∈N Vk such that for all k

either σ(T |Vk
) ⊂ Σ1 or σ(T |Vk

) ⊂ Σ2.

Then the compatible subspaces U and W associated with σ = σp(T ) ∩ Σ1 and
τ = σp(T ) ∩ Σ2, respectively, have the form

U =
⊕2

k∈J

Vk and W =
⊕2

k∈N\J

Vk with J =
{
k ∈ N

∣∣σ(T |Vk
) ⊂ Σ1

}
and constitute a spectral decomposition for T corresponding to Σ1, Σ2.

Proof. (i): It is easy to show that for λ ∈ σp(T ) either L(λ) ⊂ U1 or L(λ) ⊂ U2.
Hence

∑
σp(T |Uj

) L(λ) ⊂ Uj . That these inclusions are also dense follows from the
density of the system of root subspaces.

(ii): With the notation from Proposition 2.4.3, either Uk = Vk or Uk = {0} holds.
Hence U and W have the stated form and their sum is topological direct by (2.7).
From (2.14) we obtain the formula for D(T ) in (2.23). Finally we have σ(T ) = σp(T )
since T has a compact resolvent, and the proof is complete. �

Langer, Ran and van de Rotten [31] generalised the concept of exponential di-
chotomy as follows:
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Definition 2.4.8 A closed, densely defined operator T is called dichotomous if a
strip around the imaginary axis belongs to %(T ) and there exists a spectral decom-
position corresponding to the parts of the spectrum in the left and right half-plane.

y

Corollary 2.4.9 Let T be an operator with compact resolvent and a finitely deter-
mining l2-decomposition

⊕2
k∈N Vk. If a strip around the imaginary axis belongs to

%(T ) and every σ(T |Vk
) is contained either in the right or left half-plane, then T is

dichotomous. �

Note that for an operator with a finitely determining l2-decomposition the com-
patible subspaces associated with the point spectrum in the right and left half-plane,
respectively, even exist in cases where the operator is not dichotomous; see Exam-
ple 5.1.1.

2.5 J-symmetric operators and neutral
invariant subspaces

We apply the theory of finitely determining l2-decompositions to symmetric op-
erators in Krein spaces. For a J-symmetric operator with a dense system of root
subspaces we obtain the symmetry of its point spectrum with respect to the real axis
and a J-orthogonal decomposition in terms of root subspaces, see Theorem 2.5.12. In
Theorem 2.5.16 we show that if the operator has a finitely spectral l2-decomposition
and no eigenvalues on the real axis, then the compatible subspaces associated with
a partition of the point spectrum which separates conjugate pairs are hypermaximal
neutral, i.e., they coincide with their J-orthogonal complements.

Orthogonality relations for the root subspaces of a J-symmetric operator are well
known [5, 16]. For a J-selfadjoint operator with compact resolvent, the symmetry of
the point spectrum immediately follows from the symmetry of the spectrum. Langer,
Ran and van de Rotten [31] considered a dichotomous operator T such that iT is
J-selfadjoint and showed that the spectral subspaces associated with the right and
left half-plane are hypermaximal neutral.

For an introduction to Krein spaces and operators therein we refer to the mono-
graphs of Azizov and Iokhvidov [5], Bognar [9], and Dijksma and Langer [17]. One
possible way to define a Krein space is as follows:

Definition 2.5.1 A complex vector space V together with a Hermitian sesquilinear
form 〈·|·〉 is called a Krein space if there exists an involution J : V → V such that

(x|y) = 〈Jx|y〉 for x, y ∈ V (2.25)

defines a scalar product and (V, (·|·)) is a Hilbert space. y
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The involution J is called a fundamental symmetry . While it is not uniquely deter-
mined, the Hilbert space norms induced by different fundamental symmetries are
equivalent. We will always consider a fixed J and denote by ‖ · ‖ the norm induced
by the scalar product. It is easy to see that J is selfadjoint with respect to (·|·) and

〈x|y〉 = (Jx|y) for all x, y ∈ V. (2.26)

The inner product 〈·|·〉 is typically indefinite: We say that an element x ∈ V is
positive, neutral, and negative if 〈x|x〉 > 0, = 0, and < 0, respectively. A subspace
U ⊂ V is called nonnegative, positive, and uniformly positive if 〈x|x〉 ≥ 0, > 0, and
≥ α‖x‖2 for all x ∈ V \ {0} and some constant α > 0. The notions of a nonpositive,
negative, and uniformly negative subspace are defined accordingly. The subspace is
called neutral if 〈x|x〉 = 0 for all x ∈ U . The closure of a neutral subspace is again
neutral.

We may define orthogonality with respect to the inner product 〈·|·〉: Two ele-
ments x, y ∈ V are called orthogonal if 〈x|y〉 = 0. Two subspaces U,W ⊂ V are
orthogonal , denoted by U〈⊥〉W , if 〈x|y〉 = 0 for all x ∈ U , y ∈ W . The orthogonal
complement of U is defined by

U 〈⊥〉 =
{
x ∈ V

∣∣ 〈x|y〉 = 0 for all y ∈ U
}
. (2.27)

A subspace U is neutral if and only if U ⊂ U 〈⊥〉. If necessary, we will use the term
J-orthogonal to distinguish orthogonality with respect to the Krein space inner
product 〈·|·〉 from orthogonality with respect to the scalar product (·|·).

Definition 2.5.2 We say that the algebraic direct sum
∑u

λ∈Λ Uλ is orthogonal direct
if the subspaces Uλ are mutually orthogonal. In this case we use the notation∑〈u〉

λ∈Λ

Uλ.

For an orthogonal direct sum with two components we write U〈u〉W . y

Note that the orthogonal direct sum of neutral subspaces is again neutral.
In contrast to the Hilbert space case, two orthogonal subspaces of a Krein space

need not form a direct sum. As an extreme example, a neutral subspace is orthogonal
to itself. And even if a sum is orthogonal direct, it is not necessarily topological
direct.

A subspace U ⊂ V is called non-degenerate if for every x ∈ U \ {0} there exists
y ∈ U such that 〈x|y〉 6= 0 or, equivalently, if U ∩ U 〈⊥〉 = {0}. The Krein space V
itself is non-degenerate since 〈Jx|x〉 = ‖x‖2 for all x ∈ V .
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Lemma 2.5.3 Consider a family of subspaces (Uλ)λ∈Λ of V forming an orthogonal
direct sum ∑〈u〉

λ∈Λ

Uλ

which is dense in V . Then each Uλ is non-degenerate.

Proof. Let x ∈ Uλ \ {0}. Since V is non-degenerate and the direct sum is dense, we
have 〈x|y〉 6= 0 for some y = yλ1 + · · · + yλn , yλj

∈ Uλj
. Now 〈x|yλj

〉 = 0 for every
index λj 6= λ by orthogonality of the sum. Therefore one of the indices λ1, . . . , λn is
equal to λ and 〈x|yλ〉 6= 0. �

Definition 2.5.4 Two systems (x1, . . . , xn) and (y1, . . . , yn) of elements in a Krein
space V are called biorthogonal if 〈xj |yk〉 = δjk for all j, k. y

As a consequence of the definition, if two systems (x1, . . . , xn) and (y1, . . . , yn) are
biorthogonal, then they are both linearly independent.

Lemma 2.5.5 Let U , W be subspaces of a Krein space such that U ∩W 〈⊥〉 = {0}.
Then for n ≤ dimU there are systems (x1, . . . , xn) in U and (y1, . . . , yn) in W which
are biorthogonal. In particular we have dimU ≤ dimW .

Proof. We use induction. For n = 1 take x1 ∈ U \ {0}. Since U ∩W 〈⊥〉 = {0}
there exists y1 ∈ W with 〈x1|y1〉 = 1. Now suppose we have n + 1 ≤ dimU and
biorthogonal systems (x1, . . . , xn) in U , (y1, . . . , yn) in W . We choose an element
x ∈ U \ span{x1, . . . , xn} and set

xn+1 = x−
n∑

j=1

〈x|yj〉xj .

This yields 〈xn+1|yk〉 = 0 for k = 1, . . . , n. Moreover xn+1 6= 0 by the choice of x
and hence there exists a y ∈W with 〈xn+1|y〉 = 1. We set

yn+1 = y −
n∑

j=1

〈y|xj〉yj

and find 〈yn+1|xk〉 = 0 for k = 1, . . . , n as well as 〈xn+1|yn+1〉 = 〈xn+1|y〉 = 1. �

Corollary 2.5.6 Let U , W be two neutral subspaces. If their sum U +W is non-
degenerate, then dimU = dimW and the sum is algebraic direct.

Proof. Let x ∈ U \ {0}. By assumption there exist elements x1 ∈ U , y1 ∈ W such
that 〈x|x1 + y1〉 6= 0. Furthermore 〈x|x1 + y1〉 = 〈x|y1〉 by neutrality of U and
hence x 6∈ W 〈⊥〉. An application of the previous lemma yields dimU ≤ dimW .
Analogously we obtain dimW ≤ dimU and thus equality. Finally, an element
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x0 ∈ U ∩W satisfies 〈x0|x + y〉 = 0 for all x ∈ U , y ∈ W ; consequently x0 = 0 by
the non-degeneracy of U +W . �

The definitions of symmetric and selfadjoint operators in Krein spaces are anal-
ogous to the Hilbert space case:

Definition 2.5.7 Let T (V → V ) be a densely defined operator. Then

(i) T is symmetric if 〈Tx|y〉 = 〈x|Ty〉 for all x, y ∈ D(T );

(ii) the adjoint operator T 〈∗〉 is defined by

〈Tx|y〉 = 〈x|T 〈∗〉y〉 for all x ∈ D(T ), y ∈ D(T 〈∗〉) where

D(T 〈∗〉) =
{
y ∈ V

∣∣D(T ) 3 x 7→ 〈Tx|y〉 is a bounded linear form
}
;

(iii) T is selfadjoint if T = T 〈∗〉;

(iv) T is skew-symmetric if 〈Tx|y〉 = −〈x|Ty〉 for x, y ∈ D(T ) and skew-adjoint if
T = −T 〈∗〉.

y

Again we shall use the terms J-symmetric, J-selfadjoint and so forth if we need to
distinguish the Krein space concepts from those in a Hilbert space.

Remark 2.5.8 It is easy to see that T is J-symmetric/-selfadjoint if and only if JT
is symmetric/selfadjoint with respect to the scalar product (·|·). As in the Hilbert
space case we have that

(i) T 〈∗〉 is closed;

(ii) T is symmetric if and only if T ⊂ T 〈∗〉, and T is closable in this case;

(iii) T is skew-symmetric (skew-adjoint) if and only if iT is symmetric (selfadjoint);

(iv) kerT 〈∗〉 = R(T )〈⊥〉;

(v) if T is symmetric and there exist λ, λ ∈ %(T ), then T is selfadjoint;

(vi) if T is bijective with bounded inverse, then the same holds for T 〈∗〉 and
(T 〈∗〉)−1 = (T−1)〈∗〉.

y

A new phenomenon in the Krein space context is that a selfadjoint operator may
have spectrum outside the real axis. The next proposition shows that the spectrum
is symmetric with respect to the real axis:
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Proposition 2.5.9 Let T (V → V ) be a selfadjoint operator. Then we have

λ ∈ %(T ) ⇐⇒ λ ∈ %(T ).

Proof. Let λ ∈ %(T ), i.e., T − λ is bijective with bounded inverse. Then the adjoint
(T − λ)〈∗〉 = T 〈∗〉 − λ = T − λ is also bijective with bounded inverse. �

Another new aspect in Krein spaces is the possible existence of generalised eigen-
vectors for (skew-)symmetric operators, see Example 5.1.5. Yet it is possible to
derive orthogonality properties similar to the situation in a Hilbert space. The cor-
responding result for linear relations in a Krein space was obtained by Dijksma and
de Snoo [16, Proposition 3.2].

Proposition 2.5.10 Let T (V → V ) be a densely defined operator and λ, µ ∈ C
with λ 6= µ. Then

ker(T − λ)k 〈⊥〉 ker(T 〈∗〉 − µ)k for all k ∈ N.

Proof. The proof is by induction on k. The case k = 0 is clear. Suppose the
assertion is true for some k ∈ N and let x ∈ ker(T − λ)k+1, y ∈ ker(T 〈∗〉 − µ)k. We
set x0 = (T − λ)x ∈ ker(T − λ)k. Then 〈x0|y〉 = 0 which yields

λ〈x|y〉 = 〈Tx|y〉 − 〈x0|y〉 = 〈x|T 〈∗〉y〉 = 〈x|(T 〈∗〉 − µ)y〉+ µ〈x|y〉,

thus
(λ− µ)〈x|y〉 = 〈x|(T 〈∗〉 − µ)y〉.

Since also (T 〈∗〉−µ)y, . . . , (T 〈∗〉−µ)k−1y ∈ ker(T 〈∗〉−µ)k, we can use the last formula
repeatedly and find

(λ− µ)k〈x|y〉 = (λ− µ)k−1〈x|(T 〈∗〉 − µ)y〉
= (λ− µ)k−2〈x|(T 〈∗〉 − µ)2y〉 = . . . = 〈x|(T 〈∗〉 − µ)ky〉 = 0 ;

therefore 〈x|y〉 = 0. Now consider x as above and y ∈ ker(T 〈∗〉 − µ)k+1. With
y0 = (T 〈∗〉 − µ)y ∈ ker(T 〈∗〉 − µ)k we have 〈x|y0〉 = 0,

µ〈x|y〉 = 〈x|T 〈∗〉y〉 − 〈x|y0〉 = 〈Tx|y〉 = 〈(T − λ)x|y〉+ λ〈x|y〉,

and therefore
(µ− λ)〈x|y〉 = 〈(T − λ)x|y〉.

As above, iterated use of this formula yields

(µ− λ)k+1〈x|y〉 = 〈(T − λ)k+1x|y〉 = 0.

Consequently 〈x|y〉 = 0 and the proof is complete. �
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Corollary 2.5.11 Let T (V → V ) be symmetric and λ, µ ∈ C with λ 6= µ. Then
the root subspaces L(λ) and L(µ) of T are orthogonal. In particular every L(λ) with
λ 6∈ R is a neutral subspace.

Proof. Since T ⊂ T 〈∗〉, we have ker(T −µ)k ⊂ ker(T 〈∗〉−µ)k. The claim thus follows
from the previous proposition. In particular L(λ)〈⊥〉L(λ) for λ 6∈ R, i.e., L(λ) is
neutral. �

For symmetric operators with a dense system of root subspaces, we can now show
that their point spectrum is symmetric with respect to the real axis and compute
an orthogonal decomposition in terms of root subspaces.

Theorem 2.5.12 Suppose that a symmetric operator T on a Krein space V has a
dense system of root subspaces. Then the point spectrum σp(T ) is symmetric with
respect to the real axis and we have an orthogonal decomposition∑

λ∈σp(T )

L(λ) =
∑〈u〉

t∈σp(T )∩R

L(t) 〈u〉
∑〈u〉

λ∈σp(T )
Im λ>0

(
L(λ) + L(λ)

)
, (2.28)

in which each summand L(t) and L(λ)+L(λ) is non-degenerate. Moreover, the root
subspaces L(λ) and L(λ) with Imλ > 0 are neutral and satisfy dimL(λ) = dimL(λ).

Proof. We start by defining

σ0 =
{
λ ∈ C

∣∣ Imλ > 0 and
(
λ ∈ σp(T ) or λ ∈ σp(T )

)}
;

so λ ∈ σ0 need not necessarily be an eigenvalue of T , but if not then λ is. We may
thus write the sum of all root subspaces as∑

λ∈σp(T )

L(λ) =
∑u

t∈σp(T )∩R

L(t) u
∑u

λ∈σ0

(
L(λ) + L(λ)

)
.

By the preceding corollary, two root subspaces L(λ) and L(µ) can be non-orthogonal
only in case of µ = λ. Therefore, we get the orthogonal direct sum∑

λ∈σp(T )

L(λ) =
∑〈u〉

t∈σp(T )∩R

L(t) 〈u〉
∑〈u〉

λ∈σ0

(
L(λ) + L(λ)

)
.

Since this sum is dense, Lemma 2.5.3 shows that its summands are non-degenerate.
Applying Corollary 2.5.6 to the neutral subspaces L(λ) and L(λ) for λ ∈ σ0, we can
now conclude that their dimensions coincide. Consequently the point spectrum of
T is symmetric with respect to the real axis and σ0 = {λ ∈ σp(T ) | Imλ > 0}. �

We will now study neutral invariant subspaces of symmetric operators. Recall
that a subspace U is neutral if and only if U ⊂ U 〈⊥〉; we are in fact interested in the
stronger condition U = U 〈⊥〉. In Chapter 4, invariant subspaces of this type will be
used to construct selfadjoint solutions of Riccati equations.
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Definition 2.5.13 A subspace U of a Krein space satisfying U = U 〈⊥〉 is called
hypermaximal neutral . y

The notion is justified by the following observations, see also Azizov and Iokhvi-
dov [5, §I.4] and Dijksma and de Snoo [16].

Remark 2.5.14 Let U = U 〈⊥〉. Then U is neutral, in particular nonnegative and
nonpositive. Consider a nonnegative subspace W such that U ⊂ W . For u ∈ U ,
w ∈W , the relation

0 ≤ 〈λu+ w|λu+ w〉 = 2Re(λ〈u|w〉) + 〈w|w〉 for all λ ∈ C

shows that 〈u|w〉 = 0. Consequently W ⊂ U 〈⊥〉 = U , i.e., U is maximal nonnegative.
Analogously we see that U is maximal nonpositive.

Now suppose that U is neutral and also maximal nonnegative or maximal non-
positive. If W is neutral and U ⊂ W , then, as W is in particular nonnegative
(nonpositive), we find U = W . Hence U is maximal neutral.

In fact the following equivalences were shown by Azizov and Iokhvidov [5, §I.4]: U
is maximal neutral if and only if U is neutral and, additionally, maximal nonnegative
or maximal nonpositive; moreover U = U 〈⊥〉 if and only if U is maximal nonnegative
and maximal nonpositive. y

In order to obtain invariant subspaces, we use finitely determining l2-decompo-
sitions and consider the compatible subspaces U associated with subsets σ ⊂ σp(T )
of the point spectrum. Then the requirement U = U 〈⊥〉 has certain consequences
for σ and the point spectrum of T :

Proposition 2.5.15 Consider a symmetric operator T (V → V ) with a dense sys-
tem of root subspaces, a subset σ ⊂ σp(T ) of the point spectrum, and the subspace

U =
∑
λ∈σ

L(λ). (2.29)

Then U is neutral if and only if σ does not contain any conjugate pair of eigenvalues.
Moreover if U = U 〈⊥〉, then we have σp(T ) ∩R = ∅ and σ induces a partition

σp(T ) = σ ·∪ τ which separates conjugate points, i.e.,

λ ∈ σ ⇔ λ ∈ τ.

Proof. The first assertion is an immediate consequence of Theorem 2.5.12. Let
U = U 〈⊥〉 and assume that we have t ∈ σp(T ) for some t ∈ R, i.e. L(t) 6= {0}. From
Theorem 2.5.12 we know that L(t) is non-degenerate and since U is neutral this
implies L(t) 6⊂ U and t 6∈ σ. Moreover, L(t) is orthogonal to any other root subspace
of T , in particular to all L(λ) with λ ∈ σ. Therefore we get L(t) ⊂ U 〈⊥〉 = U , a
contradiction.
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Suppose now that there is a conjugate pair λ1 6= λ1 of eigenvalues such that
neither λ1 ∈ σ nor λ1 ∈ σ. Consider U1 given by (2.29) with σ replaced by σ∪{λ1}.
Then U $ U1 which implies U 〈⊥〉1 $ U 〈⊥〉. Furthermore U1 is neutral, U1 ⊂ U

〈⊥〉
1 ,

and we obtain the contradiction U $ U 〈⊥〉. �

The necessary condition for U = U 〈⊥〉 from the previous proposition is also
sufficient if T has a finitely spectral l2-decomposition:

Theorem 2.5.16 Consider a symmetric operator T on a Krein space V with a
finitely spectral l2-decomposition V =

⊕2
k∈N Vk and σp(T )∩R = ∅. If the partition

σp(T ) = σ ·∪ τ separates conjugate points, then the associated subspaces

U =
∑
λ∈σ

L(λ), W =
∑
λ∈τ

L(λ)

satisfy
U = U 〈⊥〉, W = W 〈⊥〉.

Note that due to Proposition 2.4.3, U and W are of the form

U =
⊕2

k∈N
Uk, W =

⊕2

k∈N
Wk

where Uk and Wk are the spectral subspaces of Vk corresponding to σ and τ , respec-
tively.

Proof of the theorem. As σ contains no conjugate pairs, Proposition 2.5.15 shows
that U is neutral, U ⊂ U 〈⊥〉. To prove the other inclusion, let

x ∈ U 〈⊥〉 with x =
∑
k∈N

xk, xk = uk + wk ∈ Vk and uk ∈ Uk, wk ∈Wk.

We aim to show that all wk are zero. Consider one particular k ∈ N. Since every
Vj is the sum of root subspaces of T , there is a finite subset τ0 ⊂ τ such that

Wk =
∑
λ∈τ0

L(λ) and Wj ⊂
∑

λ∈τ\τ0

L(λ) for all j 6= k.

Hence by Theorem 2.5.12, every

y ∈
∑
λ∈τ0

L(λ) ⊂ U

is orthogonal to Wj for j 6= k and to all Uj . Therefore

0 = 〈x|y〉 =
∑
j∈N

〈xj |y〉 =
∑
j∈N

〈wj |y〉 = 〈wk|y〉.

Since the subspace Wk u
∑

λ∈τ0
L(λ) is non-degenerate, we conclude that wk = 0.

Consequently x =
∑

k∈N uk ∈ U , i.e. U = U 〈⊥〉. The assertion for W follows by
symmetry. �
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2.6 J-accretive operators and positive
invariant subspaces

In this section we study operators with a finitely determining l2-decomposition which
are accretive in a Krein space. We obtain a separation of the spectrum at the imag-
inary axis and the positivity and negativity of the compatible subspaces associated
with the point spectrum in the right and left half-plane, respectively. Analogous
results for dichotomous operators have been shown by Langer, Ran and van de
Rotten [31] and Langer and Tretter [33].

Definition 2.6.1 An operator T (V → V ) on a Krein space is called

(i) accretive if Re〈Tx|x〉 ≥ 0 for all x ∈ D(T ),

(ii) strictly accretive if Re〈Tx|x〉 > 0 for all x ∈ D(T ) \ {0},

(iii) uniformly accretive if there exists γ > 0 such that Re〈Tx|x〉 ≥ γ‖x‖2 for all
x ∈ D(T ).

y

Proposition 2.6.2 Let T (V → V ) be an operator on a Krein space.

(i) If T is strictly accretive, then σp(T ) ∩ iR = ∅.

(ii) If T is uniformly accretive with constant γ, then a strip around the imaginary
axis belongs to the set of points of regular type for T ,{

λ ∈ C
∣∣ |Reλ| < γ

}
⊂ r(T ).

If in addition T is closed with a dense system of root subspaces, then{
λ ∈ C

∣∣ |Reλ| < γ
}
⊂ %(T ).

Proof. (i): Consider an eigenvalue λ ∈ σp(T ) and a corresponding eigenvector x 6= 0.
Then

0 < Re〈Tx|x〉 = Re〈λx|x〉 = Reλ · 〈x|x〉,

in particular Reλ 6= 0.
(ii): Let λ ∈ C \ r(T ). Then there exists a sequence xn ∈ D(T ) with ‖xn‖ = 1

and (T − λ)xn → 0 as n → ∞. For αn = Re〈(T − λ)xn|xn〉 this implies αn → 0.
Using the fundamental symmetry J , in particular ‖J‖ = 1, we obtain

γ = γ‖xn‖2 ≤ Re〈Txn|xn〉 = αn + Reλ · 〈xn|xn〉
≤ |αn|+ |Reλ| |(Jxn|xn)| ≤ |αn|+ |Reλ|‖xn‖2 → |Reλ|
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as n → ∞, i.e. γ ≤ |Reλ|. The additional assertion immediately follows from
Lemma 2.3.10. �

For operators with a finitely determining l2-decomposition and no spectrum on
the imaginary axis there are the compatible subspaces U+ and U− associated with
the part of the spectrum in the right and left half-plane, respectively. The algebraic
projections P± corresponding to the direct sum U+ u U− can be represented by a
resolvent integral along the imaginary axis. Integrals of this kind have also been
studied by Langer, Ran and van de Rotten [31] and Langer and Tretter [33].

Lemma 2.6.3 Let λ ∈ C with Reλ 6= 0. Then we have∫ ′

iR

dz

λ− z
=
{

πi if Reλ > 0,
−πi if Reλ < 0,

and
∫ ′

iR

dz

(λ− z)k
= 0 for k ≥ 2 ,

where the prime denotes the Cauchy principal value at infinity, that is
∫ ′
iR f dz =

limr→∞
∫ ir
−ir f dz.

Proof. For k ≥ 2 we compute∫ ir

−ir

dz

(λ− z)k
=

1
(k − 1)(λ− z)k−1

∣∣∣∣ir
−ir

→ 0 as r →∞,

which proves the second assertion. To show the first one, we consider the two
branches of the complex logarithm defined by

log+(z) = log |z|+ i arg+(z) with arg+(z) ∈
]
− π

2
,
π

2
[

for Re z > 0,

log−(z) = log |z|+ i arg−(z) with arg−(z) ∈
]π
2
,
3π
2
[

for Re z < 0.

For Reλ > 0 and < 0, respectively, this yields∫ ir

−ir

dz

λ− z
= − log±(λ− z)

∣∣∣ir
−ir

= log
|λ+ ir|
|λ− ir|

+ i
(
arg±(λ+ ir)− arg±(λ− ir)

)
.

The first summand vanishes as r goes to infinity whereas for the arguments we obtain

arg±(λ+ ir) → π

2
and arg±(λ− ir) →

{
−π/2
3π/2

as r →∞.

Consequently, the integral converges to iπ and −iπ, respectively. �

For an operator T we denote by σ+
p (T ) and σ−p (T ) the set of all eigenvalues in

the right and left half-plane, respectively.
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Proposition 2.6.4 Let T be an operator on a Banach space with σp(T )∩ iR = ∅.
Consider the algebraic direct decomposition of the sum of all root subspaces∑

λ∈σp(T )

L(λ) =
∑

λ∈σ+
p (T )

L(λ) u
∑

λ∈σ−p (T )

L(λ)

and the associated algebraic projections P+ and P− onto the first and second com-
ponent, respectively. Then we have

1
iπ

∫ ′

iR
(T − z)−1x dz = P+x− P−x for all x ∈

∑
λ∈σp(T )

L(λ) . (2.30)

Note that we do not need the stronger assumption iR ⊂ %(T ): In the integrand, the
inverse (T − z)−1 acts, for each x, on a finite sum of finite-dimensional subspaces
generated by Jordan chains. Therefore (T − z)−1x is a continuous function in z.

Proof of the proposition. By linearity and since every x ∈
∑

σp(T ) L(λ) is a finite
sum x = x1 + · · ·+xn of elements xk ∈ L(λk), each contained in some Jordan chain,
it suffices to consider x ∈ L(λ) and the Jordan chain generated by x. This Jordan
chain is the basis of an invariant subspace and in this basis T is represented by a
Jordan matrix of the form

A =

λ 1
...

...

λ

 .

So, we only have to show that∫ ′

iR
(A− z)−1dz = ±iπI

for Reλ > 0 and Reλ < 0, respectively. As the inverse of A− z is given by

(A− z)−1 =


(λ− z)−1 −(λ− z)−2 (λ− z)−3 . . .

(λ− z)−1 −(λ− z)−2 . . .
(λ− z)−1

. . .

 ,

an application of the previous lemma completes the proof. �

Using a Riesz basis of Jordan chains, we derive an estimate for the integral over
the squared norm of the resolvent along the imaginary axis:

Proposition 2.6.5 Let T (H → H) be an operator on a Hilbert space with a Riesz
basis of Jordan chains S. Suppose that σp(T ) ∩ iR = ∅ and that the eigenvalues of
T are contained in a strip around the imaginary axis, i.e.

a = sup
{
|Reλ|

∣∣λ ∈ σp(T )
}
<∞.
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Then

1
π

∫ ∞

−∞
‖(T − it)−1x‖2 dt ≥ m

2M
√

1 + a2
‖x‖2 for x ∈ spanS, (2.31)

where m and M are the constants from (2.12) associated with the Riesz basis.

Proof. Let x ∈ spanS. Then there is a finite system B = (x1, . . . , xn) ⊂ S consisting
of Jordan chains such that x = α1x1 + . . .+ αnxn. spanB is an invariant subspace
of T with basis B. The matrix representing T with respect to B is block diagonal
with blocks of the form

A =

λ 1
...

...

λ

 ,

one for each Jordan chain in B. Accordingly, (T − it)−1 is represented by a block
diagonal matrix C with blocks of the form (A− it)−1. Then

(T − it)−1x =
n∑

k=1

αk(T − it)−1xk =
n∑

j,k=1

αkCjkxj .

Putting ξ = (α1, . . . , αn) and using the Euclidean norm on Cn we find

‖(T − it)−1x‖2 ≥ m

n∑
j=1

∣∣∣ n∑
k=1

αkCjk

∣∣∣2 = m‖Cξ‖2.

Now ‖Cξ‖2 is the sum of terms of the form ‖(A − it)−1ν‖2, one for each Jordan
chain in B with ν the part of ξ corresponding to that Jordan chain. So in order to
estimate

∫
‖(T − it)−1x‖2 dt, it suffices to estimate

∫
‖(A− it)−1ν‖2 dt. From

‖A− it‖ ≤ |λ− it|+
∥∥( 0 1...

...
0

)∥∥ ≤ |λ− it|+ 1

it follows that
‖(A− it)−1ν‖2 ≥ 1

(|λ− it|+ 1)2
‖ν‖2.

With u = Reλ, v = Imλ, the calculation∫ ∞

−∞

dt

(|λ− it|+ 1)2
≥
∫ ∞

−∞

dt

2(|λ− it|2 + 1)
=

1
2

∫ ∞

−∞

dt

1 + u2 + (t− v)2

=
1

2
√

1 + u2
arctan

(
t− v√
1 + u2

) ∣∣∣∞
t=−∞

=
π

2
√

1 + u2
≥ π

2
√

1 + a2

yields ∫ ∞

−∞
‖(A− it)−1ν‖2 dt ≥ π

2
√

1 + a2
‖ν‖2.
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Putting it all together, we arrive at∫ ∞

−∞
‖(T − it)−1x‖2 dt ≥ m

π

2
√

1 + a2
‖ξ‖2 ≥ mπ

2M
√

1 + a2
‖x‖2.

�

Part (i) of the following proposition was obtained by Azizov and Iokhvidov [5,
Corollary 2.2.22].

Proposition 2.6.6 Let T (V → V ) be an accretive operator on a Krein space with
σp(T ) ∩ iR = ∅ and

U+ =
∑

λ∈σ+
p (T )

L(λ), U− =
∑

λ∈σ−p (T )

L(λ) (2.32)

the closed subspaces generated by the root subspaces corresponding to the right and
left half-planes, respectively. Then

(i) U+ is nonnegative, U− is nonpositive.

(ii) If T is closed, uniformly accretive with constant γ, has a Riesz basis of Jordan
chains, and σp(T ) is contained in a strip around the imaginary axis,

a = sup
{
|Reλ|

∣∣λ ∈ σp(T )
}
<∞,

then U+ and U− are uniformly positive and negative, respectively, with constant

α =
mγ

2M
√

1 + a2
.

Here m, M are the constants from (2.12) associated with the Riesz basis.

Proof. (i): Let

W+ =
∑

λ∈σ+
p (T )

L(λ) and W− =
∑

λ∈σ−p (T )

L(λ).

Then U+ = W+, U− = W− and we get an algebraic decomposition W+ uW− of the
sum of all root subspaces. Let P+ and P− be the corresponding algebraic projections
onto W+ and W−, respectively. Using Proposition 2.6.4, we have

1
π

∫ ′

R

(T − it)−1x dt = P+x− P−x for x ∈W+ uW− .

For x ∈W+ this yields

〈x|x〉 = 〈P+x− P−x|x〉 =
1
π

∫ ′

R

〈(T − it)−1x|x〉 dt .
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We rewrite the integrand as

〈(T − it)−1x|x〉 = 〈(T − it)−1x|T (T − it)−1x〉+ it〈(T − it)−1x|(T − it)−1x〉,

where the last summand is purely imaginary. Since 〈x|x〉 ∈ R and using the accre-
tivity of T , we obtain

〈x|x〉 =
1
π

∫ ′

R

Re〈(T − it)−1x|x〉 dt =
1
π

∫ ′

R

Re〈T (T − it)−1x|(T − it)−1x〉︸ ︷︷ ︸
≥0

dt ≥ 0.

Thus W+ and hence also U+ are nonnegative. For x ∈W− the similar calculation

−〈x|x〉 = 〈P+x− P−x|x〉 =
1
π

∫ ′

R

Re〈T (T − it)−1x|(T − it)−1x〉 dt ≥ 0

implies that W− and hence also U− are nonpositive.
(ii): We use the same notations as in (i) and Proposition 2.6.5 to estimate the

resolvent integral. Denote by W 0
± the span of the Jordan chains from the Riesz basis

corresponding to σ±p (T ). Then W 0
± ⊂W± and for x ∈W 0

+ we find

〈x|x〉 = 〈P+x− P−x|x〉 =
1
π

∫ ′

R

Re〈T (T − it)−1x|(T − it)−1x〉 dt

≥ γ

π

∫
R

‖(T − it)−1x‖2 dt ≥ mγ

2M
√

1 + a2
‖x‖2.

By Proposition 2.6.2 we know that %(T ) 6= ∅. The subspaces generated by the
Jordan chains of the Riesz basis thus form a finitely determining l2-decomposition,
see the proof of Lemma 2.3.15(i). Then (2.17) implies L(λ) ⊂W 0

+ for λ ∈ σ+
p (T ) and

hence W 0
+ = W+. Consequently U+ = W+ is uniformly positive with the specified

constant. For x ∈ W 0
−, the relation −〈x|x〉 = 〈P+x − P−x|x〉 again leads to the

corresponding result. �
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Chapter 3

Perturbation theory for spectral
l2-decompositions

The purpose of this chapter is to prove the existence of finitely spectral l2-decom-
positions for non-normal operators with compact resolvent. Compared to normal
operators, a number of new problems arise: First, apart from eigenvectors, the ex-
istence of generalised eigenvectors is possible too. Second, in contrast to a normal
operator with compact resolvent, which always has an orthonormal basis of eigen-
vectors, the system of root vectors of a non-normal operator with compact resolvent
need not be complete. And third, even if the system is complete, this does not imply
that it has additional basis properties.

To solve these problems we use an approach due to Markus and Matsaev [37],
[36, §§5,6], and consider an operator T = G + S where G is normal with compact
resolvent and S is p-subordinate toG. Under appropriate conditions on the spectrum
of G we prove that T has a compact resolvent and admits a finitely spectral l2-
decomposition. Strengthening the assumptions we even obtain an l2-decomposition
of root subspaces, i.e., T is a spectral operator. These results extend theorems due
to Kato [24], Dunford and Schwartz [20], and Clark [11].

In the first section we prove an auxiliary result on the completeness of the system
of root vectors. In Section 3.2 the notion of a p-subordinate perturbation is defined
and differential operators are considered as examples. Section 3.3 contains several
estimates for Riesz projections corresponding to T . The main perturbation theorems
are proved in Section 3.4 and applied to diagonally dominant block operator matri-
ces. In the last section we show the existence of a finitely spectral l2-decomposition
for an ordinary differential operator with possibly unbounded coefficient functions.

61
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3.1 Completeness of the system of root subspaces

We derive a completeness result for the system of root subspaces of an operator with
compact resolvent. In the proof we use ideas from a similar theorem for a relatively
compact perturbation of a normal operator due to Keldysh [25], cf. [36, §4]. Our
result is of auxiliary nature and will be used in the proof of the main perturbation
theorems in Section 3.4. Hence we do not consider a perturbation here and instead
assume that the resolvent is appropriately bounded.

Recall that the adjoint of an operator with compact resolvent on a Hilbert space
also has a compact resolvent.

Lemma 3.1.1 Let T (H → H) be a densely defined operator with compact resolvent
on a Hilbert space H and

M =
∑

λ∈σ(T )

L(λ)

the sum of all root subspaces of T . If P is the Riesz projection of T ∗ corresponding
to an eigenvalue λ ∈ σ(T ∗), then M⊥ ⊂ kerP . Moreover, M⊥ is T ∗-invariant and
(T ∗ − z)−1-invariant for every z ∈ %(T ∗); in particular %(T ∗) ⊂ %(T ∗|M⊥).

Proof. We have λ ∈ σ(T ∗) if and only if λ ∈ σ(T ). Observe that if P is the
Riesz projection of T ∗ corresponding to λ, then P ∗ is the Riesz projection of T
corresponding to λ. Since R(P ∗) ⊂ M we find M⊥ ⊂ R(P ∗)⊥ = kerP . Now let
v ∈M and z ∈ %(T ∗). Then Tv, (T − z̄)−1v ∈M and we find

u ∈M⊥ ∩ D(T ∗) ⇒ (T ∗u|v) = (u|Tv) = 0,

u ∈M⊥ ⇒
(
(T ∗ − z)−1u

∣∣v) =
(
u
∣∣(T − z̄)−1v

)
= 0.

Therefore M⊥ is T ∗- and (T ∗−z)−1-invariant, and this in turn implies the inclusion
%(T ∗) ⊂ %(T ∗|M⊥). �

Corollary 3.1.2 Let T and M be as above. Then %(T ∗|M⊥) = C.

Proof. Since T has a compact resolvent, the same holds for T ∗ and T ∗|M⊥ . Con-
sequently if λ ∈ σ(T ∗|M⊥), then λ is an eigenvalue of T ∗|M⊥ , i.e., T ∗u = λu for
some u ∈ M⊥ \ {0}. In particular λ is an eigenvalue of T ∗ and we have u ∈ R(P )
where P is the Riesz projection of T ∗ corresponding to λ. Now the previous lemma
implies u ∈ M⊥ ⊂ kerP and hence u = 0, which is a contradiction. Therefore
σ(T ∗|M⊥) = ∅. �

Proposition 3.1.3 Let H be a Hilbert space and T (H → H) a densely defined
operator with compact resolvent. Suppose that the eigenvalues of T all lie in a finite
number of pairwise disjoint sectors

Ωj =
{
z ∈ C

∣∣ | arg z − θj | < ψj

}
with 0 < ψj ≤

π

4
, j = 1, . . . , n.
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If there is a constant M0 ≥ 0 such that

‖(T − z)−1‖ ≤M0 for z 6∈ Ω1 ∪ . . . ∪ Ωn

and for each sector Ωj there is a sequence (xk)k∈N with xk →∞ and

‖(T − z)−1‖ ≤M0 for z ∈ Ωj , Re(e−iθjz) = xk, k ∈ N,

then T has a dense system of root subspaces.

Proof. Let M be as before. For u, v ∈ M⊥ we consider the holomorphic function
defined by

f(z) =
(
(T ∗|M⊥ − z)−1u|v

)
.

From the previous corollary we know that its domain of definition is C. Since

‖(T ∗|M⊥ − z)−1‖ ≤ ‖(T ∗ − z)−1‖ = ‖(T − z̄)−1‖ for z ∈ %(T ∗),

we see that |f(z)| ≤M0‖u‖‖v‖ holds for z̄ ∈ Ωj with Re(e−iθjz) = xk as well as for
z̄ 6∈ Ω1 ∪ . . . ∪ Ωn. Using the maximum principle, we find that |f(z)| ≤ M0‖u‖‖v‖
for every z ∈ C; by Liouville’s theorem f is constant. Since u and v have been
arbitrary, the mapping z 7→ (T ∗|M⊥ − z)−1 is also constant. For u ∈M⊥ we obtain

(T ∗|M⊥)−1u = (T ∗|M⊥ − I)−1u ⇒ (T ∗|M⊥ − I)(T ∗|M⊥)−1u = u

⇒ (T ∗|M⊥)−1u = 0 ⇒ u = 0 .

Hence M⊥ = {0}, i.e., M ⊂ H is dense. �

3.2 p-subordinate perturbations

The concept of p-subordination is taken from the book of Markus [36, §5], see also
Krein [27, §I.7.1]. In a certain sense it is an interpolation between the notions of
boundedness and relative boundedness. As examples of p-subordination we consider
differential operators with boundary conditions and bounded as well as unbounded
coefficient functions.

Definition 3.2.1 Let G(V → V ) and S(V → V ) be operators in a Banach space
and p ∈ [0, 1]. The operator S is said to be p-subordinate to G if D(G) ⊂ D(S) and
there exists b ≥ 0 such that

‖Su‖ ≤ b‖u‖1−p‖Gu‖p for all u ∈ D(G). (3.1)

The minimal constant b ≥ 0 such that (3.1) holds is called the p-subordination bound
of S to G. y
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For the case p = 0, subordination simply reduces to the boundedness of S. For
p > 0, the following proposition gives a connection to relative boundedness, cf.
Krein [27, page 146]. The operator S(V → V ) is called relatively bounded with
respect to G(V → V ), or simply G-bounded, if D(G) ⊂ D(S) and there exist a, b ≥ 0
such that

‖Su‖ ≤ a‖u‖+ b‖Gu‖ for all u ∈ D(G). (3.2)

The infimum of all such b is called the G-bound of S.

Proposition 3.2.2 Let G, S be operators in a Banach space with D(G) ⊂ D(S)
and 0 < p ≤ 1. Then S is p-subordinate to G if and only if there is a constant
C > 0 such that

‖Su‖ ≤ C(ε−p‖u‖+ ε1−p‖Gu‖) for all u ∈ D(G), ε > 0. (3.3)

Proof. First note that
λp + λp−1 ≥ 1 for λ > 0. (3.4)

Indeed, we have λp ≥ 1 for λ ≥ 1 and λp−1 ≥ 1 for 0 < λ ≤ 1.
As the case u = 0 is trivial, we may assume u 6= 0. Suppose first that S is

p-subordinate to G. If ‖Gu‖ = 0 then ‖Su‖ = 0 and (3.3) holds. If ‖Gu‖ 6= 0, we
use (3.4) with λ = ‖u‖(ε‖Gu‖)−1 and obtain

‖Su‖ ≤ b‖u‖1−p‖Gu‖p

((
‖u‖
ε‖Gu‖

)p

+
(

‖u‖
ε‖Gu‖

)p−1
)

= b(ε−p‖u‖+ ε1−p‖Gu‖).

Vice versa, suppose that (3.3) holds. If ‖Gu‖ = 0 then

‖Su‖ ≤ Cε−p‖u‖ → 0 as ε→∞,

that is ‖Su‖ = 0. If ‖Gu‖ 6= 0, we use (3.3) with ε = ‖u‖/‖Gu‖ to get

‖Su‖ ≤ C

((
‖u‖
‖Gu‖

)−p

‖u‖+
(
‖u‖
‖Gu‖

)1−p

‖Gu‖

)
= 2C‖u‖1−p‖Gu‖p.

�

Corollary 3.2.3 If the operator S is p-subordinate to G with bound b, then S is
G-bounded with G-bound 0 for 0 ≤ p < 1 and G-bound ≤ b for p = 1. �

While boundedness implies relative boundedness, there is in general no relation
between p-subordination for different p. For example, if kerG 6= {0}, then the
condition kerG ⊂ kerS is necessary for a bounded (i.e. 0-subordinate) operator S
to be p-subordinate to G with p > 0. The situation is different for 0 ∈ %(G):

Lemma 3.2.4 If S is p-subordinate to G and 0 ∈ %(G), then S is q-subordinate to
G for all q ∈ [p, 1].
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Proof. For u ∈ D(G) we have

‖Su‖ ≤ b‖u‖1−p‖Gu‖p = b‖u‖1−q‖G−1Gu‖q−p‖Gu‖p ≤ b‖G−1‖q−p‖u‖1−q‖Gu‖q.

�

If G has a compact resolvent, connections of p-subordination to the boundedness
of SG−p and to relative compactness can be obtained:

Remark 3.2.5 Let H be a Hilbert space, G(H → H) normal with compact resol-
vent, and 0 ∈ %(G). We may then define fractional powers of G: Let (ek)k∈N be an
orthonormal basis of eigenvectors and λk the corresponding eigenvalues. For p ∈ R
we set

D(Gp) =
{
u ∈ H

∣∣∣∣ ∑
k∈N

|λk|2p|(u|ek)|2 <∞
}
,

Gpu =
∑
k∈N

λp
k(u|ek)ek for u ∈ D(Gp)

where λp = |λ|peip arg λ with arg λ ∈ ]− π, π].
Now the following can be shown, see Markus [36, §5] and Krein [27, §I.7.1]: If

the operator S(H → H) is such that SG−p ∈ L(H) with 0 ≤ p ≤ 1, then S is
p-subordinate to G; the converse implication is wrong in general. However, if S is
p-subordinate to G with 0 ≤ p < 1, then SG−q ∈ L(H) for all q > p; in particular,
S is relatively compact to G, i.e., SG−1 is compact. y

As an example of p-subordination we investigate differential operators. We need
some facts about Sobolev spaces; see Adams [2] for a detailed treatment. Let Ω ⊂
Rm be open. For n ∈ N we consider the Sobolev space

Wn,2(Ω) =
{
u ∈ L2(Ω)

∣∣ ∂αu ∈ L2(Ω) exists for |α| ≤ n
}

where ∂αu is the weak derivative corresponding to the multi-index α. The space
Wn,2(Ω) is a Hilbert space with respect to the norm

‖u‖W n,2(Ω) =
(∑
|α|≤n

‖∂αu‖2
L2(Ω)

)1/2

and C∞(Ω) is a dense subspace. Wn,2
0 (Ω) is by definition the closure of C∞0 (Ω) (the

space of smooth functions compactly supported in Ω) in Wn,2(Ω).
In the one-dimensional case, Ω = ]a1, a2[ a bounded open interval, we have the

characterisation [23, Theorem VII.1.1]

u ∈Wn,2( ]a1, a2[ )

⇔ u ∈ Cn−1([a1, a2]), u(n−1) is absolutely continuous, u(n) ∈ L2( ]a1, a2[ ).
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In particular, the point evaluations u(x), . . . , u(n−1)(x) are well defined for every
x ∈ [a1, a2], and we will therefore use the notation Wn,2([a1, a2]) for the Sobolev
space over an interval. Cn([a1, a2]) ⊂Wn,2([a1, a2]) is a dense subspace.

For differential operators with certain kinds of boundary conditions, e.g. Dirichlet
or periodic boundary conditions, we obtain a subordination property in a straight-
forward way using partial integration:

Example 3.2.6 On L2([a1, a2]) consider the following second order differential op-
erator with Dirichlet boundary condition:

Gu = u′′, D(G) =
{
u ∈W 2,2([a1, a2])

∣∣u(a1) = u(a2) = 0
}
.

Then the first order operator

Su = u′ with D(S) = C1([a1, a2])

is 1/2-subordinate to G: Integrating by parts and using the boundary condition and
the Cauchy-Schwarz inequality, we obtain for u ∈ D(G)∫ a2

a1

|u′(x)|2 dx =
∫ a2

a1

u′(x)u′(x) dx

= −
∫ a2

a1

u(x)u′′(x) dx ≤ ‖u‖L2([a1,a2])‖u′′‖L2([a1,a2]) .

Hence
‖Su‖L2([a1,a2]) ≤ ‖u‖1/2

L2([a1,a2])
‖Gu‖1/2

L2([a1,a2])
for u ∈ D(G). (3.5)

Obviously, this result continues to hold for every choice of boundary conditions such
that the boundary terms in the integration by parts vanish. y

Example 3.2.7 Consider the Laplacian on a domain Ω ⊂ Rm with Dirichlet bound-
ary conditions,

G(L2(Ω) → L2(Ω)), Gu = ∆u, D(G) = W 2,2(Ω) ∩W 1,2
0 (Ω).

Then the operator ∂k of taking the kth partial derivative with domain W 1,2(Ω) is
1/2-subordinate to G: Analogously to the previous example we find for u ∈ D(G)∫

Ω
|∂ku(x)|2 dx ≤

m∑
j=1

∫
Ω
∂ju(x)∂ju(x) dx = −

m∑
j=1

∫
Ω
u(x)∂2

j u(x) dx

= −
∫

Ω
u(x)∆u(x) dx ≤ ‖u‖L2(Ω)‖Gu‖L2(Ω).

y
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In the case of periodic boundary conditions we can derive a subordination prop-
erty for higher order derivatives.

Proposition 3.2.8 For n ∈ N consider the operator Dn on L2([a1, a2]) given by

Dnu = u(n),

D(Dn) =
{
u ∈Wn,2([a1, a2])

∣∣u(k)(a1) = u(k)(a2) for k = 0, . . . , n− 1
}
.

Then for 0 ≤ k ≤ n and n ≥ 1, Dk is k/n-subordinate to Dn,

‖Dku‖ ≤ ‖u‖1−k/n ‖Dnu‖k/n for u ∈ D(Dn). (3.6)

Proof. As the cases k = 0 and k = n are trivial, we consider 0 < k < n and use
induction on n. The calculation in Example 3.2.6 shows that the assertion is true
for n = 2. Now suppose that (3.6) holds for some n ≥ 2 and let u ∈ D(Dn+1). Using
(3.6) twice, one time with n = 2, we find

‖D1u
(n−1)‖2 ≤ ‖u(n−1)‖‖D2u

(n−1)‖ ≤ ‖u‖
1
n ‖Dnu‖

n−1
n ‖Dn+1u‖

⇒ ‖Dnu‖2−n−1
n = ‖Dnu‖

n+1
n ≤ ‖u‖

1
n ‖Dn+1u‖

⇒ ‖Dnu‖ ≤ ‖u‖
1

n+1 ‖Dn+1u‖
n

n+1 .

Using (3.6) again, we obtain for k ≤ n− 1

‖Dku‖ ≤ ‖u‖1− k
n ‖Dnu‖

k
n ≤ ‖u‖1− k

n

(
‖u‖

1
n+1 ‖Dn+1u‖

n
n+1

) k
n

= ‖u‖1− k
n

+ k
n(n+1) ‖Dn+1u‖

k
n+1 = ‖u‖1− k

n+1 ‖Dn+1u‖
k

n+1 .
�

The next example shows that differential operators without boundary conditions
do not satisfy a subordination property in general:

Example 3.2.9 Let G and S be operators on L2([0, 1]) defined by

Gu = u′′, D(G) = W 2,2([0, 1]),

Su = u′, D(S) = W 1,2([0, 1]).

For λ ∈ C consider the function uλ ∈ D(G) given by

uλ(x) =
λ

2
x2 + x.

We have u′λ(x) = λx+ 1, u′′λ(x) = λ and hence Suλ 6= 0, (G− λ)uλ = 0. Therefore
S is not p-subordinate to G − λ for 0 < p ≤ 1. As S is also not bounded, S is not
p-subordinate to G− λ for any p ∈ [0, 1] and λ ∈ C. y
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Now we derive a subordination property for ordinary differential operators with
general boundary conditions. The proof is based on the following interpolation
inequality for Sobolev spaces. While such an inequality holds on arbitrary domains
Ω ⊂ Rm with sufficiently smooth boundary, see Adams [2, Theorem 4.14], we will
only need the simpler version over a compact interval. For a proof we also refer to
[2, Theorem 4.14].

Proposition 3.2.10 Let a1 < a2 and n ≥ 1. Then there exists K ≥ 0 such that
for 0 < ε ≤ 1 and 0 ≤ k < n we have

‖u(k)‖L2([a1,a2]) ≤ Kε−k/(n−k)‖u‖L2([a1,a2]) +Kε‖u(n)‖L2([a1,a2]) (3.7)

for all u ∈Wn,2([a1, a2]). �

Remark 3.2.11 Replacing ε with ε(n−k)/n in inequality (3.7), we obtain

‖u(k)‖L2 ≤ K
(
ε−k/n‖u‖L2 + ε1−k/n‖u(n)‖L2

)
for u ∈ Wn,2([a1, a2]) and 0 < ε ≤ 1. While this inequality is of the form (3.3), we
can not use it directly to proof k/n-subordination since it does not hold for all ε > 0.
On the other hand, no boundary conditions are involved in Proposition 3.2.10. y

Corollary 3.2.12 Given a1 < a2, n ≥ 1, there are constants K ≥ 0, L ≥ 0 such
that

‖u‖W n,2([a1,a2]) ≤ K
(
‖u‖L2([a1,a2]) + ‖u(n)‖L2([a1,a2])

)
and

‖u(k)‖∞ ≤ L
(
‖u‖L2([a1,a2]) + ‖u(n)‖L2([a1,a2])

)
for all u ∈Wn,2([a1, a2]), 0 ≤ k < n.

Proof. The first estimate is obtained from (3.7) with ε = 1 and

‖u‖W n,2 ≤ ‖u‖L2 + · · ·+ ‖u(n)‖L2 .

The second one then follows by the Sobolev imbedding theorem [2, Theorem 5.4]

Wn,2([a1, a2]) ↪→ Cn−1([a1, a2]) continuous.
�

The following inequality also holds on arbitrary domains Ω ⊂ Rm with suffi-
ciently smooth boundary, see Adams [2, Theorem 4.17].

Corollary 3.2.13 For a1 < a2, n ≥ 1, and 0 ≤ k ≤ n there is a constant C ≥ 0
such that

‖u‖W k,2([a1,a2]) ≤ C‖u‖1−k/n
L2([a1,a2])

‖u‖k/n
W n,2([a1,a2])

for all u ∈Wn,2([a1, a2]).
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Proof. The inequality is trivial for k = n and k = 0, so let 0 < k < n. By the
previous corollary there exists K0 ≥ 0 such that

‖u‖W k,2 ≤ K0

(
‖u‖L2 + ‖u(k)‖L2

)
.

For ε ∈ ]0, 1] we have
‖u‖L2 ≤ ε−k/(n−k)‖u‖L2 ;

together with (3.7) this yields

‖u‖W k,2 ≤ K0(K + 1)
(
ε−k/(n−k)‖u‖L2 + ε‖u(n)‖L2

)
≤ K0(K + 1)

(
ε−k/(n−k)‖u‖L2 + ε‖u‖W n,2

)
.

Since ‖u‖L2 ≤ ‖u‖W n,2 we may choose ε = (‖u‖L2/‖u‖W n,2)(n−k)/n and obtain the
assertion. �

For a differential operator of order n on the interval [a1, a2], boundary conditions
can be specified as follows: For V : C2n → C linear and u ∈Wn,2([a1, a2]) we define

V (u) = V
(
u(a1), u′(a1), . . . , u(n−1)(a1), u(a2), u′(a2), . . . , u(n−1)(a2)

)
.

Then V (u) = 0 is a linear, homogeneous boundary condition. A treatment of bound-
ary conditions for ordinary differential operators and their relation to eigenvalues
and eigenfunctions may be found, for example, in the book of Naimark [40].

The next proposition yields an a priori estimate for solutions u of u(n) − λu = f
subject to boundary conditions, see also Goldberg [23, Theorem VI.6.2].

Proposition 3.2.14 Let V1, . . . , Vn : C2n → C be linear and linearly independent
and consider the nth order differential operator G on L2([a1, a2]) defined by

Gu = u(n), D(G) =
{
u ∈Wn,2([a1, a2])

∣∣V1(u) = · · · = Vn(u) = 0
}
. (3.8)

Then for every λ ∈ C \ σp(G) there is a constant C ≥ 0 such that

‖u‖W n,2([a1,a2]) ≤ C‖(G− λ)u‖L2([a1,a2]) for u ∈ D(G).

Proof. Since Cn([a1, a2]) is dense in Wn,2([a1, a2]), we may assume u ∈ Cn([a1, a2])
with V1(u) = · · · = Vn(u) = 0. We set f = u(n) − λu and consider the solution
u0 ∈ Cn([a1, a2]) of the Cauchy problem

u
(n)
0 − λu0 = f, u0(a1) = u′0(a1) = · · · = u

(n−1)
0 (a1) = 0.

Setting z = (u0, . . . , u
(n−1)
0 ), we may rewrite this as the first order system z′ = Az+g,

z(a1) = 0 with g = (0, . . . , 0, f) and A ∈ Cn×n. Denoting by | · |∞ the maximum
norm on Cn, we find

z(x) =
∫ x

a1

(
Az(t) + g(t)

)
dt ⇒ |z(x)|∞ ≤

∫ a2

a1

|g(t)|∞ dt+
∫ x

a1

‖A‖ |z(t)|∞ dt.
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By the Gronwall inequality it follows that

|z(x)|∞ ≤
∫ a2

a1

|g(t)|∞ dt · e‖A‖(x−a1)

and thus

|u0(x)|2 ≤ |z(x)|2∞ ≤ e2‖A‖(a2−a1)(a2 − a1)
∫ a2

a1

|g(t)|2∞ dt = C0

∫ a2

a1

|f(t)|2 dt

with C0 ≥ 0. Therefore

‖u0‖L2 ≤
√
C0(a2 − a1) ‖f‖L2 ,

‖u(n)
0 ‖L2 = ‖λu0 + f‖L2 ≤ |λ|‖u0‖L2 + ‖f‖L2 ≤

(
|λ|
√
C0(a2 − a1) + 1

)
‖f‖L2 .

Now let u1, . . . , un be a fundamental system of solutions of the homogeneous
equation u(n) − λu = 0. Set M = (Vj(uk))j,k=1,...,n and β = (V1(u0), . . . , Vn(u0)).
The matrix M is invertible since λ 6∈ σp(G). Then u is of the form

u = α1u1 + · · ·+ αnun + u0,

and writing α = (α1, . . . , αn) we have

V1(u) = · · · = Vn(u) = 0 ⇐⇒ Mα = −β.

We obtain

‖u‖L2 ≤
(
‖u1‖L2 + · · ·+ ‖un‖L2

)
|α|∞ + ‖u0‖L2 ,

|α|∞ ≤ ‖M−1‖|β|∞ ≤ C1‖M−1‖max
{
‖u0‖∞, . . . , ‖u(n−1)

0 ‖∞
}

with C1 = max{‖V1‖, . . . , ‖Vn‖}. Due to the above calculations and Corollary 3.2.12,
there is a constant C2 ≥ 0 such that ‖u(k)

0 ‖∞ ≤ C2‖f‖L2 for k = 0, . . . , n − 1.
Altogether this yields

‖u‖L2 ≤
((
‖u1‖L2 + · · ·+ ‖un‖L2

)
C1‖M−1‖C2 +

√
C0(a2 − a1)

)
‖f‖L2 = C3‖f‖L2

with C3 > 0. Since moreover

‖u(n)‖L2 ≤ |λ|‖u‖L2 + ‖f‖L2 ≤ (|λ|C3 + 1)‖f‖L2 ,

the proof is complete in view of Corollary 3.2.12. �

We can now prove a subordination property for ordinary differential operators
with general boundary conditions and bounded coefficients.



3.3. Estimates for Riesz projections 71

Proposition 3.2.15 Let G be an nth order differential operator on L2([a1, a2]) as
in (3.8) and λ ∈ C \ σp(G). Then for 0 ≤ k ≤ n and g0, . . . , gk ∈ L∞([a1, a2]), the
differential operator

Su =
k∑

j=0

gju
(j), D(S) = W k,2([a1, a2])

of order k is k/n-subordinate to G− λ.

Proof. Using Corollary 3.2.13, we have

‖Su‖L2 ≤
k∑

j=0

‖gj‖∞‖u(j)‖L2 ≤
k∑

j=0

‖gj‖∞ · ‖u‖W k,2 ≤ b0‖u‖1−k/n
L2 ‖u‖k/n

W n,2

with some constant b0. The claim is thus an immediate consequence of Proposi-
tion 3.2.14. �

When the coefficients of S are L2-functions, we can still prove a subordination
property, though with larger constant p.

Proposition 3.2.16 For 0 ≤ k ≤ n − 1 and g0, . . . , gk ∈ L2([a1, a2]) consider the
differential operator S on L2([a1, a2]) given by

Su =
k∑

j=0

gju
(j), D(S) = Ck([a1, a2]).

If G is a differential operator as in (3.8) and λ ∈ C \ σp(G), then S is (k + 1)/n-
subordinate to G− λ.

Proof. Let u ∈Wn,2([a1, a2]). Using Corollaries 3.2.12 and 3.2.13 we find

‖Su‖L2 ≤
k∑

j=0

‖gj‖L2‖u(j)‖∞ ≤ L

k∑
j=0

‖gj‖L2

(
‖u‖L2 + ‖u(j+1)‖L2

)
≤ b0‖u‖W k+1,2 ≤ b1‖u‖1−(k+1)/n

L2 ‖u‖(k+1)/n
W n,2

with some constants b0, b1 ≥ 0. The assertion is again a consequence of Proposi-
tion 3.2.14. �

3.3 Estimates for Riesz projections

In this section we consider the operator T = G + S where G is normal and S is
p-subordinate to G. We derive estimates for the resolvent and for Riesz projections
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of T . They will be used to prove the perturbation theorems for finitely spectral
l2-decompositions in the following section. Lemma 3.3.2 and Propositions 3.3.8 and
3.3.12 may be of interest on their own. The key ideas are taken from the book of
Markus [36, §§5,6].

Lemma 3.3.1 Let G be a normal operator on a Hilbert space, S p-subordinate to
G with bound b, and T = G+ S. If 0 < ε < 1 and z ∈ %(G) such that

b
(
1 +

|z|
dist(z, σ(G))

)p 1
dist(z, σ(G))1−p

≤ ε,

then z ∈ %(T ) and

‖S(G− z)−1‖ ≤ ε, ‖(T − z)−1‖ ≤ (1− ε)−1

dist(z, σ(G))
, ‖S(T − z)−1‖ ≤ ε

1− ε
.

Proof. Using the spectral theorem for normal operators [19, Theorem XII.2.3, Ex-
ercises XII.9.9 and XII.9.12], see also [24, §V.3.8], we have

‖(G− z)−1‖ = sup
λ∈σ(G)

1
|λ− z|

=
1

dist(z, σ(G))

and

‖G(G− z)−1‖ = ‖I + z(G− z)−1‖ ≤ 1 +
|z|

dist(z, σ(G))
.

With the definition of p-subordination this yields

‖S(G− z)−1u‖ ≤ b‖G(G− z)−1u‖p‖(G− z)−1u‖1−p

≤ b
(
1 +

|z|
dist(z, σ(G))

)p 1
dist(z, σ(G))1−p

‖u‖ ≤ ε‖u‖

for every u ∈ H, hence ‖S(G− z)−1‖ ≤ ε < 1. Since

T − z =
(
I + S(G− z)−1

)
(G− z),

a Neumann series argument shows that z ∈ %(T ) with

‖(T − z)−1‖ ≤ ‖(G− z)−1‖‖(I + S(G− z)−1)−1‖

≤ ‖(G− z)−1‖ 1
1− ‖S(G− z)−1‖

≤ (1− ε)−1

dist(z, σ(G))
.

Finally, the identity S(T − z)−1 = S(G − z)−1(I + S(G − z)−1)−1 implies that
‖S(T − z)−1‖ ≤ ε(1− ε)−1. �
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σ(G) \R≥0

%3

%2

%1

%2

%1

x

σ(G) ∩R≥0

αxp

r0

ϕ+

ϕ+

ϕ−ϕ−

ψ

ψ

Figure 3.1: The situation of Lemma 3.3.2

In the remaining part of this section we use the notations

Ω(ϕ−, ϕ+) = {reiϕ | r ≥ 0 , ϕ− < ϕ < ϕ+} and Ω(ϕ) = Ω(−ϕ,ϕ)

for the sectors lying between the rays with arguments ϕ−, ϕ+ and −ϕ, ϕ, respec-
tively. Furthermore, we always assume that

σ(G) ∩ Ω(2ϕ−, 2ϕ+) ⊂ R≥0 with − π ≤ ϕ− < 0 < ϕ+ ≤ π.

The next lemma states that in this situation the sets %1, %2, %3 belong to the
resolvent set of the perturbed operator T = G+S, compare Figure 3.1. The set %1∪%2

comprises all points z with |z| large enough, inside the closed sector Ω(ϕ−, ϕ+), but
outside a parabola around the real axis. The strip %3 corresponds to large gaps of
σ(G) on the positive real axis. Sufficient conditions for the existence of such gaps
may be found in Proposition 3.3.12, Theorem 3.4.7 and Lemma 3.4.10; examples are
the ordinary differential operators in Section 3.5.

Lemma 3.3.2 Let G be a normal operator such that σ(G) ∩ Ω(2ϕ−, 2ϕ+) ⊂ R≥0

with −π ≤ ϕ− < 0 < ϕ+ ≤ π. Let S be p-subordinate to G with bound b, 0 ≤ p < 1,
and T = G+ S.

Then for α > b, b/α < ε < 1, and 0 < ψ < min{−ϕ−, ϕ+, π/2} there exists
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σ(G)

|z|

z

ϕ−
ϕ−

y

y
z

ϕ+

ϕ+

ϕ−ϕ−

Figure 3.2: Estimates for dist(z, σ(G)) in Lemma 3.3.2

r0 > 0 such that the sets

%1 =
{
z ∈ Ω(ϕ−, ϕ+)

∣∣ |z| ≥ r0, z 6∈ Ω(ψ)
}
,

%2 =
{
z = x+ iy ∈ Ω(ψ)

∣∣ |z| ≥ r0, |y| ≥ αxp
}
,

%3 =
{
z = x+ iy ∈ Ω(ψ)

∣∣ |z| ≥ r0, |y| ≤ αxp ≤ dist(z, σ(G))
}

satisfy %1 ∪ %2 ∪ %3 ⊂ %(T ), and for z ∈ %1 ∪ %2 ∪ %3 we have

‖S(G− z)−1‖ ≤ ε, ‖(T − z)−1‖ ≤ (1− ε)−1

dist(z, σ(G))
, ‖S(T − z)−1‖ ≤ ε

1− ε
.

Furthermore there is a constant M > 0 such that

‖(T − z)−1‖ ≤M for all z ∈ %1 ∪ %2 ∪ %3.

Proof. We want to apply the last lemma and write d = dist(z, σ(G)). So we have to
show that

C = b
(
1 +

|z|
d

)p 1
d1−p

≤ ε.

First we analyse the geometry of the situation, see Figure 3.2. For z = x + iy we
have the implications

ϕ− ≤ arg z ≤ −π
2

or
π

2
≤ arg z ≤ ϕ+ =⇒ d ≥ |z|, (3.9)

max
{
ϕ−,−

π

2

}
≤ arg z ≤ min

{
ϕ+,

π

2

}
=⇒ d ≥ |y|, (3.10)
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as well as

ψ ≤ | arg z| ≤ π

2
=⇒ |y| ≥ |z| sinψ, (3.11)

| arg z| ≤ ψ =⇒ x ≥ |z| cosψ. (3.12)

Now let z ∈ %1. If ϕ− ≤ arg z ≤ −π/2 or π/2 ≤ arg z ≤ ϕ+, then (3.9) yields
C ≤ 2pb|z|p−1 ≤ ε, provided r0 is large enough. If ψ ≤ | arg z| ≤ π/2, then (3.10)
and (3.11) imply d ≥ |z| sinψ and hence

C ≤ b
(
1 +

1
sinψ

)p 1
(|z| sinψ)1−p

≤ ε

for r0 sufficiently large.
For z ∈ %2, implications (3.10) and (3.12) apply and with |y| ≥ αxp we find

d ≥ αxp. For p > 0 we use the Minkowski inequality to get the estimate(
1 +

|z|
d

)p
≤
(
1 +

x+ |y|
d

)p
≤ 1 +

xp + |y|p

dp
≤ 1 +

α−1d+ dp

dp
= 2 +

1
α
d1−p,

i.e. C ≤ 2bdp−1 + b/α. Since b/α < ε and d ≥ α(|z| cosψ)p, we obtain C ≤ ε for r0
sufficiently large. On the other hand, if p = 0 then d ≥ α and C = b/d ≤ b/α < ε.

In the case z ∈ %3, (3.10) and (3.12) apply, and we have d ≥ αxp by definition of
the set %3. In the same manner as for z ∈ %2, we conclude that C ≤ ε if r0 is large
enough.

Finally, to prove that ‖(T − z)−1‖ is uniformly bounded, we need to show that
d−1 is bounded independently of z. For z ∈ %1 we have

either d ≥ |z| ≥ r0 > 0 or d ≥ |z| sinψ ≥ r0 sinψ > 0.

For z ∈ %2 ∪ %3 we obtain

d ≥ α(|z| cosψ)p ≥ α(r0 cosψ)p > 0.
�

We will now focus on the case where G is normal with compact resolvent. The
next two lemmas yield estimates for some resolvent integrals along contours associ-
ated with the parabola from Figure 3.1.

Lemma 3.3.3 (Markus [36, Lemma 6.6]) Let G be normal with compact resol-
vent and σ(G) ∩ Ω(2ϕ) ⊂ R≥0 with 0 < ϕ ≤ π/2. Then for 0 ≤ p < 1, α > 0 there
exists r0 > 0 such that the contours

Γ± = {x+ iy ∈ C |x ≥ r0, y = ±αxp} (3.13)

satisfy Γ± ⊂ %(G) ∩ Ω(ϕ) and we have∫
Γ±

|z|p‖(G− z)−1u‖2 |dz| ≤ C1‖u‖2,

∫
Γ±

|z|p−2‖G(G− z)−1u‖2 |dz| ≤ C2‖u‖2

for all u ∈ H with some constants C1, C2 ≥ 0.
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ϕ

|z| sinϕ

z

w

Figure 3.3: Two points separated by a sector

Proof. Since G is normal with compact resolvent, there is an orthonormal basis
(uj)j∈N of eigenvectors with corresponding eigenvalues λj . For u ∈ H and z ∈ %(G)
we thus get

‖(G− z)−1u‖2 =
∑

j

1
|λj − z|2

|(u|uj)|2.

We have Γ± ⊂ Ω(ϕ) if we choose r0 large enough. Hence Γ± ⊂ %(G),∫
Γ±

|z|p‖(G− z)−1u‖2 |dz| =
∑

j

∫
Γ±

|z|p

|λj − z|2
|dz| |(u|uj)|2

≤ sup
j

∫
Γ±

|z|p

|λj − z|2
|dz| · ‖u‖2

and similarly∫
Γ±

|z|p−2‖G(G− z)−1u‖2 |dz| ≤ sup
j

∫
Γ±

|z|p−2|λj |2

|λj − z|2
|dz| · ‖u‖2.

We need estimates for the differential forms dz, dx, dy: For z = x+ iy ∈ Γ± and r0
large enough we find

|dz|2 = dx2 + dy2 =
(
1 + (αpxp−1)2

)
dx2 ≤ 2 dx2 and

x2 ≤ |z|2 = x2 + α2x2p =
(
1 + α2x2(p−1)

)
x2 ≤ 2x2.

Figure 3.3 shows that if two points w, z in the complex plane are separated by a
sector of angle ≥ ϕ, then |w−z| ≥ |z| sinϕ and also |w−z| ≥ |w| sinϕ by symmetry.
So if λj 6∈ R>0, then λj 6∈ Ω(2ϕ) and we obtain |λj − z| ≥ max{|z|, |λj |} sinϕ for
z ∈ Γ±. Hence∫

Γ±

|z|p

|λj − z|2
|dz| ≤ 1

sin2 ϕ

∫
Γ±

|z|p−2 |dz| ≤
√

2
sin2 ϕ

∫ ∞

r0

dx

x2−p
<∞
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as well as ∫
Γ±

|z|p−2|λj |2

|λj − z|2
|dz| ≤ 1

sin2 ϕ

∫
Γ±

|z|p−2 |dz| <∞.

If on the other hand λj ∈ R>0 and z ∈ Γ±, then

|λj − z|2 = (λj − x)2 + (αxp)2 ≥ min{1, α2}((λj − x)2 + x2p),

and it suffices to prove the two assertions

sup
t>0

∫ ∞

r0

xp

(x− t)2 + x2p
dx <∞, sup

t>0

∫ ∞

r0

t2xp−2

(x− t)2 + x2p
dx <∞.

For 0 < t ≤ r0/2 we have∫ ∞

r0

xp dx

(x− t)2 + x2p
≤
∫ ∞

r0

xp dx

(x− 1
2r0)

2
≤
∫ ∞

r0

xp dx

(x− 1
2x)

2
=
∫ ∞

r0

4 dx
x2−p

<∞,∫ ∞

r0

t2xp−2 dx

(x− t)2 + x2p
≤
∫ ∞

r0

xp dx

(x− t)2 + x2p
≤
∫ ∞

r0

4 dx
x2−p

<∞.

Using 1 ≤ t/x for x ∈ [r0/2, t] and t/x ≤ 1 for x ∈ [t,∞[, we obtain for t ≥ r0/2∫ ∞

r0

xp dx

(x− t)2 + x2p
≤
∫ t

r0/2

t2xp−2 dx

(x− t)2 + x2p
+
∫ ∞

t

xp dx

(x− t)2 + x2p
,∫ ∞

r0

t2xp−2 dx

(x− t)2 + x2p
≤
∫ t

r0/2

t2xp−2 dx

(x− t)2 + x2p
+
∫ ∞

t

xp dx

(x− t)2 + x2p
.

For t0 with r0/2 ≤ t ≤ t0 we get∫ ∞

t

xp dx

(x− t)2 + x2p
≤
∫ 2t0

r0/2

dx

xp
+
∫ ∞

2t0

xp dx

(x− t)2
≤
∫ 2t0

r0/2

dx

xp
+
∫ ∞

2t0

4 dx
x2−p

<∞,∫ t

r0/2

t2xp−2 dx

(x− t)2 + x2p
≤
∫ t0

r0/2

t20 dx

x2+p
<∞.

Thus it remains to be shown that

lim sup
t→∞

∫ ∞

t

xp dx

(x− t)2 + x2p
<∞ and lim sup

t→∞

∫ t

r0/2

t2xp−2 dx

(x− t)2 + x2p
<∞.

Assuming t+ tp ≤ 2t, we have∫ t+tp

t

xp dx

(x− t)2 + x2p
≤
∫ t+tp

t

1
xp
dx ≤

∫ t+tp

t

1
tp
dx = 1,∫ 2t

t+tp

xp dx

(x− t)2 + x2p
≤ (2t)p

∫ 2t

t+tp

dx

(x− t)2
≤ (2t)p

∫ ∞

t+tp

dx

(x− t)2
= 2p,∫ ∞

2t

xp dx

(x− t)2 + x2p
≤
∫ ∞

2t

xp dx

(x− 1
2x)

2
= 4

∫ ∞

2t

dx

x2−p
=

4
(1− p)(2t)1−p

,
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which yields

lim sup
t→∞

∫ ∞

t

xp dx

(x− t)2 + x2p
≤ 1 + 2p.

For r0/2 ≤ t/2 ≤ t− tp we have the estimates∫ t/2

r0/2

xp−2 dx

(t− x)2 + x2p
≤
(

2
t

)2∫ t/2

r0/2
xp−2 dx ≤

(
2
t

)2∫ ∞

r0/2

dx

x2−p
=

23−p

t2(1− p)r1−p
0

,∫ t−tp

t/2

xp−2 dx

(t− x)2 + x2p
≤
(
t

2

)p−2 ∫ t−tp

t/2

dx

(t− x)2
=
(
t

2

)p−2( 1
tp
− 2
t

)
≤ 22−p

t2
, and∫ t

t−tp

xp−2 dx

(t− x)2 + x2p
≤
∫ t

t−tp

dx

x2+p
≤
∫ t

t−tp

dx

(t− tp)2+p
=

tp

(t− tp)2+p
.

Therefore

lim sup
t→∞

∫ t

r0/2

t2xp−2 dx

(x− t)2 + x2p
≤ 23−p

(1− p)r1−p
0

+ 22−p + lim sup
t→∞

t2+p

(t− tp)2+p

=
23−p

(1− p)r1−p
0

+ 22−p + 1

and the proof is complete. �

Lemma 3.3.4 (Markus [36, Lemma 6.7]) Let G be normal with compact resol-
vent and σ(G) ∩ Ω(2ϕ) ⊂ R≥0 with 0 < ϕ ≤ π/2. Let (xk)k≥1 be a sequence of
positive numbers, 0 ≤ p < 1, and α, c1, c2 > 0 such that αxp−1

1 ≤ tanϕ and

x1−p
n − x1−p

k ≥ c1(n− k) for n > k, dist(xk, σ(G)) ≥ c2x
p
k for k ≥ 1.

Then the lines
γk =

{
xk + iy ∈ C

∣∣ |y| ≤ αxp
k

}
(3.14)

satisfy γk ⊂ %(G) ∩ Ω(ϕ) and we have
∞∑

k=1

xp
k

∫
γk

‖(G−z)−1u‖2 |dz| ≤ C1‖u‖2,

∞∑
k=1

xp−2
k

∫
γk

‖G(G−z)−1u‖2 |dz| ≤ C2‖u‖2

for all u ∈ H with some constants C1, C2 ≥ 0.

Proof. The assumptions on (xk)k yield that the sequence is monotonically increasing
and that γk ⊂ Ω(ϕ); hence γk ⊂ %(G) for all k. Then, analogously to the previous
proof,

∞∑
k=1

xp
k

∫
γk

‖(G− z)−1u‖2 |dz| =
∞∑

k=1

xp
k

∑
j

∫
γk

|dz|
|λj − z|2

|(u|uj)|2

=
∑

j

∞∑
k=1

xp
k

∫
γk

|dz|
|λj − z|2

|(u|uj)|2 ≤ sup
j

∞∑
k=1

xp
k

∫
γk

|dz|
|λj − z|2

· ‖u‖2
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holds; similarly

∞∑
k=1

xp−2
k

∫
γk

‖G(G− z)−1u‖2 |dz| ≤ sup
j

∞∑
k=1

xp−2
k

∫
γk

|λj |2

|λj − z|2
|dz| · ‖u‖2.

From the assumption on (xk)k we conclude that x1−p
n ≥ c3n for all n ≥ 1 with

c3 = min{c1/2, x1−p
1 }. For λj 6∈ Ω(2ϕ) we obtain the estimates

∞∑
k=1

xp
k

∫
γk

|dz|
|λj − z|2

≤ 1
sin2 ϕ

∞∑
k=1

xp
k

2αxp
k

x2
k

≤ 2α
c23 sin2 ϕ

∞∑
k=1

1
k2

<∞ ,

∞∑
k=1

xp−2
k

∫
γk

|λj |2

|λj − z|2
|dz| ≤ 1

sin2 ϕ

∞∑
k=1

xp−2
k · 2αxp

k ≤
2α

c23 sin2 ϕ

∞∑
k=1

1
k2
.

Otherwise λj ∈ R>0 and we have

∞∑
k=1

xp
k

∫
γk

|dz|
|λj − z|2

≤ 2α
∞∑

k=1

x2p
k

(λj − xk)2
and

∞∑
k=1

xp−2
k

∫
γk

|λj |2

|λj − z|2
|dz| ≤ 2α

∞∑
k=1

x2p−2
k

λ2
j

(λj − xk)2
.

Now there exists n ∈ N with xn < λj < xn+1 (where we have put x0 = 0). Then

|xk − λj | ≥ xn − xk for k < n, |xk − λj | ≥ xk − xn+1 for k > n+ 1,
|xn − λj | ≥ c2x

p
n, and |xn+1 − λj | ≥ c2x

p
n+1.

In addition, for l > k,

xl − xk ≥ xp
l (x

1−p
l − x1−p

k ) ≥ c1x
p
l (l − k).

Using this, we obtain the estimates

∞∑
k=1

x2p
k

(λj − xk)2
≤ 2
c22

+
∑
k<n

x2p
k

(xn − xk)2
+
∑

k>n+1

x2p
k

(xk − xn+1)2

≤ 2
c22

+
∑
k<n

x2p
k

c21x
2p
n (n− k)2

+
∑

k>n+1

1
c21(k − n− 1)2

≤ 2
c22

+
2
c21

∞∑
k=1

1
k2

as well as
∞∑

k=1

λ2
jx

2p−2
k

(λj − xk)2
≤
∑
k≤n

λ2
jx

2p−2
k

(λj − xk)2
+
∑
k>n

x2p
k

(λj − xk)2
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x

Γ+

Γ−

r0
γk

γk+1

xk xk+1

Γk

Figure 3.4: The boundary contour from Lemma 3.3.5

and

∑
k≤n

λ2
jx

2p−2
k

(λj − xk)2
≤

∑
xk≤λj/2

λ2
jx

2p−2
k

(λj/2)2
+
∑
k≤n

xk>λj/2

4x2p
k

(λj − xk)2
≤ 4
c23

∞∑
k=1

1
k2

+ 4
∞∑

k=1

x2p
k

(λj − xk)2
,

which complete the proof. �

With the previous resolvent estimates at hand, we derive an estimate for a se-
quence of Riesz projections associated with the parabola Γ±, see Figure 3.4.

Lemma 3.3.5 Let G be normal with compact resolvent, σ(G) ∩Ω(2ϕ) ⊂ R≥0 with
0 < ϕ ≤ π/2, S p-subordinate to G with bound b, 0 ≤ p < 1, and T = G+ S.

Let α > b, let (xk)k≥1, γk be as in Lemma 3.3.4, and suppose that there is a
constant M ≥ 0 such that

γk ⊂ %(T ) and ‖S(T − z)−1‖ ≤M for all z ∈ γk, k ≥ 1.

Then there exist r0 > 0, k0 ≥ 1 such that xk0 ≥ r0 and the following holds: If Γ±
is as in (3.13) and Γk with k ≥ k0 is the positively oriented boundary contour of the
region enclosed by γk,Γ−, γk+1,Γ+, then Γk ⊂ %(T ). If Pk is the Riesz projection of
T associated with Γk, then

∞∑
k=k0

|(Pku|v)| ≤ C‖u‖‖v‖ for all u, v ∈ H

with some constant C ≥ 0.

Proof. We want to apply Lemmas 3.3.2, 3.3.3 and 3.3.4, and choose ε ∈ ]b/α, 1[ and r0
accordingly. The assumptions on (xk)k imply that the sequence tends monotonically
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to infinity and we choose k0 such that xk0 ≥ r0. By Lemma 3.3.2, ‖S(T − z)−1‖ is
uniformly bounded on Γ±. We thus have

Γk ⊂ %(G) ∩ %(T ) and ‖S(T − z)−1‖ ≤M0 for all z ∈ Γk, k ≥ k0,

with some M0 ≥ 0. Consider now the Riesz projections Qk of G associated with Γk,
which are orthogonal since G is normal. In view of Remark 2.2.8 it suffices to prove

∞∑
k=k0

∣∣((Pk −Qk)u
∣∣v)∣∣ ≤ C‖u‖‖v‖.

Now

Pk −Qk =
i

2π

∫
Γk

(
(T − z)−1 − (G− z)−1

)
dz =

−i
2π

∫
Γk

(T − z)−1S(G− z)−1dz

and hence ∣∣((Pk −Qk)u
∣∣v)∣∣ ≤ 1

2π

∫
Γk

‖S(G− z)−1u‖‖(T − z)−∗v‖ |dz|.

Then, with the help of

G− z =
(
I − S(T − z)−1

)
(T − z)

=⇒ (T − z)−1 = (G− z)−1
(
I − S(T − z)−1

)
=⇒ (T − z)−∗ =

(
I − S(T − z)−1

)∗ (G− z)−∗

=⇒ ‖(T − z)−∗v‖ ≤
(
1 + ‖S(T − z)−1‖︸ ︷︷ ︸

≤M0

)
‖(G− z)−∗v‖

and ‖(G− z)−∗v‖ = ‖(G− z)−1v‖ (since G is normal), we find

∞∑
k=k0

∣∣((Pk −Qk)u
∣∣v)∣∣ ≤ 1 +M0

2π

∞∑
k=k0

∫
Γk

‖S(G− z)−1u‖‖(G− z)−1v‖ |dz|

≤ 1 +M0

2π

∫
Γ+

+
∫

Γ−

+2
∞∑

k=k0

∫
γk

 ‖S(G− z)−1u‖‖(G− z)−1v‖ |dz|.

Using p-subordination, Lemma 3.3.3, and (for p 6= 0) Hölder’s inequality, we estimate∫
Γ±

‖S(G− z)−1u‖‖(G− z)−1v‖ |dz|

≤
(∫

Γ±

|z|−p‖S(G− z)−1u‖2 |dz|
)1/2(∫

Γ±

|z|p‖(G− z)−1v‖2 |dz|︸ ︷︷ ︸
≤C1‖v‖2

)1/2

,
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∫
Γ±

|z|−p‖S(G− z)−1u‖2 |dz|

≤ b2
∫

Γ±

|z|p(p−2)‖G(G− z)−1u‖2p|z|p(1−p)‖(G− z)−1u‖2(1−p) |dz|

≤ b2
(∫

Γ±

|z|p−2‖G(G− z)−1u‖2 |dz|
)p(∫

Γ±

|z|p‖(G− z)−1u‖2 |dz|
)1−p

≤ b2Cp
2C

1−p
1 ‖u‖2,

which yields∫
Γ±

‖S(G− z)−1u‖‖(G− z)−1v‖ |dz| ≤ b

√
C2−p

1 Cp
2 ‖u‖‖v‖.

In the same way, with Lemma 3.3.4, we see that∑
k

∫
γk

‖S(G− z)−1u‖‖(G− z)−1v‖ |dz|

≤
∑

k

(∫
γk

x−p
k ‖S(G− z)−1u‖2 |dz|

)1/2(∫
γk

xp
k‖(G− z)−1v‖2 |dz|

)1/2

≤

(∑
k

∫
γk

x−p
k ‖S(G− z)−1u‖2 |dz|

)1/2(∑
k

∫
γk

xp
k‖(G− z)−1v‖2 |dz|︸ ︷︷ ︸
≤C′1‖v‖2

)1/2

and∑
k

∫
γk

x−p
k ‖S(G− z)−1u‖2 |dz|

≤ b2
∑

k

∫
γk

x
p(p−2)
k ‖G(G− z)−1u‖2px

p(1−p)
k ‖(G− z)−1u‖2(1−p) |dz|

≤ b2

(∑
k

∫
γk

xp−2
k ‖G(G− z)−1u‖2 |dz|

)p(∑
k

∫
γk

xp
k‖(G− z)−1u‖2 |dz|

)1−p

≤ b2C ′p2 C
′1−p
1 ‖u‖2.

�

We briefly review some facts about the determinant of operators [36, §2.5], see
also [21, Chapter VII], [22, §IV.1] and [24, §III.4.3]. Let A be an operator of finite
rank n in a Hilbert space, i.e. dimR(A) = n. The determinant of I + A is defined
by

det(I +A) = det
(
(I +A)|U

)
(3.15)
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where U is a finite dimensional, A-invariant subspace with U⊥ ⊂ kerA. Such a
subspace U always exists, and the value of the determinant does not depend on the
choice of U .

Lemma 3.3.6 Let A ∈ L(H) with dimR(A) = n. Then

(i) |det(I +A)| ≤ (1 + ‖A‖)n;

(ii) I +A is invertible if and only if det(I +A) 6= 0, and in this case

‖(I +A)−1‖ ≤ (1 + ‖A‖)n

|det(I +A)|
;

(iii) if the operator-valued function B : Ω → L(H) is analytic on a domain Ω ⊂ C,
then z 7→ det(I +AB(z)) is analytic on Ω too.

Sketch of the proof. The first two statements essentially follow from the relations

|det(I + C)| =
m∏

j=1

sj(I + C) and sj(I + C) ≤ 1 + sj(C) ,

where C is an m ×m-matrix and sj(C) denotes the singular values of the matrix.
The third assertion is proved by approximating B(z) in a neighbourhood of a point
z0 by a polynomial

B0 +B1(z − z0) + · · ·+Bk(z − z0)k

and noting that the mapping B 7→ det(I + AB) is uniformly continuous on sets of
the form {B ∈ L(H) | ‖B‖ ≤ c}. �

In the proof of the next proposition, we need an auxiliary result from complex
analysis, cf. [36, Lemma 1.6]:

Lemma 3.3.7 Let U ⊂ C be a bounded, simply connected domain, F ⊂ U compact,
z0 an interior point of F , and η > 0. Then there exists a constant C > 0 such that
the following holds: If a, b ∈ C and f : aU + b → C with f(az0 + b) 6= 0 is
holomorphic and bounded, then there is a set E ⊂ C being the union of finitely
many discs with radii summing up to at most |a|η such that

|f(z)| ≥ |f(az0 + b)|1+C

‖f‖C
aU+b,∞

for all z ∈ (aF + b) \ E.

Proof. A proof for the special case of U and F being discs, z0 = 0, a = 1, b = 0, and
f(0) = 1 can be found in Levin [35, Theorem I.11]. The general form stated here is
obtained from this particular case by means of a conformal mapping. �
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The following proposition permits us to estimate the resolvent of the perturbed
operator even close to its eigenvalues by artificially creating a gap in the spectrum
of G. We denote by N+(r1, r2, G) the sum of the multiplicities of all the eigenvalues
of G in the open interval ]r1, r2[,

N+(r1, r2, G) =
∑

λ∈σp(G)∩ ]r1,r2[

dimL(λ). (3.16)

Proposition 3.3.8 (Markus [36, Lemma 5.6]) Let G be normal with compact
resolvent, σ(G) ∩Ω(2ϕ) ⊂ R≥0 with 0 < ϕ ≤ π/2, S p-subordinate to G with bound
b, 0 ≤ p < 1, and T = G+ S.

Let l > b, 0 ≤ l0 < l− b and η > 0. Then there are constants C0, C1, r0 > 0 such
that for every r ≥ r0 there is a set Er ⊂ C with the following properties:

(i) Er is the union of finitely many discs with radii summing up to at most ηrp.

(ii) For every z ∈ Ω(ϕ) \ Er with |Re z − r| ≤ l0r
p we have

z ∈ %(T ) and ‖(T − z)−1‖ ≤ C0C
m
1

rp
, ‖S(T − z)−1‖ ≤ C0C

m
1

where m = N+(r − lrp, r + lrp, G).

Proof. We choose l1 ∈ ]l0, l − b[ and α, b̃ such that

b < b̃ < α < l − l1.

Let r ≥ r0. We may assume that r − lrp > 0 by choosing r0 large enough. Let
λ1, . . . , λn be the eigenvalues of G in ∆r = ]r−lrp, r+lrp[ , P1, . . . , Pn the orthogonal
projections onto the corresponding eigenspaces, and

Kr =
n∑

j=1

(λj − λ̃j)Pj with λ̃j =

{
r − lrp if λj < r,

r + lrp if λj ≥ r.

Then Gr = G−Kr is a normal operator with σ(Gr)∩Ω(2ϕ) ⊂ R≥0 and ∆r ⊂ %(Gr).
Kr has rank m and satisfies ‖Kr‖ ≤ lrp. Setting P0 = I − P1 − . . .− Pn and noting
that λj/λ̃j ≤ r/(r − lrp) for all j, we have

‖Gu‖2 = ‖GP0u‖2 +
n∑

j=1

λ2
j‖Pju‖2 = ‖GP0u‖2 +

n∑
j=1

λ̃2
j ·
λ2

j

λ̃2
j

‖Pju‖2

≤ ‖GP0u‖2 +
n∑

j=1

λ̃2
j

( r

r − lrp

)2
‖Pju‖2 ≤

( r

r − lrp

)2
‖Gru‖2.
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Since 1− lrp−1 → 1 as r →∞ and b < b̃, we conclude

‖Su‖ ≤ b‖Gu‖p‖u‖1−p ≤ b
( 1

1− lrp−1

)p
‖Gru‖p‖u‖1−p ≤ b̃‖Gru‖p‖u‖1−p,

provided r0 is sufficiently large. Thus S is p-subordinate to Gr with bound less or
equal than b̃.

Next, we want to prove that

|x− r| ≤ l1r
p ⇒ ]x− αxp, x+ αxp[⊂ %(Gr) (3.17)

for r0 sufficiently large. Let |x − r| ≤ l1r
p. Since the function x 7→ x − αxp is

monotonically increasing for large x, we have

x− αxp ≥ r − l1r
p − α

(
r − l1r

p
)p ≥ r − l1r

p − αrp > r − lrp,

r0 large enough. Furthermore

x+ αxp ≤ r + l1r
p + α

(
r + l1r

p
)p ≤ r + lrp,

where the last inequality holds if and only if

α
(
1 + l1r

p−1
)p ≤ l − l1,

and this is in turn satisfied for r0 sufficiently large. We have thus shown

]x− αxp, x+ αxp[⊂ ∆r ⊂ %(Gr).

In order to prove the proposition, we want to apply Lemma 3.3.7. We introduce
the two sets

Ur =
{
x+ iy

∣∣ |x− r| < l1r
p, |y| < 4brp

}
,

Fr =
{
x+ iy

∣∣ |x− r| ≤ l0r
p, |y| ≤ 3brp

}
.

For r0 sufficiently large we have Ur ⊂ Ω(ϕ). Using (3.17), we can apply Lemma 3.3.2
to Gr + S with some ε ∈ ]b̃/α, 1[; we obtain Ur ⊂ %(Gr + S) and, for z ∈ Ur,

dist(z, σ(Gr)) ≥ lrp − l1r
p > αrp

and

‖(Gr + S − z)−1‖ ≤ (1− ε)−1

αrp
, ‖S(Gr + S − z)−1‖ ≤ ε

1− ε
.

We set d(z) = det(I +Kr(Gr + S − z)−1). Then, with Lemma 3.3.6,

|d(z)| ≤
(
1 + ‖Kr‖‖(Gr + S − z)−1‖

)m
≤
(

1 + lrp (1− ε)−1

αrp

)m

=
(

1 +
l(1− ε)−1

α

)m
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on Ur. For z ∈ %(T ) ∩ Ur the identity T − z = (I +Kr(Gr + S − z)−1)(T −Kr − z)
yields

I =
(
I +Kr(Gr + S − z)−1

) (
I −Kr(T − z)−1

)
.

Applying Lemma 3.3.2 (now with α = 2b and ε = 2/3) to the operator T and
zr = r + i · 2brp ∈ Fr, we obtain

zr ∈ %(T ) and ‖(T − zr)−1‖ ≤ 3
2brp

and thus ∣∣∣∣ 1
d(zr)

∣∣∣∣ = ∣∣det
(
I −Kr(T − zr)−1

)∣∣ ≤ (1 +
3l
2b

)m

.

Since Ur, Fr, zr are the images of U1, F1, z1 under the affine linear transformation
z 7→ rp(z− 1) + r and the mapping z 7→ d(z) is analytic, Lemma 3.3.7 is applicable:
There is a constant C > 0 depending only on b, l0, l1 and η such that for every r ≥ r0
there exists a union Er of discs with radii summing up to at most ηrp and

|d(z)| ≥
(

1 +
3l
2b

)−m(1+C)(
1 +

l(1− ε)−1

α

)−mC

for all z ∈ Fr \ Er.

Hence I +Kr(Gr + S − z)−1 is invertible by Lemma 3.3.6. From

T − z =
(
I +Kr(Gr + S − z)−1

)
(Gr + S − z)

we see that z ∈ Fr \ Er implies z ∈ %(T ) and

‖(T − z)−1‖ ≤ ‖(Gr + S − z)−1‖ ·
∥∥(I +Kr(Gr + S − z)−1

)−1∥∥
≤ (1− ε)−1

αrp

(
1 +

3l
2b

)(1+C)m(
1 +

l(1− ε)−1

α

)(1+C)m

≤ C0C
m
1

rp

with appropriate constants C0, C1 depending on b, l0, l1, η only. Accordingly we have

‖S(T − z)−1‖ ≤ ‖S(Gr + S − z)−1‖ ·
∥∥(I +Kr(Gr + S − z)−1

)−1∥∥
≤ ε

1− ε

(
1 +

3l
2b

)(1+C)m(
1 +

l(1− ε)−1

α

)(1+C)m

≤ C0C
m
1 .

Finally, we consider z = x+ iy ∈ Ω(ϕ) with |x− r| ≤ l0r
p and |y| ≥ 3brp. Using

1 + l0r
p−1 → 1 as r →∞, we have

2bxp ≤ 2b (r + l0r
p)p ≤ 3brp ≤ |y|

for r0 sufficiently large. Applying Lemma 3.3.2 (again with α = 2b and ε = 2/3),
we obtain z ∈ %(T ) and

‖(T − z)−1‖ ≤ 3
|y|

≤ 1
brp

≤ C0C
m
1

rp
, ‖S(T − z)−1‖ ≤ 2 ≤ C0C

m
1

for C0 ≥ max{2, b−1} and C1 ≥ 1. �
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Corollary 3.3.9 Let G be normal with compact resolvent, σ(G) ∩ Ω(2ϕ) ⊂ R≥0

with 0 < ϕ ≤ π/2, S p-subordinate to G with bound b, 0 ≤ p < 1, and T = G+ S.
Let l > b. Then there are constants C0, C1, r0 > 0 such that for every r ≥ r0

there exists x ∈ R with the following properties:

(i) |x− r| ≤ (l − b)rp/2;

(ii) z ∈ Ω(ϕ) with Re z = x implies

z ∈ %(T ), ‖(T − z)−1‖ ≤ C0C
m
1

rp
, ‖S(T − z)−1‖ ≤ C0C

m
1 ,

and

dist(z, σ(G)) ≥ l − b

4m
rp

where m = N+(r − lrp, r + lrp, G).

Proof. We apply the previous proposition with l0 = (l − b)/2 and η = l0/2. The
sum of the diameters of the discs in Er is at most 2ηrp = l0r

p, and the interval

∆̃r = [r − l0r
p, r + l0r

p]

is of length 2l0rp and contains at most m eigenvalues of G. If we remove from ∆̃r

the projection of Er onto the real axis and an open interval]
λ− l0

2m
rp, λ+

l0
2m

rp
[

for each λ ∈ σ(G) ∩ ∆̃r, then a non-empty set remains. Consequently, we can find
x ∈ ∆̃r such that the line Re z = x does not intersect Er and we have

dist(x, σ(G)) ≥ l0
2m

rp.

�

Corollary 3.3.10 Let G be normal with compact resolvent, σ(G) ∩ Ω(2ϕ) ⊂ R≥0

with 0 < ϕ ≤ π/2, S p-subordinate to G with bound b, 0 ≤ p < 1, and T = G+ S.
Then for l0, q > 0 there are constants C0, C1, r0 > 0 such that for every r ≥ r0

the following holds: For every z = x+ iy with |x− r| ≤ l0r
p, |y| ≤ 2bxp there exists

q1 ∈ ]0, q[ such that

|w − z| = q1r
p =⇒ w ∈ %(T ), ‖(T − w)−1‖ ≤ C0C

m
1

rp
,

where m = N+(r − lrp, r + lrp, G) with l = b+ 2(l0 + q).
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Proof. We use Proposition 3.3.8 with l = b + 2(l0 + q), l0 + q replacing l0, and
η = q/3. For |w − z| ≤ qrp we have | argw| ≤ ϕ (for r0 large enough) and

|Rew − r| ≤ l0r
p + qrp =

l − b

2
rp.

Now the sum of the diameters of the discs in Er is at most 2ηrp < qrp. Hence there
exists q1 ∈]0, q[ such that w 6∈ Er for |w − z| = q1r

p and the claim is proved. �

Under certain assumptions on the distribution of the eigenvalues of G on the
positive real axis, we now derive estimates for the Riesz projections associated with
a sequence of regions that cover the interior of the parabola from Figure 3.4.

Proposition 3.3.11 Let G be normal with compact resolvent, σ(G)∩Ω(2ϕ) ⊂ R≥0

with 0 < ϕ ≤ π/2, S p-subordinate to G with bound b, 0 ≤ p < 1, and T = G+ S.
Assume that there is a sequence (rk)k≥1 of positive numbers tending monotoni-

cally to infinity and some l > b, m ∈ N such that

N+(rk − lrp
k, rk + lrp

k, G) ≤ m for all k ≥ 1. (3.18)

Then there are constants C, r0 > 0, α > b, and a sequence (xk)k≥1 in R≥0 tending
monotonically to infinity such that the following holds:

(i) z ∈ Ω(ϕ) with Re z = xk implies z ∈ %(T ), ‖(T − z)−1‖ ≤ C.

(ii) The contours Γ±, γk from (3.13) and (3.14) satisfy Γ±, γk ⊂ %(T ).

(iii) If Pk are the Riesz projections of T associated with the regions enclosed by
γk,Γ−, γk+1,Γ+, then

∞∑
k=1

|(Pku|v)| ≤ C‖u‖‖v‖ for all u, v ∈ H.

Proof. Applying Corollary 3.3.9, we see that for every k ≥ k0, k0 appropriate, there
exists xk with the following properties: We have

|xk − rk| ≤
l − b

2
rp
k, dist(xk, σ(G)) ≥ l − b

4m
rp
k,

and z ∈ Ω(ϕ) with Re z = xk implies

z ∈ %(T ), ‖(T − z)−1‖ ≤ C0C
m
1

rp
k

, ‖S(T − z)−1‖ ≤ C0C
m
1 .

Then xk/rk → 1 as k →∞ and we obtain

dist(xk, σ(G)) ≥ c2x
p
k for k ≥ k0
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x

Γ+

Γ−

r0

γ−k
γ+

k
γ−k+1

γ+
k+1

%(T )

[rk − βrp
k, rk + βrp

k]

σ(G)

Figure 3.5: A large gap in σ(G) yields a gap in σ(T ).

with c2 > 0 and k0 appropriately chosen. Since xk → ∞, for every k1 there exists
k2 > k1 such that

x1−p
k2

− x1−p
k1

≥ 1.

Passing to an appropriate subsequence, we can thus assume that

x1−p
k+1 − x1−p

k ≥ 1 for all k ∈ N,

which yields
x1−p

n − x1−p
k ≥ n− k for n > k.

Now an application of Lemma 3.3.5 with α = 2b and the sequence (xk)k≥k0 , k0 large
enough, completes the proof. �

If the spectrum of G has sufficiently large gaps on R≥0, then the spectrum of T
has corresponding gaps (cf. Figure 3.5) and the associated Riesz projections Pk and
Qk of T and G, respectively, satisfy ‖Pk−Qk‖ < 1; their ranges thus have the same
dimension by Lemma 3.3.14.

Proposition 3.3.12 Let G be normal with compact resolvent, σ(G)∩Ω(2ϕ) ⊂ R≥0

with 0 < ϕ ≤ π/2, S p-subordinate to G with bound b, 0 ≤ p < 1, and T = G+ S.
Assume that there is a sequence (rk)k≥1 of nonnegative numbers tending mono-

tonically to infinity and a constant β ≥ 0 such that

σ(G) ∩R≥0 ⊂
⋃
k≥1

[rk − βrp
k, rk + βrp

k] (3.19)

and
rk + (β + δb)rp

k ≤ rk+1 − (β + δb)rp
k+1 (3.20)
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for almost all k with

δ >
4 + π

2π
+

√
2β
πb

+
(4 + π

2π

)2
. (3.21)

Then for α > b and β + α < l ≤ β + δb there are constants C, r0 > 0, k0 ≥ 1 such
that the following holds:

(i) The contours Γ± from (3.13) and

γ±k =
{
x+ iy

∣∣x = rk ± lrp
k, |y| ≤ αxp

}
with k ≥ k0

as well as the regions enclosed by γ+
k , γ

−
k+1,Γ+,Γ− belong to %(T ), compare

Figure 3.5.

(ii) z ∈ Ω(ϕ) with Re z = rk + lrp
k, k ≥ k0, implies ‖(T − z)−1‖ ≤ C.

(iii) If Pk and Qk are the Riesz projections of T and G, respectively, associated
with the region enclosed by γ−k , γ

+
k ,Γ+,Γ−, then

∞∑
k=k0

|(Pku|v)| ≤ C‖u‖‖v‖ for all u, v ∈ H

and
‖Pk −Qk‖ < 1 for k ≥ k0.

Proof. We set s±k = rk ± lrp
k. Then assumption (3.20) implies

rk ≤ s+k ≤ s−k+1 ≤ rk+1.

Consider s ∈ [s+k , s
−
k+1] with k ≥ k0. Then

s+ αsp ≤ s−k+1 + αrp
k+1 = rk+1 − (l − α)rp

k+1 ≤ rk+1 − βrp
k+1.

Furthermore we have
s− αsp ≥ s+k − α(s+k )p

for k0 large enough, since the left-hand side is monotonically increasing in s for s
sufficiently large. In addition, the equivalent inequalities

s+k − α(s+k )p ≥ rk + βrp
k ⇔ lrp

k − α(rk + lrp
k)

p ≥ βrp
k ⇔ l − β ≥ α(1 + lrp−1

k )p

hold for k0 sufficiently large since 1 + lrp−1
k → 1. Using the assumption on the

spectrum of G, we have thus proved that, for k ≥ k0,

s ∈ [s+k , s
−
k+1] ⇒ ]s− αsp, s+ αsp[⊂ %(G).
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With r0 and k0 appropriately chosen, Lemma 3.3.2 implies that the region enclosed
by γ+

k , γ−k+1, Γ+, and Γ− as well as the contours itself belong to %(T ) for k ≥ k0.
Moreover, ‖(T − z)−1‖ and ‖S(T − z)−1‖ are uniformly bounded for z ∈ Ω(ϕ) with
Re z = rk + lrp

k, k ≥ k0. We also have dist(s+k , G) ≥ α(s+k )p and

s+k+1 − s+k = rk+1 − rk + l(rp
k+1 − rp

k) ≥ (β + δb)(rp
k+1 + rp

k) + l(rp
k+1 − rp

k) ≥ 2lrp
k+1.

The mean value theorem then yields

(s+k+1)
1−p − (s+k )1−p ≥ (1− p)(s+k+1)

−p(s+k+1 − s+k ) ≥
2l(1− p)rp

k+1(
rk+1 + lrp

k+1

)p ,
i.e., (s+k+1)

1−p−(s+k )1−p ≥ l(1−p) for k ≥ k0, k0 sufficiently large. We can thus apply
Lemma 3.3.5 with xk = s+k to get the estimate for the sum of the Riesz projections.

To prove the final claim, we consider c > 1, choose ε ∈ ]0, 1[ such that

4 + π

2π
+

√
2β
πb

+
(4 + π

2π

)2
<

1
ε
< δ, (3.22)

and set
α = c

b

ε
and l = β + cα.

Then β + α < l ≤ β + δb for c sufficiently near to 1. Let Γk be the positively
oriented boundary contour of the region enclosed by γ−k , γ+

k , Γ+ and Γ−. By the
above calculations and Lemma 3.3.2 we have

Γk ⊂ %(G) ∩ %(T ), ‖S(G− z)−1‖ ≤ ε, ‖(T − z)−1‖ ≤ (1− ε)−1

dist(z, σ(G))

for z ∈ Γk, k ≥ k0, and thus

‖Pk −Qk‖ =
1
2π

∥∥∥∫
Γk

(
(T − z)−1 − (G− z)−1

)
dz
∥∥∥

≤ 1
2π

∫
Γk

‖(T − z)−1‖‖S(G− z)−1‖ |dz| ≤ ε

2π(1− ε)

∫
Γk

|dz|
dist(z, σ(G))

.

For the integral over γ±k we find∫
γ±k

|dz|
dist(z, σ(G))

≤
2α(s±k )p

α(s±k )p
= 2.

For r0 sufficiently large, the differential form dz can be estimated on Γ± by

|dz| ≤
√

1 + (αpxp−1)2 dx ≤ c dx ;
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hence ∫
Γ±∩Γk

|dz|
dist(z, σ(G))

≤
∫ s+

k

s−k

c dx

αxp
≤
c(s+k − s−k )

αsp
−

=
2clrp

k

α
(
rk − lrp

k

)p =
2cl

α
(
1− lrp−1

k

)p ≤ 2c2
l

α

for k0 sufficiently large. Putting it all together, we obtain

‖Pk −Qk‖ ≤
ε

2π(1− ε)

(
4 + 4c2

l

α

)
=

2ε
π(1− ε)

(
1 + c2

β + cα

α

)
=

2ε
π(1− ε)

(
1 + c

β + c2bε−1

bε−1

)
=

2ε
π(1− ε)

(
1 + c3 + cε

β

b

)
.

Now (3.22) yields

ε <

(
−4 + π

2π
+

√
2β
πb

+
(4 + π

2π

)2
)
πb

2β
= − 4 + π

4βb−1
+
√

π

2βb−1
+
( 4 + π

4βb−1

)2

⇒
(
ε+

4 + π

4βb−1

)2
<

π

2βb−1
+
( 4 + π

4βb−1

)2

⇒ ε2 +
4 + π

2βb−1
ε <

π

2βb−1
⇒ 2β

b
ε2 + (4 + π)ε < π

⇒ 2β
b
ε2 + 4ε < π(1− ε) ⇒ 2ε

π(1− ε)

(
2 + ε

β

b

)
< 1.

With c sufficiently near to 1 this implies

2ε
π(1− ε)

(
1 + c3 + cε

β

b

)
< 1

and thus ‖Pk −Qk‖ < 1. �

Remark 3.3.13 The constant in (3.21) is not optimal. Better estimates for the
resolvent integrals along γ±k and Γ± should yield a smaller constant.

If instead of (3.20) we only assume that

rk + lrp
k ≤ rk+1 − lrp

k+1 for some l > β + α,

then all assertions with the exception of ‖Pk −Qk‖ < 1 still hold. y

The next lemma is well known, see for example [21, Lemma II.4.3], [3, §34] and
[15, Lemma 1.5.5].
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Lemma 3.3.14 Suppose that P and Q are two projections in a Banach space V
with ‖P −Q‖ < 1. Then V = kerQ⊕R(P ), and Q induces an isomorphism

Q|R(P ) : R(P )
∼=−→ R(Q).

Proof. Let u ∈ kerQ∩R(P ). Then ‖u‖ = ‖(P −Q)u‖; as ‖P −Q‖ < 1, this is only
possible for u = 0. Hence kerQ ∩R(P ) = {0} and Q|R(P ) is injective. A Neumann
series argument shows that I − Q + P is an isomorphism in V . Consequently, for
every v ∈ V there exists u ∈ V such that

v = (I −Q+ P )u = (I −Q)u+ Pu.

This implies V = R(I − Q) +R(P ) = kerQ +R(P ). Moreover, if v ∈ R(Q) then
v = Qv = QPu. Hence Q|R(P ) maps onto R(Q) and the proof is complete. �

3.4 Perturbations of spectral l2-decompositions

In this section we proof two general perturbation theorems for the non-normal oper-
ator T = G+S where G is normal with compact resolvent and S is p-subordinate to
G with p < 1. In Theorem 3.4.4 (and Proposition 3.4.1), which is a reformulation of
a result of Markus and Matsaev [37], [36, Theorem 6.12], we assume that the eigen-
values of G lie on a finite number of rays from the origin and that the density of the
eigenvalues has an appropriate asymptotic behaviour depending on p. Then T has a
compact resolvent, almost all of its eigenvalues lie inside parabolas surrounding the
rays, and T admits a finitely spectral l2-decomposition.

In Theorem 3.4.7 we strengthen the assumptions on G by requiring that there
are sequences of sufficiently large gaps in the spectrum on the rays. This allows
us to control the multiplicities of the eigenvalues of T and, under an additional
assumption, to obtain an l2-decomposition of root subspaces; T is thus a spectral
operator (cf. Theorem 2.3.17). This additional assumption is satisfied for example if
almost all eigenvalues of G are simple, which reestablishes results due to Kato [24,
Theorem V.4.15a], Dunford and Schwartz [20, Theorem XIX.2.7], and Clark [11].
Moreover, the additional assumption also holds in cases where the eigenvalues of G
have multiplicity greater than one, provided we have a priori knowledge about the
separation of the eigenvalues of T ; see Theorem 4.4.5 for an application.

Both theorems also hold under weaker assumptions: It suffices for G to be an
operator with compact resolvent and a Riesz basis of Jordan chains whose eigen-
values lie inside certain parabolas around rays from the origin, see Remark 3.4.14.
With Proposition 3.4.5 we apply the theory to diagonally dominant block operator
matrices.

We start by investigating how the shape of the spectrum changes under a p-
subordinate perturbation. Note that we do not need the compactness of the resolvent
of G here.
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σ(G) σ(T )

eiθjx

eiθj (x+ iαxp)

eiθj (x− iαxp)

r0

θj

Figure 3.6: The spectrum after a p-subordinate perturbation

Proposition 3.4.1 Let G be a normal operator on a Hilbert space whose spectrum
lies on finitely many rays eiθjR≥0 with 0 ≤ θj < 2π, j = 1, . . . , n. Let T = G + S
where S is p-subordinate to G with bound b and 0 ≤ p < 1. Then for every α > b
there exists r0 > 0 such that

σ(T ) ⊂ Br0(0) ∪
n⋃

j=1

{
eiθj (x+ iy)

∣∣x ≥ 0, |y| ≤ αxp
}
, (3.23)

cf. Figure 3.6. If G has compact resolvent, then so has T .

Proof. Without loss of generality, we assume θ1 < θ2 < . . . < θn and set θ0 = θn−2π,
θn+1 = θ0 + 2π. Then we may, after a rotation by θj , apply Lemma 3.3.2 to each
sector Ω(θj−1, θj+1). More precisely, we apply the lemma to the operators e−iθjG,
e−iθjS, e−iθjT with ϕ+ = (θj+1 − θj)/2, ϕ− = (θj−1 − θj)/2, and some suitable ε.
For z ∈ σ(T ) this yields the implication

θj−1 + θj

2
≤ arg z ≤ θj + θj+1

2
, |z| ≥ r0

=⇒ z ∈ {eiθj (x+ iy)
∣∣x ≥ 0, |y| ≤ αxp

}
with some r0 ≥ 0 for each j = 1, . . . , n. If G has compact resolvent, the identity

(T − z)−1 = (G− z)−1
(
I + S(G− z)−1

)−1 for z ∈ %(G) ∩ %(T )

implies that T has compact resolvent too. �
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The statement about the asymptotic shape of the spectrum of T can be refined
as follows:

Remark 3.4.2 To obtain a condition for z ∈ %(T ), we consider without loss of
generality the case σ(G)∩Ω(2ϕ) ⊂ R≥0, 0 < ϕ ≤ π/2, and z = x+ iy ∈ Ω(ϕ). Then
dist(z, σ(G)) ≥ |y| and, in view of Lemma 3.3.1, b(1+ |z|/|y|)p|y|p−1 < 1 is sufficient
to get z ∈ %(T ). For p > 0 this leads to the condition

x <

(
|y|
b

)1/p√
1− 2b1/p|y|1−1/p,

which is asymptotically better than x < (|y|/α)1/p since 1 − 2b1/p|y|1−1/p → 1 as
|y| → ∞. For p = 0 we obtain the optimal condition b < |y|.

For p > 0, the estimates of Markus [36, Lemma 5.2] lead to asymptotics which
are even slightly better. Also note that simply taking the limit α → b in Proposi-
tion 3.4.1 is not possible since then also r0 →∞. y

Recall that we denote by N+(r1, r2, G) the sum of the multiplicities of the eigen-
values of G in the interval ]r1, r2[, see (3.16). Similarly, we write

N(r,G) =
∑

λ∈σp(G)∩Br(0)

dimL(λ) (3.24)

for the sum of the multiplicities of all the eigenvalues λ with |λ| ≤ r and

N(K,G) =
∑

λ∈σp(G)∩K

dimL(λ) for every set K ⊂ C. (3.25)

Lemma 3.4.3 If n : R≥0 → R≥0 is a monotonically increasing function with

lim inf
r→∞

n(r)rp−1 <∞ for some 0 ≤ p < 1,

then
lim inf
r→∞

(
n(r + lrp)− n(r − lrp)

)
<∞ for every l > 0.

Proof. Consider the case p = 0 first. If

lim inf
r→∞

(
n(r + l)− n(r − l)

)
= ∞ for some l > 0,

then for every a > 0 there exists r0 ≥ 0 such that n(r+2l)−n(r) ≥ a for all r ≥ r0.
This implies n(r0 + 2kl)−n(r0) ≥ ka for k ∈ N. Since for r ≥ r0 there exists k ∈ N
such that r − r0 ∈ [2kl, 2(k + 1)l], we deduce

n(r)
r

≥ n(r0 + 2kl)
r0 + 2(k + 1)l

≥ ka

r0 + 2(k + 1)l
→ a

2l
as k →∞, i.e. r →∞.
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Consequently lim infr→∞ n(r)r−1 = ∞ since a was arbitrary.
For the case p > 0, we set m(r) = n(r1/(1−p)) so that the assumption now reads

lim infr→∞m(r)r−1 < ∞; therefore lim infr→∞
(
m(r + 2l) − m(r)

)
< ∞ for every

l > 0. Going back to n, this yields

lim inf
r→∞

(
n
(
(r1−p + l)

1
1−p
)
− n(r)

)
<∞ for every l > 0.

Since 1/(1− p) ≥ 1, we have(
r1−p + l

) 1
1−p = r

(
1 + lrp−1

) 1
1−p ≥ r

(
1 + lrp−1

)
= r + lrp

and hence
lim inf
r→∞

(
n(r + lrp)− n(r)

)
<∞ for every l > 0.

Now we set s = r − lrp. Then r + lrp = s + 2lrp ≤ s + 3lsp for r sufficiently large
and thus

n(r + lrp)− n(r − lrp) ≤ n(s+ 3lsp)− n(s),

which proves the claim. �

We can now state the first perturbation theorem due to Markus and Matsaev [37],
[36, Theorem 6.12].

Theorem 3.4.4 (Markus-Matsaev) Let G be a normal operator with compact
resolvent whose spectrum lies on a finite number of rays from the origin. Let S be
p-subordinate to G with 0 ≤ p < 1. If

lim inf
r→∞

N(r,G)
r1−p

<∞, (3.26)

then T = G+ S admits a finitely spectral l2-decomposition.

Proof. Let eiθjR≥0 with 0 ≤ θ1 < . . . < θn < 2π be the rays containing the eigenval-
ues of G and let S be p-subordinate to G with bound b. From Proposition 3.4.1 we
know that T has compact resolvent and that almost all of its eigenvalues lie inside
sectors of the form

Ωj =
{
z ∈ C

∣∣ | arg z − θj | < ψj

}
with 0 < ψj ≤

π

4
,

where the ψj can be chosen such that these sectors are disjoint. Lemma 3.3.2 shows
that ‖(T − z)−1‖ is uniformly bounded for z 6∈ Ω1 ∪ . . . ∪ Ωn, |z| ≥ r0. Moreover,
using the assumption on N(r,G) and the previous lemma, for each sector Ωj there is
a sequence (rjk)k≥1 of positive numbers tending monotonically to infinity such that

sup
k
N+(rjk − 2brp

jk, rjk + 2brp
jk, e

−iθjG) <∞.
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From Proposition 3.3.11 we thus obtain a corresponding sequence (xjk)k≥1 such that
‖(T − z)−1‖ is uniformly bounded for z ∈ Ωj , Re(e−iθjz) = xjk. Let P be the Riesz
projection associated with the set of those finitely many eigenvalues of T which are
not contained in the sectors Ωj . We can then apply Proposition 3.1.3 to the operator
T |R(I−P ) and conclude that the system of root subspaces of T is dense in H.

Furthermore, if (Pjk)k≥1 are the Riesz projections from Proposition 3.3.11 cor-
responding to the eigenvalues λ ∈ Ωj of T with Re(e−iθjλ) > xj1 and P0 is the Riesz
projection for the (finitely many) remaining ones, then

|(P0u|v)|+
n∑

j=1

∞∑
k=1

|(Pjku|v)| ≤ C‖u‖‖v‖

with some constant C ≥ 0. Now Proposition 2.2.7 shows that the family of projec-
tions P0, (Pjk)j,k generates an l2-decomposition and the proof is complete in view
of Proposition 2.3.8 and Definition 2.3.13. �

We apply Theorem 3.4.4 to a class of diagonally dominant block operator matri-
ces. Let V1, V2 be Banach spaces and consider operators A(V1 → V1), B(V2 → V1),
C(V1 → V2) and D(V2 → V2). Then the matrix

T =
(
A B
C D

)
(3.27)

is called a block operator matrix on V1×V2. It induces an operator on V1×V2 which
is also denoted by T :

D(T ) = (D(A) ∩ D(C))× (D(B) ∩ D(D)),

T

(
u
v

)
=
(
Au+Bv
Cu+Dv

)
for

(
u
v

)
∈ D(T ).

An arbitrary operator T (V1×V2 → V1×V2) can be represented by a block operator
matrix if and only if its domain of definition is a Cartesian product D(T ) = W1×W2

with Wj ⊂ Vj . The representing matrix is in general not unique. For example, the
operator A can be replaced by any extension of A|D(A)∩D(C) without altering the
operator induced by the matrix. Also note that if A, B, C and D are densely
defined, this does not imply that T is densely defined too. For many results about
the spectral theory of block operator matrices we refer the reader to the monograph
of Tretter [49].

The concept of a diagonally dominant block operator matrix was introduced by
Tretter [48]: The matrix from (3.27) with closable operators A, B, C, D is called
diagonally dominant if C is relatively bounded with respect to A and B is relatively
bounded with respect to D.
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Proposition 3.4.5 Let A(H1 → H1) and D(H2 → H2) be normal operators with
compact resolvent on Hilbert spaces such that the spectra of A and D lie on finitely
many rays from the origin and

lim inf
r→∞

N(r,A)
r1−p

<∞, lim inf
r→∞

N(r,D)
r1−p

<∞

with 0 ≤ p < 1. Suppose that the operators C(H1 → H2) and B(H2 → H1) are
p-subordinate1 to A and D, respectively,

‖Cu‖ ≤ b‖u‖1−p‖Au‖p for u ∈ D(A) ⊂ D(C),

‖Bv‖ ≤ b‖v‖1−p‖Dv‖p for v ∈ D(D) ⊂ D(B).

Then the block operator matrix T from (3.27) has a compact resolvent, admits a
finitely spectral l2-decomposition, and for every α > b there is a constant r0 ≥ 0
such that

σ(T ) ⊂ Br0(0) ∪
n⋃

j=1

{
eiθj (x+ iy)

∣∣x ≥ 0, |y| ≤ αxp
}
.

Here θ1, . . . , θn with 0 ≤ θj < 2π are the angles of the rays on which the spectra of
A and D lie.

Proof. We decompose T as

T = G+ S with G =
(
A 0
0 D

)
, S =

(
0 B
C 0

)
and want to apply Theorem 3.4.4 to this decomposition. First, it is clear from the
assumptions on A and D that G is normal with compact resolvent. For its spectrum
we have

σ(G) = σ(A) ∪ σ(D) and N(r,G) = N(r,A) +N(r,D).

In particular, the spectrum of G lies on finitely many rays from the origin.
As a second step, we show that S is p-subordinate toG. Using Hölder’s inequality

and the p-subordination of C to A and B to D, we find∥∥∥S (u
v

)∥∥∥2
= ‖Bv‖2 + ‖Cu‖2 ≤ b2‖v‖2(1−p)‖Dv‖2p + b2‖u‖2(1−p)‖Au‖2p

≤ b2
(
‖u‖2 + ‖v‖2

)1−p (‖Au‖2 + ‖Dv‖2
)p

for u ∈ D(A), v ∈ D(D). Consequently

‖Sw‖ ≤ b‖w‖1−p‖Gw‖p for w ∈ D(G) = D(A)×D(D).
1This notion of p-subordination is more general than the one from Definition 3.2.1, since the

operators B and C map from one Hilbert space into a (possibly) different one.
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So all the conditions of Theorem 3.4.4 are fulfilled and the existence of the finitely
spectral l2-decomposition follows. Proposition 3.4.1 yields the compactness of the
resolvent of T and the assertion about the shape of its spectrum. �

Lemma 3.4.6 Consider a sequence (rk)k∈N of positive numbers satisfying

rk+1 − rk ≥ 2arp
k

with a > 0 and 0 ≤ p < 1. Then for l > 0 there exists r0 > 0 such that r ≥ r0 with

r − lrp ≤ rk < rk+1 < . . . < rk+n ≤ r + lrp

implies n ≤ 2l/a.

Proof. By assumption on the sequence we have

rk+n − rk ≥ 2narp
k, i.e. n ≤ rk+n − rk

2arp
k

.

Hence for r as in the assertion,

n ≤ r + lrp − (r − lrp)
2a
(
r − lrp

)p =
l

a
(
1− lrp−1

)p ≤ 2l
a
,

provided r0 is large enough. �

Strengthening the assumptions on the spectrum of G, we obtain our second per-
turbation theorem. It extends results due to Kato [24, Theorem V.4.15a], Dunford
and Schwartz [20, Theorem XIX.2.7], and Clark [11] since the case of multiple eigen-
values of G and clusters of eigenvalues is handled here too. Note that in [20] and [11],
instead of the p-subordination of S to G the stronger assumption of the boundedness
of SG−p is made, compare Remark 3.2.5.

Theorem 3.4.7 Let G(H → H) be a normal operator with compact resolvent and
S(H → H) p-subordinate to G with bound b and 0 ≤ p < 1. Suppose that the
spectrum of G lies on certain sequences of line segments on rays from the origin,

σ(G) ⊂
n⋃

j=1

⋃
k≥1

Ljk, Ljk =
{
eiθjx

∣∣x ≥ 0, |x− rjk| ≤ βrp
jk

}
, (3.28)

where β ≥ 0, 0 ≤ θ1 < . . . < θn < 2π, and (rjk)k≥1 are monotonically increasing
sequences of nonnegative numbers such that

rjk + (β + δb)rp
jk ≤ rj,k+1 − (β + δb)rp

j,k+1 (3.29)

for almost all k, and δ is such that
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θj Ljk

Kjk

Lj,k+1

Kj,k+1

Figure 3.7: The situation of Theorem 3.4.7

δ >
4 + π

2π
+

√
2β
πb

+
(4 + π

2π

)2
. (3.30)

Then T = G+S has compact resolvent; for every α ∈ ]b, δb] almost all eigenvalues
of T lie inside the regions

Kjk =
{
eiθj (x+ iy)

∣∣x ≥ 0, |x− rjk| ≤ (β + α)rp
jk, |y| ≤ αxp

}
,

j = 1, . . . , n, k ≥ 1 (cf. Figure 3.7); the spectral subspaces corresponding to the Kjk

together with the subspace corresponding to σ(T ) \
⋃

j,k Kjk form a finitely spectral
l2-decomposition for T ; and we have

N(Ljk, G) = N(Kjk, T ) for almost all pairs (j, k).

Moreover, if there are constants m, q > 0 such that for almost all pairs (j, k) the
assertions

(i) N(Ljk, G) ≤ m and

(ii) λ1, λ2 ∈ σ(T ) ∩Kjk, λ1 6= λ2 ⇒ |λ1 − λ2| > qrp
jk

hold, then the root subspaces of T form an l2-decomposition of H.

Proof. We apply Propositions 3.4.1 and, for each ray, 3.3.12 with α replaced by
α̃ = (α + b)/2 and l = β + α. This shows that T has compact resolvent and that
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almost all eigenvalues of T lie inside regions{
eiθj (x+ iy)

∣∣x ≥ 0, |x− rjk| < lrp
jk, |y| < α̃xp

}
⊂ Kjk.

As in the proof of Theorem 3.4.4 we have that ‖(T − z)−1‖ is uniformly bounded
outside certain disjoint sectors Ωj around the rays for |z| large enough. For each
ray, Proposition 3.3.12 yields a sequence (xjk)k∈N tending monotonically to infinity
such that ‖(T − z)−1‖ is bounded for z ∈ Ωj , Re(e−iθjz) = xjk. Consequently,
Proposition 3.1.3 implies that the system of root subspaces of T is dense in H.
Moreover, we have

|(P0u|v)|+
n∑

j=1

∞∑
k=1

|(Pjku|v)| ≤ C‖u‖‖v‖

for some C ≥ 0 where Pjk is the Riesz projection associated with Kjk and P0 the
one associated with σ(T ) \

⋃
jk Kjk; Propositions 2.2.7 and 2.3.8 yield the finitely

spectral l2-decomposition. Finally, if Qjk is the spectral projection of G associated
with Ljk, then ‖Pjk −Qjk‖ < 1 and Lemma 3.3.14 implies the statement about the
equality of the sums of the eigenvalue multiplicities.

Now suppose that with m, q > 0 the additional assumptions (i) and (ii) hold
for almost all pairs (j, k). We aim to show that the root subspaces corresponding
to the eigenvalues of T in Kjk form an l2-decomposition of R(Pjk) with constant c
independent of (j, k). Without loss of generality we may assume

θj = 0, q ≤ b, and α ≤ min{2, δ − 1}b.

We want to apply Corollary 3.3.10 with l0 = β + α and set l accordingly. Due to
the previous lemma, the number of elements rjk in the interval [r − lrp, r + lrp] is
at most 2l/(β + δb) for r sufficiently large. Hence there is a constant m0 such that

N+(r − lrp, r + lrp, G) ≤ m0 for r sufficiently large.

Let λ be an eigenvalue of T in Kjk. By Corollary 3.3.10 there exists q1 ∈ ]0, q[ such
that the points w on the circle around λ with radius q1r

p
jk satisfy ‖(T − w)−1‖ ≤

C0C
m0
1 r−p

jk . In addition, the circle lies inside the strip |Re z− rjk| ≤ (β+ δb)rp
jk and

assumption (ii) thus implies that λ is the only possible eigenvalue of T inside that
circle. Therefore, the Riesz projection Pλ for λ satisfies

‖Pλ‖ ≤ 2πq1r
p
jk

C0C
m0
1

rp
jk

≤ 2πqC0C
m0
1 .

If λ1, . . . , λm1 are the eigenvalues of T in Kjk, we have m1 ≤ N(Kjk, T ) ≤ m and
conclude

m1∑
s=1

|(Pλsu|v)| ≤ 2πmqC0C
m0
1 ‖u‖‖v‖.
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According to Proposition 2.2.7, the subspaces R(Pλs), s = 1, . . . ,m1, form an l2-
decomposition of R(Pjk) with constant c independent of k. This is true for each ray,
and hence an application of Lemma 2.1.10 shows that the root subspaces of T form
an l2-decomposition. �

Remark 3.4.8 If almost all eigenvalues of G are simple and almost all line segments
Ljk contain one eigenvalue only, then Theorem 3.4.7 yields a Riesz basis of eigen-
vectors and finitely many Jordan chains for T . Indeed in this case N(Kjk, T ) = 1
for almost pairs (j, k). Hence, almost all subspaces of the finitely spectral l2-decom-
position for T are one-dimensional and Lemma 2.3.15 implies that T has a Riesz
basis of eigenvectors and finitely many Jordan chains. y

The next lemma implies that the spectral conditions in Theorem 3.4.7 are stronger
than those of Theorem 3.4.4 if N(Ljk, G) is bounded. Note that, in contrast to The-
orem 3.4.7, the case of θj1 = θj2 for j1 6= j2 is allowed here.

Lemma 3.4.9 Consider an operator G whose spectrum satisfies

σ(G) ⊂
n⋃

j=1

⋃
k≥1

Ljk, Ljk =
{
eiθjx

∣∣x ≥ 0, |x− rjk| ≤ ajr
p
jk

}
,

rjk + ajr
p
jk ≤ rj,k+1 − ajr

p
j,k+1, N(Ljk, G) ≤ m,

with 0 ≤ p < 1, m > 0, aj > 0, 0 ≤ θj < 2π, j = 1, . . . , n, and sequences of positive
numbers (rjk)k≥1. Then we have

sup
r≥1

N(r,G)
r1−p

<∞.

Proof. It suffices to consider the case n = 1, θ1 = 0. We write rk, Lk, a instead of
r1k, L1k, a1, choose b ∈ ]0, 2(1− p)a[, and introduce the auxiliary sequence

sk(r) = (r1−p + kb)
1

1−p , k ∈ N, r > 0.

Then we have the chain of equivalences

r + arp ≥ s1(r)− as1(r)p

⇔ r + arp ≥ (r1−p + b)
1

1−p − a(r1−p + b)
p

1−p

⇔ arp
(
(1 + brp−1)

p
1−p + 1

)
≥ r
(
(1 + brp−1)

1
1−p − 1

)
⇔ arp

(
1 + (1 + brp−1)

−p
1−p
)
≥ r
(
1 + brp−1 − (1 + brp−1)

−p
1−p
)

⇔ a
(
1 + (1 + brp−1)

−p
1−p
)
≥ b+

1− (1 + brp−1)
−p
1−p

rp−1
. (3.31)
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L’Hospital’s theorem implies

lim
r→∞

1− (1 + brp−1)
−p
1−p

rp−1
= lim

r→∞

p
1−p(1 + brp−1)

−1
1−p b(p− 1)rp−2

(p− 1)rp−2
=

p

1− p
b.

Hence, the right-hand side of (3.31) converges to b/(1− p) while the left-hand side
tends to 2a. Consequently (3.31) holds for r sufficiently large and we obtain

s1(rn)− as1(rn)p ≤ rn + arp
n ≤ rn+1 − arp

n+1

for large n. Since r 7→ r − arp is strictly increasing for large r, we conclude that
s1(rn) ≤ rn+1 for large n. Now we use induction with respect to k to show

sk(rn) ≤ rn+k for all k ∈ N, n sufficiently large.

Indeed sk(rn) ≤ rn+k implies

sk+1(rn) =
(
r1−p
n + (k + 1)b

) 1
1−p =

(
sk(rn)1−p + b

) 1
1−p

≤
(
r1−p
n+k + b

) 1
1−p = s1(rn+k) ≤ rn+k+1.

Therefore the interval [0, sk(rn)] intersects at most with the line segments up to
Ln+k. Now for every r ≥ s1(rn) there exists k ∈ N such that sk(rn) ≤ r < sk+1(rn)
and we get the estimate

N(r,G)
r1−p

≤ N(sk+1(rn), G)
sk(rn)1−p

≤ (n+ k + 1)m

r1−p
n + kb

,

where the right-hand side is bounded in k. �

The following lemma yields a connection between the asymptotic behaviour of a
sequence of eigenvalues and the maximal possible value of p in Theorem 3.4.7.

Lemma 3.4.10 Consider the sequence of nonnegative numbers given by

rk = ckq + dkk
q−1

with c > 0, q ≥ 1 and a converging sequence (dk)k∈N. Then for a, p ≥ 0 the relation

rk + arp
k ≤ rk+1 − arp

k+1

holds for almost all k ∈ N if

(i) p < 1− 1/q, or

(ii) p = 1− 1/q and a < qc1/q/2.
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Proof. Using Taylor series expansion, we have

(k + 1)q = kq + qkq−1 + f(k)kq−1 and (k + 1)q−1 = kq−1 + g(k)kq−1

with limk→∞ f(k) = limk→∞ g(k) = 0. This yields the equivalences

rk + arp
k ≤ rk+1 − arp

k+1

⇔ a(rp
k + rp

k+1) ≤ rk+1 − rk

⇔ a
((
ckq + dkk

q−1
)p +

(
c(k + 1)q + dk+1(k + 1)q−1

)p)
≤ c
(
(k + 1)q − kq

)
+ dk+1(k + 1)q−1 − dkk

q−1

=
(
cq + cf(k) + dk+1 + dk+1g(k)− dk

)
kq−1

⇔ a

((
c+

dk

k

)p
+
(
c
(
1 +

1
k

)q
+
dk+1

k

(
1 +

1
k

)q−1)p
)

≤
(
cq + dk+1 − dk + cf(k) + dk+1g(k)

)
kq−1−qp.

Now the left-hand side converges to 2acp while the right-hand side tends to


0 for q(1− p) < 1,
cq for q(1− p) = 1,
∞ for q(1− p) > 1

as k →∞.

Therefore the above inequality holds for k sufficiently large if q(1 − p) > 1, i.e.
p < 1− 1/q, or if q(1− p) = 1 and 2acp < cq, i.e. a < c1−pq/2. �

Next we establish sufficient conditions for the spectrum of an operator with com-
pact resolvent and a Riesz basis of Jordan chains to be a p-subordinate perturbation
of a normal operator. As a consequence, the assumptions on G in the previous
theorems can be relaxed.

Lemma 3.4.11 Consider λ ∈ C with |λ| ≥ 2 and the n× n Jordan block

A =

λ 1
. . . . . .

λ

 .

Then we have ‖Ax‖ ≥ |λ|‖x‖/2 for all x ∈ Cn where ‖ · ‖ denotes the Euclidean
norm.
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Proof. We have ‖Ax‖2 = (Ax|Ax) = (A∗Ax|x) and

A∗ =


λ

1
. . .
. . . . . .

1 λ

 , i.e. A∗A =



|λ|2 λ

λ |λ|2 + 1
. . .

λ
. . . . . .
. . . . . . λ

λ |λ|2 + 1


.

Consider x = (α1, . . . , αn) ∈ Cn. Then

‖Ax‖2 = |λ|2
n∑

j=1

|αj |2 +
n∑

j=2

|αj |2 + 2
n−1∑
j=1

Re(αjλαj+1)

≥ |λ|2
n∑

j=1

|αj |2 +
n∑

j=2

|αj |2 − 2|λ|
n−1∑
j=1

|αj | · |αj+1|.

Without loss of generality, we may assume that λ, αj ∈ R≥0. Using λ2 ≥ 4, we
further estimate

λ2
n∑

j=1

α2
j +

n∑
j=2

α2
j − 2λ

n−1∑
j=1

αjαj+1

= 2
∥∥∥
α2

...
αn

− λ

2

 α1
...

αn−1

∥∥∥2
+

1
2
λ2α2

1 +
(1

2
λ2 − 1

)
(α2

2 + · · ·+ α2
n−1) + (λ2 − 1)α2

n

≥
(1

2
λ2 − 1

)
(α2

1 + · · ·+ α2
n) ≥ 1

4
λ2(α2

1 + · · ·+ α2
n),

which completes the proof. �

Lemma 3.4.12 Let G(H → H) be an operator with compact resolvent and a Riesz
basis of Jordan chains. Let λk, k ∈ N, be the eigenvalues of G, c ≥ 0, 0 ≤ p < 1,
and µk ∈ C \ {0}, k ∈ N, such that

|µk − λk| ≤ c|λk|p for almost all k.

Then there is an isomorphism J : H → H, a normal operator G0(H → H) with
compact resolvent, and an operator S0(H → H) p-subordinate to G0 such that

JD(G) = D(G0), JGJ−1 = G0 + S0, σ(G0) = {µk | k ∈ N}.

In addition, J maps the Riesz basis of Jordan chains of G onto an orthonormal
basis of eigenvectors of G0 such that x ∈ L(λk, G) implies Jx ∈ L(µk, G0).
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Proof. Since G has compact resolvent, we have |λk| → ∞. From

|λk| ≤ |µk|+ |µk − λk| ≤ |µk|+ c|λk|p

we obtain (
1− c

|λk|1−p

)
|λk| ≤ |µk|

for almost all k. Therefore |λk|/2 ≤ |µk| for almost all k and |µk| → ∞. We also
have

|µk| ≤ |λk|+ c|λk|p =
(

1 +
c

|λk|1−p

)
|λk|,

which implies |µk| ≤ 2|λk| for almost all k.
Now suppose that (xj)j∈N is a Riesz basis of Jordan chains of G and let J be

an isomorphism such that (Jxj)j∈N is an orthonormal basis. Then (Jxj)j consists
of Jordan chains of JGJ−1, and we may thus assume that J = I and

G =
∞∑

k=0

(λk +Nk)Pk

where Pk are orthogonal projections onto L(λk, G), Nk : R(Pk) → R(Pk) are nilpo-
tent operators, and for every k there is an orthonormal basis of R(Pk) such that
the matrix representing Nk in this basis is block diagonal with blocks of the form(

0 1...
...
0

)
. We decompose G as

G = G0 + S1 + S2 with G0 =
∞∑

k=0

µkPk, S1 =
∞∑

k=0

(λk − µk)Pk, S2 =
∞∑

k=0

NkPk.

Then G0 is a normal operator with compact resolvent, spectrum {µk | k ∈ N}, and
L(λk, G) = R(Pk) ⊂ L(µk, G0). According to Proposition 2.3.3, we have

u ∈ D(G) ⇐⇒
∞∑

k=0

‖(λk +Nk)Pku‖2 <∞

and analogous characterisations hold for the domains of G0 and S1. We have

‖(λk +Nk)Pku‖ ≤ (|λk|+ 1)‖Pku‖ ≤ (|µk|+ c|λk|p + 1)‖Pku‖
≤ (|µk|+ 2pc|µk|p + 1)‖Pku‖ ≤ (2 + 2pc)|µk|‖Pku‖

for almost all k, hence D(G0) ⊂ D(G). Using Lemma 3.4.11, we also have

‖(λk +Nk)Pku‖ ≥
1
2
|λk|‖Pku‖ ≥

1
4
|µk|‖Pku‖



3.4. Perturbations of spectral l2-decompositions 107

for almost all k. This implies D(G) ⊂ D(G0) and hence D(G) = D(G0). Since
µk 6= 0, we have |λk − µk| ≤ C|µk|p for all k ∈ N with some appropriate constant
C. The estimate∥∥∥ ∞∑

k=0

(λk − µk)Pku
∥∥∥2

=
∞∑

k=0

|λk − µk|2‖Pku‖2 ≤
∞∑

k=0

C2|µk|2p‖Pku‖2

≤ C2
( ∞∑

k=0

|µk|2‖Pku‖2
)p( ∞∑

k=0

‖Pku‖2
)1−p

implies that D(G0) ⊂ D(S1) and that S1 is p-subordinate to G0. Since S2 is bounded
and 0 ∈ %(G0), S2 is also p-subordinate to G0 and the proof is complete. �

Proposition 3.4.13 Let G(H → H) be an operator with compact resolvent and
a Riesz basis of Jordan chains. Suppose that 0 ≤ p < 1, α ≥ 0, 0 ≤ θj < 2π,
j = 1, . . . , n, such that either

(i) there exists r0 > 0 with

σ(G) ⊂ Br0(0) ∪
n⋃

j=1

Sj , Sj =
{
eiθj (x+ iy)

∣∣x > 0, |y| ≤ αxp
}
, or

(ii) almost all eigenvalues of G lie inside regions

Kjk =
{
eiθj (x+ iy)

∣∣ r−jk ≤ x ≤ r+jk, |y| ≤ αxp
}
,

j = 1, . . . , n, k ≥ 1, where (r±jk)k≥1 are sequences of positive numbers satisfying

r−jk ≤ r+jk < r−j,k+1.

Then there is an isomorphism J : H → H, a normal operator G0(H → H) with
compact resolvent, and an operator S0(H → H) p-subordinate to G0 such that

JD(G) = D(G0), JGJ−1 = G0 + S0.

In case (i), all eigenvalues of G0 lie on the rays eiθjR≥0 and we have

N(r,G0) = N(r,G) for r ≥ 1.

In case (ii), all eigenvalues of G0 lie on the line segments

Ljk =
{
eiθjx

∣∣ r−jk ≤ x ≤ r+jk
}
,

and N(Ljk, G0) = N(Kjk, G) holds for almost all pairs (j, k).
Moreover, if S(H → H) is p-subordinate to G, then JSJ−1 is p-subordinate to

G0.
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Proof. In order to apply the previous lemma, we need to properly choose the new
eigenvalues (µl)l∈N of G0 given the eigenvalues λl of G. For case (i), almost all λl

lie inside S1 ∪ . . . ∪ Sn. For λl ∈ Sj we set µl = eiθj |λl|. With λl = eiθj (x+ iy), this
implies

|µl − λl| ≤
√
x2 + y2 − x+ |y| = y2√

x2 + y2 + x
+ |y|

≤ y2

2x
+ |y| ≤ α2x2p

2x
+ αxp =

(
α2

2x1−p
+ α

)
xp ≤ 2α|λl|p

for |λl| large enough. If λl 6∈ Sj for every j and λl 6= 0, we set µl = eiθ1 |λl|. If finally
λl = 0, we take µl = eiθ1 . In particular, our choice implies |λl| = |µl| (if λl 6= 0) and
N(r,G0) = N(r,G) for r ≥ 1.

For case (ii), if λl = eiθj (x+ iy) is an eigenvalue in Kjk, we set µl = eiθjx. Then

|µl − λl| = |y| ≤ αxp ≤ α|λl|p.

If λl 6∈ Kjk for every (j, k), we set µl = eiθ1r−11. We thus get N(Ljk, G0) = N(Kjk, G)
whenever (j, k) 6= (1, 1).

Finally suppose that S is p-subordinate to G with bound b. For u ∈ D(G0) we
have

‖JGJ−1u‖ ≤ ‖G0u‖+ ‖S0u‖ ≤ ‖G0u‖+ b0‖u‖1−p‖G0u‖p

≤
(
1 + b0‖G−1

0 ‖1−p
)
‖G0u‖

since 0 ∈ %(G0). Therefore

‖JSJ−1u‖ ≤ ‖J‖‖SJ−1u‖ ≤ b‖J‖‖J−1u‖1−p‖GJ−1u‖p

≤ b‖J‖‖J−1‖ · ‖u‖1−p‖JGJ−1u‖p

≤ b‖J‖‖J−1‖
(
1 + b0‖G−1

0 ‖1−p
)p‖u‖1−p‖G0u‖p.

�

Remark 3.4.14 Let G and S satisfy the assumptions of the previous proposition
and let T = G+ S. Then we have

JTJ−1 = JGJ−1 + JSJ−1 = G0 + S0 + JSJ−1.

If G satisfies the condition 3.4.13(i), then Proposition 3.4.1 and Theorem 3.4.4
may be applied to JTJ−1; if G satisfies 3.4.13(ii), Theorem 3.4.7 may be applied.
Therefore, these theorems also hold if G is as in Proposition 3.4.13 and b is the
p-subordination bound of S0 + JSJ−1 to G0. y
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3.5 Examples

We apply Theorems 3.4.4 and 3.4.7 to ordinary differential operators on a compact
interval and to the Laplace operator on the unit disc.

For ordinary differential operators with possibly unbounded coefficient functions
and appropriate boundary conditions we obtain finitely spectral l2-decompositions;
for certain boundary conditions we even show the existence of a Riesz basis of root
vectors. For the case of bounded coefficients and regular boundary conditions, the
existence of a Riesz basis (possibly with parentheses, depending on the boundary
conditions) of root vectors is well known [11], [20, Theorem XIX.4.16], [43]. The
case of unbounded coefficients is treated in [44].

In the first example we obtain a finitely spectral l2-decomposition for a differen-
tial operator with possibly unbounded coefficient functions.

Example 3.5.1 Let g0, . . . , gn−2 ∈ L2([a1, a2]), gn−1 ∈ L∞([a1, a2]), and consider
the differential operator T on L2([a1, a2]) given by

Tu = inu(n) +
n−1∑
l=0

glu
(l), D(T ) =

{
u ∈Wn,2([a1, a2])

∣∣V1(u) = · · · = Vn(u) = 0
}
,

where the boundary condition V1(u) = · · · = Vn(u) = 0 is regular in the sense of
Naimark [40, §4.8] and such that the operator Gu = inu(n), D(G) = D(T ) becomes
selfadjoint. We also write

T = G+ S with Su =
n−1∑
l=0

glu
(l), D(S) = D(T ).

Then the resolvent of G is compact [19, Theorem XIII.4.1], and the spectrum of
G consists of at most two sequences of eigenvalues of the form

λjk = cjk
n + djkk

n−1, k ≥ kj0, j = 1, 2,

with cj 6= 0 and converging sequences (djk)k≥kj0
, see [40, §4.9]. In fact cj , djk ∈ R

since G is selfadjoint. Lemma 3.4.10 thus implies that each sequence (λjk)k≥kj0

satisfies
|λjk|+ a|λjk|p ≤ |λj,k+1| − a|λj,k+1|p

for almost all k if p = (n− 1)/n and 0 ≤ a < nc
1/n
j /2. As the multiplicity of every

eigenvalue of G is at most n, Lemma 3.4.9 yields

sup
r≥1

N(r,G)
r1−p

<∞ with p =
n− 1
n

.

Consider now the case 0 ∈ %(G). Then S is (n − 1)/n-subordinate to G due to
Propositions 3.2.15 and 3.2.16. Consequently, Proposition 3.4.1 and Theorem 3.4.4
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apply to the decomposition T = G + S: The resolvent of T is compact, almost all
eigenvalues of T lie inside regions of the form{

sign cj · (x+ iy)
∣∣x ≥ 0, |y| ≤ αxp

}
with some α > 0, and T admits a finitely spectral l2-decomposition.

Otherwise, if 0 ∈ σ(G), we choose any τ ∈ %(G) ∩R. Then G− τ is selfadjoint
with compact resolvent and has the same eigenvalue asymptotics as G. Moreover
S + τ is (n− 1)/n-subordinate to G− τ by Propositions 3.2.15 and 3.2.16. We can
thus apply Proposition 3.4.1 and Theorem 3.4.4 to T = G − τ + S + τ and obtain
the same results as before. y

A Riesz basis of root vectors may be obtained under additional assumptions:

Remark 3.5.2 Theorem 3.4.7 with p = (n− 1)/n may be applied to the operator
T from the previous example if two additional conditions are met: First, if σ(G)
consists of two sequences (λjk)k lying on the same half-axis, i.e. c1c2 > 0, then it
must be possible to cover both sequences (λjk)k by one sequence of line segments

Lk =
{
sign c1 · x

∣∣ |x− rk| ≤ βrp
k

}
with rk, β ≥ 0 appropriate; if c1c2 < 0 or if there is only one sequence (λjk)k, then
the line segments may be chosen as Ljk = {λjk}, i.e. rjk = λjk, β = 0.

Second, (3.29) must hold. In view of Lemma 3.4.10 this means that β+ δb must
be small enough; in particular the p-subordination bound b of S to G must be small
enough which in turn is satisfied if the norms ‖g0‖L2 , . . . , ‖gn−2‖L2 , ‖gn−1‖∞ are
sufficiently small.

If now the boundary conditions are such that almost all eigenvalues of G are
simple and the line segments Ljk can be chosen such that almost all Ljk contain
only one eigenvalue of G, then T has a Riesz basis of eigenvectors and finitely many
Jordan chains, see Remark 3.4.8. y

A concrete choice of boundary conditions allows us to specify precise conditions
under which Theorem 3.4.7 is applicable.

Example 3.5.3 Consider the operator T on L2([0, 1]) defined by

Tu = −u′′ + g1u
′ + g0u, D(T ) =

{
u ∈ W 2,2([0, 1])

∣∣u(0) = u(1) = 0
}

where g0 ∈ L2([0, 1]), g1 ∈ L∞([0, 1]). Analogously to the previous example we
consider the operators Gu = −u′′, Su = g1u

′ + g0u with D(G) = D(S) = D(T ).
Direct calculations show that G is selfadjoint with compact resolvent and eigenvalues
π2k2, k = 1, 2, . . ., which are all simple. We have

‖u′‖L2 ≤ ‖u‖1/2
L2 ‖Gu‖

1/2
L2 for u ∈ D(G)
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by Example 3.2.6. Moreover, for u ∈ D(G) the identity

u(x) =
∫ x

0
u′(t) dt

yields

|u(x)| ≤
∫ 1

0
|u′(t)| dt ≤

(∫ 1

0
dt

)1/2(∫ 1

0
|u′(t)|2 dt

)1/2

= ‖u′‖L2

and thus ‖u‖∞ ≤ ‖u′‖L2 . We obtain the estimate

‖Su‖L2 ≤ ‖g1‖∞‖u′‖L2 + ‖g0‖L2‖u‖∞
≤
(
‖g1‖∞ + ‖g0‖L2

)
‖u′‖L2 ≤

(
‖g1‖∞ + ‖g0‖L2

)
‖u‖1/2

L2 ‖Gu‖
1/2
L2

for u ∈ D(G); S is 1/2-subordinate to G with bound b ≤ ‖g1‖∞ + ‖g0‖L2 .
We want to apply Theorem 3.4.7 with p = 1/2, θ1 = 0, r1k = rk = π2k2 and

β = 0. The condition (3.29) then reads

rk + δbr
1/2
k ≤ rk+1 − δbr

1/2
k+1 with some δ >

4 + π

π
. (3.32)

By Lemma 3.4.10, (3.32) holds for almost all k if δb < π. So if

4 + π

π

(
‖g1‖∞ + ‖g0‖L2

)
< π, i.e. ‖g1‖∞ + ‖g0‖L2 <

π2

4 + π
,

then we can find δ > (4 + π)/π such that δb < π. Consequently (3.29) is satisfied
and Theorem 3.4.7 yields that for every α > ‖g1‖∞ + ‖g0‖L2 almost all eigenvalues
of T lie inside regions

Kk =
{
x+ iy

∣∣ |x− π2k2| ≤ απk, |y| ≤ αx1/2
}

and in fact N(Kk, T ) = 1 for almost all k. In view of Remark 3.4.8, T has a Riesz
basis of eigenvectors and finitely many Jordan chains.

If g1 = 0 and g0 ∈ L∞([0, 1]), no condition on the norm of g0 is necessary: For
in this case, S is bounded with ‖S‖ = ‖g0‖∞ and we have

rk + δ‖S‖ ≤ rk+1 − δ‖S‖ for almost all k

by Lemma 3.4.10. We can thus apply Theorem 3.4.7 with p = 0 and obtain a Riesz
basis of eigenvectors and finitely many Jordan chains of T and, for every α > ‖g0‖∞,
the localisation of almost all eigenvalues of T inside the rectangles

Kk =
{
x+ iy

∣∣ |x− π2k2| ≤ α, |y| ≤ α
}
.

y
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For an elliptic differential operator of even order on a domain Ω ⊂ Rm, the
existence of a Riesz basis with parentheses of root vectors was shown by Markus
in [36, §10]. We consider the Laplacian on the unit disc.

Example 3.5.4 Consider the Laplace operator on the unit disc B1(0) ⊂ R2 with
Dirichlet boundary condition,

G
(
L2(B1(0)) → L2(B1(0))

)
, D(G) = W 2,2(B1(0)) ∩W 1,2

0 (B1(0)),

Gu = −∆u = −∂2
1u− ∂2

2u.

Then G is positive selfadjoint with compact resolvent [19, Theorem XIV.6.25], and
the asymptotic behaviour of its spectrum is such that

lim
r→∞

N(r,G)
r

=
1
4
,

see [12, Theorem VI.16]. If S is a bounded operator on L2(B1(0)) and T = G+ S,
then Proposition 3.4.1 and Theorem 3.4.4 apply with p = 0: The operator T has a
compact resolvent,

σ(G) ⊂ B‖S‖(0) ∪
{
x+ iy

∣∣x ≥ 0, |y| ≤ ‖S‖
}

(cf. Remark 3.4.2 and Lemma 3.3.1), and T admits a finitely spectral l2-decompo-
sition. y



Chapter 4

Hamiltonian operators and
Riccati equations

We apply the results from the previous chapters to Hamiltonian operator matrices
and the associated Riccati equation

A∗X +XA+XQ1X −Q2 = 0.

Riccati equations are generally hard to solve because they are quadratic operator
equations and the involved operators need not commute. The known existence
results yield a nonnegative and a nonpositive solution for the case that Q1 and Q2

are bounded, cf. Curtain and Zwart [14], Langer, Ran and van de Rotten [31], and
Bubák, van der Mee and Ran [10].

In Theorem 4.4.1 we prove the existence of infinitely many selfadjoint solutions of
the Riccati equation for unbounded Q1, Q2. In particular, we obtain a nonnegative
solution X+ and a nonpositive solution X−. Under stronger assumptions we show
the existence of bounded, boundedly invertible solutions and that every bounded
solution can be represented as X = X+P + X−(I − P ) with some projection P ,
see Theorem 4.4.5. A similar representation was obtained by Curtain, Iftime and
Zwart [13] under the assumption that X− exists and is bounded and boundedly
invertible.

In the first section we study basic properties of Hamiltonian operators and their
relation to two Krein space inner products given by fundamental symmetries J1, J2.
The existence of invariant graph subspaces and their relation to the symmetries J1,
J2 is investigated in Section 4.2. Different notions of solutions of the Riccati equation
and its connection to invariant graph subspaces are the topic of Section 4.3. In the
last section, the existence of finitely spectral l2-decompositions for Hamiltonians is
shown, and the resulting invariant graph subspaces are used to obtain the existence
and characterisations of solutions of the Riccati equation.

113
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4.1 Hamiltonian operators and associated
Krein spaces

We investigate properties of Hamiltonian operators with the help of the fundamental
symmetries J1 and J2 from the introduction. We obtain results about the symmetry
and separation of the spectrum with respect to the imaginary axis. The connection
of J1 to the Hamiltonian has been known for a long time; it was used for example by
Potter [41] in 1966 and Mårtensson [38] in 1971. By contrast, the relation of J2 to the
Hamiltonian was first exploited by Langer, Ran and Temme [32] in 1997, followed
by Langer, Ran and van de Rotten [31] in 2001, Azizov, Dijksma and Gridneva [4]
in 2003, and Bubák, van der Mee and Ran [10] in 2005.

Our notion of a nonnegative Hamiltonian operator matrix is taken from [4]. For
some remarks about the concept of block operator matrices see page 97.

Definition 4.1.1 Let H be a Hilbert space. A Hamiltonian operator matrix is a
block operator matrix

T =
(
A Q1

Q2 −A∗
)

(4.1)

acting on H×H with densely defined linear operators A,Q1, Q2(H → H) such that
Q1 and Q2 are symmetric and T is densely defined.

If Q1 and Q2 are both nonnegative (positive, uniformly positive), then T is called
a nonnegative (positive, uniformly positive, respectively) Hamiltonian operator ma-
trix; accordingly for nonpositive, negative, and uniformly negative. y

The condition that T is densely defined implies that A∗ is densely defined; hence A
is closable.

Connected to Hamiltonian operator matrices are two Krein space inner products
on the Hilbert space H ×H,

〈f |g〉 = (J1f |g) and [f |g] = (J2f |g), (4.2)

where (·|·) is the natural scalar product on H×H, and the fundamental symmetries
J1, J2 are given by

J1 =
(

0 −iI
iI 0

)
, J2 =

(
0 I
I 0

)
. (4.3)

In other words,〈(u
v

) ∣∣∣(x
y

)〉
= i(u|y)− i(v|x) and[(u

v

) ∣∣∣(x
y

)]
= (u|y) + (v|x) for

(
u
v

)
,

(
x
y

)
∈ H ×H.
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The next proposition shows that a (nonnegative) Hamiltonian operator matrix
is J1-skew-symmetric (and J2-accretive). Azizov, Dijksma and Gridneva [4] called
an operator T (H × H → H × H), which is not necessarily represented by a block
operator matrix, a (nonnegative) Hamiltonian operator if it is J1-skew-adjoint (and
J2-accretive).

Proposition 4.1.2

(i) A Hamiltonian operator matrix is J1-skew-symmetric.

(ii) If a J1-skew-symmetric operator T (H×H → H×H) satisfies D(T ) = S1×S2,
then it can be represented by a Hamiltonian operator matrix.

(iii) A Hamiltonian operator matrix is nonnegative (positive, uniformly positive)
if and only if it is J2-accretive (strictly accretive, uniformly accretive, respec-
tively). In fact we have

Re
[( A Q1

Q2 −A∗
)(

u
v

) ∣∣∣(u
v

)]
= (Q1v|v) + (Q2u|u) (4.4)

for u ∈ D(A) ∩ D(Q2), v ∈ D(Q1) ∩ D(A∗).

Proof. (i): Direct computation yields〈( A Q1

Q2 −A∗
)(

u
v

) ∣∣∣(x
y

)〉
= i(Au+Q1v|y)− i(Q2u−A∗v|x)

= i(u|A∗y −Q2x)− i(v| −Q1y −Ax)

=
〈(u

v

) ∣∣∣( −A −Q1

−Q2 A∗

)(
x
y

)〉
for u, x ∈ D(A) ∩ D(Q2), v, y ∈ D(Q1) ∩ D(A∗).

(ii): The assumption D(T ) = S1 × S2 implies that T can be written as a block
operator matrix

T =
(
A Q1

Q2 D

)
with operators A,Q1, Q2, D(H → H). Without loss of generality, we may assume

D(A) = D(Q2), D(Q1) = D(D).

Since T is densely defined, D(A) and D(Q1) are dense in H. The J1-skew-symmetry
yields

0 =
〈( A Q1

Q2 D

)(
u
v

) ∣∣∣(x
y

)〉
+
〈(u

v

) ∣∣∣( A Q1

Q2 D

)(
x
y

)〉
= i(Au+Q1v|y)− i(Q2u+Dv|x) + i(u|Q2x+Dy)− i(v|Ax+Q1y)
= −i(Q2u|x) + i(u|Q2x) + i(Au|y) + i(u|Dy)
− i(Dv|x)− i(v|Ax) + i(Q1v|y)− i(v|Q1y)
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for all u, x ∈ D(A) and v, y ∈ D(Q1). Using this result for v = y = 0, x = u = 0,
and v = x = 0, respectively, we find

(Q2u|x) = (u|Q2x) for all u, x ∈ D(Q2),
(Q1v|y) = (v|Q1y) for all v, y ∈ D(Q1),
(Au|y) = −(u|Dy) for all u ∈ D(A), y ∈ D(D);

hence Q1 and Q2 are symmetric and D ⊂ −A∗. Consequently, T is represented by
a Hamiltonian operator matrix.

(iii): The claim follows from the relation

[( A Q1

Q2 −A∗
)(

u
v

) ∣∣∣(u
v

)]
= (Au+Q1v|v) + (Q2u−A∗v|u)

= (Q1v|v) + (Q2u|u)︸ ︷︷ ︸
∈R

+(Au|v)− (v|Au)︸ ︷︷ ︸
∈iR

for u ∈ D(A) ∩ D(Q2), v ∈ D(Q1) ∩ D(A∗). �

As a consequence of the skew-symmetry, a Hamiltonian operator matrix is always
closable. However we will not compute the closure in the general case since all
Hamiltonian operators from the perturbation theorems in Section 4.4 will be closed
automatically.

Another consequence of the J1-skew-symmetry is the symmetry of the spectrum
of T with respect to the imaginary axis:

Corollary 4.1.3 Let T be a Hamiltonian operator matrix.

(i) If T has a dense system of root subspaces, then the point spectrum σp(T ) is
symmetric with respect to the imaginary axis.

(ii) If λ,−λ ∈ %(T ) for some λ ∈ C, then T is J1-skew-adjoint and the spectrum
σ(T ) is symmetric with respect to the imaginary axis.

Proof. Since iT is J1-symmetric, the claims are a direct consequence of Theo-
rem 2.5.12, Remark 2.5.8 and Proposition 2.5.9. �

The J2-accretivity of a nonnegative Hamiltonian operator leads to a characteri-
sation of the point spectrum on the imaginary axis. First, we prove a lemma about
nonnegative operators in Hilbert spaces.

Lemma 4.1.4 Let Q(H → H) be a nonnegative symmetric operator on a Hilbert
space and u ∈ D(Q). Then (Qu|u) = 0 implies Qu = 0.
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Proof. Since Q is symmetric and nonnegative, it has a nonnegative selfadjoint exten-
sion which in turn has a square root. That is, there exists a nonnegative selfadjoint
operator B such that Q ⊂ B2. Then

0 = (Qu|u) = (Bu|Bu) = ‖Bu‖2

implies Bu = 0 and thus Qu = 0. �

Lemma 4.1.5 For a nonnegative Hamiltonian operator matrix T , (u, v) ∈ D(T )
and t ∈ R we have

T

(
u
v

)
= it

(
u
v

)
⇐⇒

{
u ∈ ker(A− it) ∩ kerQ2 and
v ∈ ker(A∗ + it) ∩ kerQ1.

(4.5)

Proof. Suppose we have x = (u, v) ∈ D(T ) with (T − it)x = 0. Then

(A− it)u+Q1v = 0, Q2u− (A∗ + it)v = 0

and
0 = Re(it[x|x]) = Re[Tx|x] = (Q1v|v) + (Q2u|u).

Then (Q1v|v) = (Q2u|u) = 0 since Q1 and Q2 are nonnegative. Using Lemma 4.1.4,
we obtain Q1v = Q2u = 0, which in turn implies (A − it)u = (A∗ + it)v = 0. The
other implication is immediate. �

We can now give some conditions which yield a separation of the spectrum at
the imaginary axis.

Proposition 4.1.6 Let T be a nonnegative Hamiltonian operator matrix.

(i) We have σp(T ) ∩ iR = ∅ if and only if

ker(A− it) ∩ kerQ2 = ker(A∗ + it) ∩ kerQ1 = {0} for all t ∈ R. (4.6)

In particular, σp(T ) ∩ iR = ∅ for positive Hamiltonians.

(ii) If T is uniformly positive, then a strip around the imaginary axis belongs to
the set of points of regular type for T . More precisely, Q1, Q2 ≥ γ with γ > 0
implies that {

λ ∈ C
∣∣ |Reλ| < γ

}
⊂ r(T ).

If T is also closed with a dense system of root subspaces, then{
λ ∈ C

∣∣ |Reλ| < γ
}
⊂ %(T ).
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Proof. (i) is an immediate consequence of the previous lemma. (ii) follows from
Proposition 2.6.2 with the Krein inner product [·|·] and because

Re[Tx|x] = (Q1v|v) + (Q2u|u) ≥ γ
(
‖u‖2 + ‖v‖2

)
for x = (u, v) ∈ D(T ).

�

If T is a nonnegative Hamiltonian operator which satisfies (4.6), Proposition 2.6.6
implies that the root subspaces corresponding to eigenvalues in the right and left half-
plane are J2-nonnegative and J2-nonpositive, respectively. Sharpening the condition
(4.6), we can even show that they are J2-positive/-negative:

Proposition 4.1.7 Let T be a nonnegative Hamiltonian operator matrix with

Q2 > 0 and ker(A∗ − λ) ∩ kerQ1 = {0} for all λ ∈ C, (4.7)

or
Q1 > 0 and ker(A− λ) ∩ kerQ2 = {0} for all λ ∈ C. (4.8)

Then the root subspaces L(λ) of T are J2-positive if Reλ > 0 and J2-negative if
Reλ < 0.

Proof. Suppose that (4.7) holds and that Reλ > 0; the proofs for the other cases
are analogous. From the previous proposition we know that T has no purely imagi-
nary eigenvalues. Proposition 2.6.6 thus implies that L(λ) is J2-nonnegative. Take
(x, y) ∈ L(λ)\{0} and let n be the first natural number such that (T−λ)n(x, y) = 0.
We use induction on n to show that (x, y) can not be J2-neutral and is thus J2-
positive.

For n = 1 we have

Reλ ·
[(x
y

) ∣∣∣(x
y

)]
= Re

[
T

(
x
y

) ∣∣∣(x
y

)]
= (Q1y|y) + (Q2x|x).

If (x, y) was J2-neutral, then (Q1y|y) + (Q2x|x) = 0. Since Q1 is nonnegative and
Q2 positive, it follows that x = 0. Hence

T

(
0
y

)
=
(
Q1y
−A∗y

)
= λ

(
0
y

)
,

i.e., y ∈ kerQ1 and A∗y = −λy. Assumption (4.7) yields y = 0, a contradiction.
For n > 1 we set (

u
v

)
= (T − λ)

(
x
y

)
.

Then (u, v) is J2-positive by the induction hypothesis. If (x, y) was J2-neutral, we
would have

0 = Reλ ·
[(x
y

) ∣∣∣(x
y

)]
= Re

[
T

(
x
y

) ∣∣∣(x
y

)]
− Re

[(u
v

) ∣∣∣(x
y

)]
,
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i.e.,

Re
[(u
v

) ∣∣∣(x
y

)]
= (Q1y|y) + (Q2x|x) ≥ 0.

For r ∈ R let

w =
(
u
v

)
+ r

(
x
y

)
.

Then

[w|w] = 2rRe
[(u
v

) ∣∣∣(x
y

)]
+
[(u
v

) ∣∣∣(u
v

)]
.

Therefore, if Re[(u, v)|(x, y)] > 0, then [w|w] < 0 for r sufficiently small, which is a
contradiction to w ∈ L(λ) J2-nonnegative. Consequently we have

Re
[(u
v

) ∣∣∣(x
y

)]
= (Q1y|y) + (Q2x|x) = 0

and hence x = 0 and Q1y = 0 (Lemma 4.1.4). But this implies that u = 0 and hence
(u, v) is J2-neutral, again a contradiction. �

4.2 Invariant graph subspaces in Krein spaces

In this section we derive conditions for a subspace invariant under the Hamiltonian
to be the graph of an operator X. We will also see that certain properties of X
such as its selfadjointness are equivalent to properties of the graph subspace with
respect to the fundamental symmetries J1 and J2. These equivalences have also
been studied by Dijksma and de Snoo [16] and Langer, Ran and van de Rotten [31].

Finally, for a Hamiltonian operator T with a finitely spectral l2-decomposition
we show that the compatible subspaces associated with a partition of σp(T ) which
separates skew-conjugate points are the graphs of selfadjoint operators. The corre-
sponding result for dichotomous Hamiltonian operators and the spectral subspaces
associated with the right and left half-plane was obtained in [31].

To an operator X(H → H), two kinds of graph subspaces in H × H may be
associated. We use the notation

Γ(X) =
{( u

Xu

) ∣∣∣u ∈ D(X)
}
, L(X) =

{(Xv
v

) ∣∣∣ v ∈ D(X)
}
. (4.9)

Observe that if X is injective, then Γ(X) = L(X−1). Furthermore, an arbitrary
subspace U ⊂ H×H is of the form U = Γ(X) if and only if (0, v) ∈ U implies v = 0;
in this case

D(X) =
{
u ∈ H

∣∣∣ ∃ v ∈ H :
(
u
v

)
∈ U

}
and Xu = v ⇔

(
u
v

)
∈ U.

Analogously we have U = L(X) if and only if (u, 0) ∈ U implies u = 0.
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Proposition 4.2.1 Consider an operator X(H → H) on a Hilbert space and let
U = Γ(X) or L(X) be one of its graph subspaces. Then

(i) U J1-neutral (i.e. U ⊂ U 〈⊥〉) ⇐⇒ X Hermitian;

(ii) U = U 〈⊥〉 ⇐⇒ X selfadjoint.

If U is J1-neutral, then also

(iii) U J2-nonnegative (-positive) ⇐⇒ X nonnegative (-positive);

(iv) U J2-positive (-negative) ⇐⇒ X positive (negative);

(v) U J2-uniformly positive (negative) ⇐⇒ X bounded and uniformly positive
(negative).

Proof. We consider U = Γ(X); the case U = L(X) is analogous.
(i): U is J1-neutral if and only if

0 =
〈( u

Xu

) ∣∣∣( v
Xv

)〉
= i(u|Xv)− i(Xu|v) for all u, v ∈ D(X),

that is, X is Hermitian.
(ii): Using (i), we may assume U ⊂ U 〈⊥〉 and that X is Hermitian. Therefore

U = U 〈⊥〉 ⇐⇒ U 〈⊥〉 ⊂ U

⇐⇒
(
∀g ∈ U : 〈f |g〉 = 0 ⇒ f ∈ U

)
⇐⇒

(
∀u ∈ D(X) :

〈(x
y

) ∣∣∣( u
Xu

)〉
= 0 ⇒

(
x
y

)
∈ U

)
⇐⇒

(
∀u ∈ D(X) : (x|Xu) = (y|u) ⇒ x ∈ D(X), y = Xx

)
. (4.10)

On the other hand, since X is Hermitian, it is selfadjoint if and only if

D(X) ⊂ H dense and D(X∗) ⊂ D(X). (4.11)

To prove that (4.10) and (4.11) are equivalent, let us first assume that (4.10) holds.
Then, if y ∈ D(X)⊥, we find (y|u) = 0 = (0|Xu) for all u ∈ D(X) and (4.10) implies
y = X0 = 0; D(X) is dense. If x ∈ D(X∗), we have (x|Xu) = (X∗x|u) for all u and
(4.10) yields x ∈ D(X). Now suppose (4.11) holds and let (x|Xu) = (y|u) for all
u ∈ D(X). This implies x ∈ D(X∗); so x ∈ D(X) and thus (Xx|u) = (y|u) for all u
by the Hermiticity of X. Therefore Xx = y.

(iii) and (iv): For Hermitian X we have[( u
Xu

) ∣∣∣( u
Xu

)]
= (u|Xu) + (Xu|u) = 2(Xu|u)
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and the assertions follow immediately.
(v): First suppose that U is J2-uniformly positive, i.e.,[( u

Xu

) ∣∣∣( u
Xu

)]
≥ α

∥∥∥( u
Xu

)∥∥∥2
= α‖u‖2 + α‖Xu‖2

for all u ∈ D(X). Therefore

2‖Xu‖‖u‖ ≥ 2(Xu|u) ≥ α‖u‖2 + α‖Xu‖2,

which implies

(Xu|u) ≥ α

2
‖u‖2 and

2
α
‖u‖ ≥ ‖Xu‖

for all u ∈ D(X); X is bounded and uniformly positive. If on the other hand X is
bounded and uniformly positive, we can estimate[( u

Xu

) ∣∣∣( u
Xu

)]
= 2(Xu|u) ≥ 2β‖u‖2 ≥ β‖u‖2 +

β

‖X‖2
‖Xu‖2,

and consequently U is uniformly positive. The negative case is analogous. �

The next lemma in conjunction with Proposition 4.2.1(v) is crucial to prove the
boundedness of solutions of Riccati equations.

Lemma 4.2.2 Let X+, X− be bounded selfadjoint operators on a Hilbert space H
with X+ uniformly positive and X− nonpositive. If X(H → H) is a Hermitian
operator satisfying

D(X) = D+ uD−, Xu =

{
X+u if u ∈ D+,

X−u if u ∈ D−,

then X is bounded.

Proof. First consider u ∈ D+, v ∈ D− with ‖u‖ = ‖v‖ = 1. Then

(u− v|X+u+X−v) = (u|X+u)− (v|X+u) + (u|X−v)− (v|X−v)
= (u|X+u)− (v|Xu) + (u|Xv)− (v|X−v).

Using the Hermiticity of X and the assumptions on X±, we find that

Re(u− v|X+u+X−v) = (u|X+u)− (v|X−v) ≥ γ

with some constant γ > 0 and hence

γ ≤ |(u− v|X+u+X−v)| ≤ ‖u− v‖ ·
(
‖X+‖+ ‖X−‖

)
.
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This implies (
γ

‖X+‖+ ‖X−‖

)2

≤ ‖u− v‖2 = 2− 2 Re(u|v)

and

Re(u|v) ≤ 1− δ with δ =
1
2

(
γ

‖X+‖+ ‖X−‖

)2

> 0.

Consequently

|(u|v)| ≤ 1− δ for all u ∈ D+, v ∈ D− with ‖u‖ = ‖v‖ = 1.

Now for arbitrary u ∈ D+, v ∈ D− we have the estimates

‖X(u+ v)‖ = ‖X+u+X−v‖ ≤ max{‖X+‖, ‖X−‖}
(
‖u‖+ ‖v‖

)
,(

‖u‖+ ‖v‖
)2 ≤ 2

(
‖u‖2 + ‖v‖2

)
,

‖u+ v‖2 ≥ ‖u‖2 + ‖v‖2 − 2|(u|v)| ≥ ‖u‖2 + ‖v‖2 − 2(1− δ)‖u‖‖v‖
≥ ‖u‖2 + ‖v‖2 − (1− δ)

(
‖u‖2 + ‖v‖2

)
= δ
(
‖u‖2 + ‖v‖2

)
.

Therefore

‖X(u+ v)‖ ≤
√

2
δ

max
{
‖X+‖, ‖X−‖

}
‖u+ v‖

and X is bounded. �

The first component of an l2-decomposition of the graph subspace of a bounded
operator is again an l2-decomposition:

Lemma 4.2.3 Consider a bounded operator X : H → H whose graph admits an
l2-decomposition

Γ(X) =
{( u

Xu

) ∣∣∣u ∈ H} =
⊕2

k∈N
Uk.

If Dk are the subspaces obtained by projection of Uk onto the first component, i.e.

Uk =
{( u

Xu

) ∣∣∣u ∈ Dk

}
,

then (Dk)k∈N forms an l2-decomposition for H.

Proof. With c the constant corresponding to the decomposition
⊕2

k Uk, uk ∈ Dk

and n ∈ N, we have the estimates

c−1
n∑

k=0

‖uk‖2 ≤ c−1
n∑

k=0

∥∥∥( uk

Xuk

)∥∥∥2
≤
∥∥∥ n∑

k=0

(
uk

Xuk

)∥∥∥2
≤ (1 + ‖X‖2)

∥∥∥ n∑
k=0

uk

∥∥∥2
,

∥∥∥ n∑
k=0

uk

∥∥∥2
≤
∥∥∥ n∑

k=0

(
uk

Xuk

)∥∥∥2
≤ c

n∑
k=0

∥∥∥( uk

Xuk

)∥∥∥2
≤ c(1 + ‖X‖2)

n∑
k=0

‖uk‖2.
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For arbitrary u ∈ H we can expand (u,Xu) ∈ U according to the l2-decomposition⊕2
k Uk as (

u
Xu

)
=

∞∑
k=0

(
uk

Xuk

)
with uk ∈ Dk.

Consequently u =
∑∞

k=0 uk and
∑

k∈NDk ⊂ H is dense. �

In some cases, the boundedness of X can be characterised via Riesz bases as
follows, cf. Kuiper and Zwart [29, Theorem 5.6]:

Remark 4.2.4 If the graph Γ(X) of a closed densely defined operator X(H → H)
has a Riesz basis of the form (ek, Xek)k∈N, then X is bounded if and only if (ek)k∈N
is a Riesz basis for H. The proof of the implication from left to right is completely
analogous to the previous lemma. For the other direction, the estimate

∥∥∥X n∑
k=0

αkek

∥∥∥2
≤
∥∥∥ n∑

k=0

αk

(
ek
Xek

)∥∥∥2
≤M

n∑
k=0

|αk|2 ≤
M

m1

∥∥∥ n∑
k=0

αkek

∥∥∥2

shows the boundedness of X.
Note however, if the graph of X has an l2-decomposition Γ(X) =

⊕2
k∈N Uk and,

with the notation from the lemma, (Dk)k forms an l2-decomposition of H, then X
need not be bounded in general. As a counter example, consider a selfadjoint X with
an orthonormal basis (ek)k of eigenvectors such that Xek = kek, and Dk = Cek. y

The next two propositions show that under appropriate assumptions on the
Hamiltonian all neutral invariant subspaces are graph subspaces.

Proposition 4.2.5 Consider a nonnegative Hamiltonian operator matrix T with
it ∈ %(T ) for some t ∈ R and a J1-neutral subspace U that is (T − it)−1-invariant.

(i) If Q1 is positive and it 6∈ σp(A), then U = Γ(X) for a Hermitian operator
X(H → H).

(ii) If Q2 is positive and −it 6∈ σp(A∗), then U = L(Y ) for a Hermitian operator
Y (H → H).

(iii) If Q1 and Q2 are positive (i.e., T is positive), then U = Γ(X) with X(H → H)
Hermitian and injective.

Proof. (i): It suffices to show that (0, v) ∈ U implies v = 0. The Hermiticity of X
is then immediate from Proposition 4.2.1. For (0, v) ∈ U we set(

x
y

)
= (T − it)−1

(
0
v

)
,
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i.e.,
(A− it)x+Q1y = 0, Q2x− (A∗ + it)y = v.

Using the neutrality and (T − it)−1-invariance of U , we have

0 =
〈(0

v

) ∣∣∣(x
y

)〉
= −i(v|x)

and thus

0 = (v|x) = (Q2x|x)− (y|(A− it)x) = (Q2x|x) + (y|Q1y).

As Q1 and Q2 are nonnegative, this implies (Q2x|x) = (Q1y|y) = 0. The positivity
of Q1 yields y = 0 and consequently (A − it)x = 0. Since it 6∈ σp(A), we obtain
x = 0 and v = 0.

(ii): It suffices to show that (u, 0) ∈ U implies u = 0. The proof is then com-
pletely analogous to (i).

(iii): Let (0, v) ∈ U and choose (x, y) as above. Thus (Q2x|x) = (Q1y|y) = 0
and from the positivity of Q1 and Q2 we conclude that x = y = 0 and hence v = 0.
The proof that (u, 0) ∈ U implies u = 0 is analogous. �

The following proposition uses a method due to Langer, Ran and van de Rot-
ten [31, Theorem 5.1]. There, Q1 and Q2 are assumed to be bounded and the
conditions analogous to (4.12) and (4.13) are referred to as approximate controlla-
bility and observability, respectively.

Proposition 4.2.6 Consider a nonnegative Hamiltonian operator matrix and a do-
main M ⊂ %(A) such that iR ∩ %(T ) ∩M has an accumulation point in M and

span
{
(A− z)−1Q∗1u

∣∣ z ∈M, u ∈ D(Q∗1)
}
⊂ H is dense. (4.12)

If U is a J1-neutral subspace that is (T − it)−1-invariant for all it ∈ iR∩%(T )∩M ,
then U = Γ(X) is the graph of a Hermitian operator X(H → H).

If instead of (4.12) we have

span
{
(A∗ − z̄)−1Q∗2v

∣∣ z ∈M, v ∈ D(Q∗2)
}
⊂ H dense, (4.13)

then U = L(Y ) for a Hermitian operator Y (H → H).

Proof. As in the proof of Proposition 4.2.5 we consider an element (0, v) ∈ U and
set (x, y) = (T − it)−1(0, v) for it ∈ iR ∩ %(T ) ∩M . We thus have

0 = (v|x) = (Q2x|x) + (Q1y|y).

Since Q1 and Q2 are nonnegative, Lemma 4.1.4 implies Q2x = Q1y = 0 and hence
−(A∗ + it)y = v. From it ∈ %(A) we get −it ∈ %(A∗) and

0 = Q1y = −Q1(A∗ + it)−1v.
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For u ∈ D(Q∗1) this implies

0 =
(
Q1(A∗ + it)−1v

∣∣u) =
(
(A∗ + it)−1v

∣∣Q∗1u).
Consequently, the function f(ζ) = ((A∗ − ζ)−1v|Q∗1u), which is holomorphic on the
complex conjugate of M , satisfies f(−it) = 0 for all it ∈ iR ∩ %(T ) ∩M . From the
identity theorem we obtain

0 =
(
(A∗ − z̄)−1v

∣∣Q∗1u) =
(
v
∣∣ (A− z)−1Q∗1u

)
for all z ∈M.

Since u ∈ D(Q∗1) was arbitrary, the density assumption (4.12) now implies v = 0.
The proof for the case of (4.13) is analogous. �

The density conditions (4.12) and (4.13) are closely related to the spectral con-
ditions (4.6), (4.7) and (4.8).

Lemma 4.2.7 Let A(H → H) be a normal operator with compact resolvent and
M ⊂ %(A) a set with accumulation point in %(A). If the closed densely defined
operator Q(H → H) is such that kerQ contains no eigenvectors of A, then

span
{
(A− z)−1Q∗v

∣∣ z ∈M, v ∈ D(Q∗)
}
⊂ H dense.

Proof. Let (λk)k∈N be an enumeration of the eigenvalues of A and Pk the corre-
sponding orthogonal projections onto the eigenspaces. Let u ∈ H be such that

u ⊥ span
{
(A− z)−1Q∗v

∣∣ z ∈M, v ∈ D(Q∗)
}
,

i.e., ((A − z)−1Q∗v|u) = 0 for all z ∈ M , v ∈ D(Q∗). Due to the estimate∑
k |(PkQ

∗v|u)| ≤ ‖Q∗v‖‖u‖, the series

f(z) =
(
(A− z)−1Q∗v

∣∣u) =
∑
k∈N

1
λk − z

(PkQ
∗v|u)

converges absolutely and uniformly on every compact subset of %(A) and is a holo-
morphic function on %(A). We have f(z) = 0 for z ∈ M and hence f = 0 by the
identity theorem. If we integrate the series along a circle in %(A) enclosing exactly
one λk, we obtain

0 = −2πi(PkQ
∗v|u).

Consequently (Q∗v|Pku) = 0 for all k ∈ N, v ∈ D(Q∗), i.e.

Pku ∈ R(Q∗)⊥ = kerQ∗∗ = kerQ.

The assumption now implies Pku = 0 for all k ∈ N and thus u = 0. �
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Proposition 4.2.8 Consider densely defined operators A,Q(H → H) and a set
M ⊂ %(A) with accumulation point in %(A). For the assertions

(i) ker(A∗ − it) ∩ kerQ = {0} for all t ∈ R,

(ii) ker(A∗ − λ) ∩ kerQ = {0} for all λ ∈ C,

(iii) span
{
(A− z)−1Q∗v

∣∣ z ∈M,v ∈ D(Q∗)
}
⊂ H dense,

we have the implications (iii) ⇒ (ii) ⇒ (i). If A is normal with compact resolvent
and furthermore Q is closed or D(A) ⊂ D(Q), then (ii) ⇔ (iii).

Proof. (ii)⇒(i) is trivial. For (iii)⇒(ii) consider A∗u = λu, Qu = 0. Then for every
z ∈M , v ∈ D(Q∗) we have(

(A− z)−1Q∗v
∣∣u) =

(
v
∣∣Q(A∗ − z̄)−1u

)
=
(
v
∣∣Q(λ− z̄)−1u

)
= 0

and the density assumption implies u = 0. Under the additional conditions the
eigenvectors of A and A∗ coincide, and we have D(A) ∩ kerQ = D(A) ∩ kerQ.
Hence, (ii)⇒(iii) is a consequence of the previous lemma. �

For Hamiltonian operator matrices with a finitely spectral l2-decomposition, we
now prove the existence of invariant subspaces which are the graph of selfadjoint
operators. Note that by Corollary 4.1.3 the point spectrum of a Hamiltonian with
a finitely determining l2-decomposition is symmetric with respect to the imaginary
axis.

Definition 4.2.9 For an operator T whose point spectrum is symmetric with re-
spect to the imaginary axis and satisfies σp(T ) ∩ iR = ∅, we say that a partition
σp(T ) = σ ·∪ τ separates skew-conjugate points if

λ ∈ σ ⇐⇒ −λ ∈ τ.
y

Lemma 4.2.10 Let T be a Hamiltonian operator matrix with σp(T )∩iR = ∅ and a
finitely spectral l2-decomposition H×H =

⊕2
k∈N Vk. If σp(T ) = σ ·∪ τ is a partition

which separates skew-conjugate points and the compatible subspace associated with σ
is the graph Γ(X) or L(X) of an operator X(H → H), then X is selfadjoint.

If T is nonnegative and Γ(X) or L(X) is the compatible subspace associated with
σ+

p (T ) and σ−p (T ), then X is nonnegative and nonpositive, respectively.

Proof. If Γ(X) is the compatible subspace associated with σ, then Γ(X) = Γ(X)〈⊥〉

by Theorem 2.5.16; Proposition 4.2.1 yields the selfadjointness ofX. If T is nonnega-
tive and σ = σ±p (T ), then T is J2-accretive and Γ(X) J2-nonnegative/-nonpositive by
Proposition 2.6.6. Proposition 4.2.1 now implies that X is nonnegative/nonpositive.

�
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Proposition 4.2.11 Consider a nonnegative Hamiltonian operator matrix T with
σp(T )∩iR = ∅ and a finitely spectral l2-decomposition

⊕2
k∈N Vk. Let σp(T ) = σ ·∪ τ

be a partition which separates skew-conjugate points and U the compatible subspace
associated with σ. If

(a1) Q1 is positive and it ∈ %(T ) \ σp(A) for some t ∈ R, or

(a2) there is a domain M ⊂ %(A) such that iR ∩ %(T ) ∩M has an accumulation
point in M and

span
{
(A− z)−1Q∗1u

∣∣ z ∈M, u ∈ D(Q∗1)
}
⊂ H dense,

then U is the graph U = Γ(X) of a selfadjoint operator X(H → H). If

(b1) Q2 is positive and it ∈ %(T ) \ σp(−A∗) for some t ∈ R, or

(b2) there is a domain M ⊂ %(A) such that iR ∩ %(T ) ∩M has an accumulation
point in M and

span
{
(A∗ − z̄)−1Q∗2v

∣∣ z ∈M, v ∈ D(Q∗2)
}
⊂ H dense,

then U is the graph U = L(Y ) of a selfadjoint operator Y (H → H).
If the conditions (a1) or (a2) as well as (b1) or (b2) are satisfied, or if T is

positive with %(T ) ∩ iR 6= ∅, then U = Γ(X) with X selfadjoint and injective.

Proof. The subspace U is J1-neutral and (T − λ)−1-invariant for all λ ∈ %(T ), see
Theorem 2.5.16. The representation as a graph subspace is thus a direct conse-
quence of Propositions 4.2.5 and 4.2.6. The selfadjointness of X and Y follows from
Lemma 4.2.10. �

Strengthening the assumptions on T , we obtain the boundedness and bounded
invertibility of the operator X:

Proposition 4.2.12 Consider a closed, uniformly positive Hamiltonian operator T
with Q1, Q2 ≥ γ, dimL(λ) <∞ for all λ ∈ σp(T ), and

σp(T ) ⊂
{
z ∈ C

∣∣ |Re z| ≤ a
}

for some a > 0. Suppose that T has a Riesz basis of Jordan chains. Then{
z ∈ C

∣∣ |Re z| < γ
}
⊂ %(T )

and for every partition σp(T ) = σ ·∪ τ which separates skew-conjugate points the
compatible subspace associated with σ is the graph Γ(X) of a selfadjoint isomorphism
X : H → H. The operators X± corresponding to σ = σ±p (T ) are uniformly positive
and negative, respectively.
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Proof. By Proposition 4.1.6 we have z ∈ %(T ) for |Re z| < γ. From Lemma 2.3.15(i)
it follows that the root subspaces form a finitely spectral l2-decomposition. Proposi-
tion 4.2.11 implies that the compatible subspace associated with σ is the graph Γ(X)
of a selfadjoint injective operator. By Proposition 2.6.6, the compatible subspaces
Γ(X±) associated with σ±p (T ) are uniformly J2-positive and -negative, respectively;
X± are then bounded and uniformly positive/negative due to Proposition 4.2.1.
Since the root subspaces form an l2-decomposition, we have

Γ(X) = W+ ⊕W− with W+ =
⊕2

λ∈σ
Re λ>0

L(λ), W− =
⊕2

λ∈σ
Re λ<0

L(λ).

If we denote by D± the subspaces obtained by projecting W± onto the first com-
ponent, then D(X) = D+ u D− and X|D± = X±|D± . Therefore X is bounded by
Lemma 4.2.2. With Γ(X) = L(X−1) and Γ(X±) = L(X−1

± ), an analogous argument
yields that X−1 is also bounded. �

4.3 Invariant graph subspaces and the Riccati equation

We study the correspondence between graph subspaces Γ(X) invariant under the
Hamiltonian and solutions X of the associated Riccati equation. There are sev-
eral notions of strong and weak solutions of the Riccati equation depending on the
boundedness of A, Q1, Q2 and X. For the case that all these operators are un-
bounded, we introduce the concept of a core solution which ensures that the Riccati
equation holds on a core of X.

In control theory, the case of bounded Q1, Q2 and X typically occurs and the
weak form of the Riccati equation is widely used, see e.g. [14, 29]. Langer, Ran
and van de Rotten [31] considered bounded as well as unbounded solutions of the
strong and weak Riccati equation for bounded Q1, Q2. For a bounded selfadjoint
block operator matrix, Kostrykin, Makarov and Motovilov [26] explicitly defined the
notion of unbounded strong and weak solutions of the associated Riccati equation.
They showed the equivalence of strong solutions, weak solutions and invariant graph
subspaces in their setting. The corresponding result for bounded Hamiltonians is
contained in Proposition 4.3.1.

In this section we consider Hamiltonian operators that are diagonally dominant
(cf. page 97) and not necessarily nonnegative. In fact, analogous results hold for
general densely defined block operator matrices(

A B
C D

)
with D(A) ⊂ D(C) and D(D) ⊂ D(B).
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Proposition 4.3.1 Let T be a diagonally dominant Hamiltonian operator matrix.
Then for the operator X(H → H) the following two statements are equivalent:

(i) The graph Γ(X) of X is a T -invariant subspace.

(ii) X is a solution of the Riccati equation

X(A+Q1X) = Q2 −A∗X on D(A) ∩X−1D(A∗). (4.14)

In particular, u ∈ D(A) ∩X−1D(A∗) implies Au+Q1Xu ∈ D(X).

For densely defined X, (i) or (ii) imply

(iii) X is a solution of the weak Riccati equation

(Xu|Av) + (Au|X∗v) + (Q1Xu|X∗v)− (Q2u|v) = 0,

u ∈ D(A) ∩X−1D(A∗), v ∈ D(A) ∩ D(X∗).
(4.15)

If moreover X is closed, densely defined, and D(A) ∩ D(X∗) is a core for X∗, then
both (i) and (ii) are equivalent to (iii).

Proof. The graph of X is T -invariant if and only if for all u ∈ D(A) ∩ D(X) with
Xu ∈ D(A∗) there exists v ∈ D(X) such that(

Au+Q1Xu
Q2u−A∗Xu

)
=
(
v
Xv

)
.

This is obviously equivalent to (ii). For densely defined X, (4.15) is easily obtained
from (4.14) by taking the scalar product with v ∈ D(A) ∩ D(X∗). If we finally
assume (4.15), we can rewrite it as

(Au+Q1Xu|X∗v) = (Q2u−A∗Xu|v).

If D(A)∩D(X∗) is a core forX∗, this equation holds for all v ∈ D(X∗). Furthermore,
the right-hand side is continuous in v, and we have X∗∗ = X if X is closed. This
implies Au+Q1Xu ∈ D(X∗∗) = D(X) and

X(Au+Q1Xu) = Q2u−A∗Xu.

�

Note that (4.14) always has the trivial solution X(H → H) with D(X) = {0}.
And even if X is densely defined, D(A)∩X−1D(A∗) = {0} is still possible in general.
With the following definition we exclude such trivial solutions.
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Definition 4.3.2 Let T be a diagonally dominant Hamiltonian operator matrix.
The operator X(H → H) is called a core solution of the Riccati equation

X(A+Q1X) = Q2 −A∗X (4.16)

if X is densely defined, D(A)∩X−1D(A∗) is a core for X, and X satisfies (4.16) on
D(A) ∩X−1D(A∗). y

Corollary 4.3.3 The selfadjoint operator X is a core solution of (4.16) if and only
if D(A) ∩X−1D(A∗) is a core for X and X solves the weak Riccati equation

(Xu|Av)+(Au|Xv)+(Q1Xu|Xv)−(Q2u|v) = 0, u, v ∈ D(A)∩X−1D(A∗). (4.17)

Proof. If D(A) ∩X−1D(A∗) is a core for X, (4.17) implies that

(A∗Xu|v) + (Au|Xv) + (Q1Xu|Xv)− (Q2u|v) = 0

for all u ∈ D(A) ∩ X−1D(A∗), v ∈ D(X); in particular, X is a solution of (4.15).
The claim is thus a direct consequence of Proposition 4.3.1. �

Proposition 4.3.4 Consider a diagonally dominant Hamiltonian operator matrix
T with a finitely determining l2-decomposition

⊕2
k∈N Vk. If X(H → H) is a densely

defined operator whose graph Γ(X) is a T -invariant subspace compatible with
⊕2

k Vk,
then X is a core solution of (4.16).

Proof. From Γ(X) =
⊕2

k Uk with Uk ⊂ Vk T -invariant, it follows that
∑

k Uk is
dense in Γ(X) and hence the subspace obtained by projection of

∑
k Uk onto the first

component is a core for X. This subspace is also a subset of D(A)∩X−1D(A∗) since∑
k Uk ⊂ D(T ); hence D(A) ∩X−1D(A∗) is a core for X. Finally, Proposition 4.3.1

shows that X solves the Riccati equation. �

If Q1 and X are bounded, we obtain Riccati equations on larger domains. For
the case that Q2 is bounded too, this result is well known in control theory, compare
[14, Exercise 6.25] and [29, Lemma 5.1].

Proposition 4.3.5 Let T be a diagonally dominant Hamiltonian operator matrix
with Q1 : H → H bounded. Then for the bounded operator X : H → H the following
statements are equivalent:

(i) The graph Γ(X) is T -invariant and D(A) ∩X−1D(A∗) is a core for A.

(ii) X is a solution of the Riccati equation

A∗X +XA+XQ1X −Q2 = 0 on D(A); (4.18)

in particular XD(A) ⊂ D(A∗).
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(iii) X is a solution of the weak Riccati equation

(Xu|Av) + (Au|X∗v) + (Q1Xu|X∗v)− (Q2u|v) = 0, u, v ∈ D(A). (4.19)

Proof. The implication (ii)⇒(i) follows from Proposition 4.3.1 and the fact that

XD(A) ⊂ D(A∗) ⇔ D(A) ∩X−1D(A∗) = D(A).

For (iii)⇒(ii), we rewrite (4.19) as

(Xu|Av) = (−XAu−XQ1Xu+Q2u|v), u, v ∈ D(A).

Since the right-hand side is continuous in v, we obtain Xu ∈ D(A∗) and (4.18). If
we finally assume (i), Proposition 4.3.1 yields that for u ∈ D(A) ∩X−1D(A∗) and
v ∈ D(A)

(Xu|Av) + (Au|X∗v) + (Q1Xu|X∗v)− (u|Q2v) = 0.

Since this equation is valid for u in a core for A, and Q1 and X are bounded, the
equation also holds for u ∈ D(A); (iii) is proved. �

Note that all bounded solutions of (4.18) are core solutions of (4.16).

Remark 4.3.6 In a completely analogous way, T -invariant graph subspaces L(Y )
are related to the Riccati equation

AY + Y A∗ − Y Q2Y +Q1 = 0.
y

A solution X of a Riccati equation leads to a transformation of the Hamiltonian
to upper block triangular form. The transformation is given by the block operator(

I 0
X I

)
: D(X)×H → D(X)×H,

which is bijective with inverse(
I 0
X I

)−1

=
(

I 0
−X I

)
.

This transformation was also studied by Kuiper and Zwart [29, Lemma 5.5] for
Q1, Q2, X bounded and A the generator of a C0-semigroup.
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Proposition 4.3.7 Consider a diagonally dominant Hamiltonian T and a solution
X(H → H) of the associated Riccati equation (4.14), i.e., the graph Γ(X) of X is
T -invariant. Then we have(

I 0
−X I

)(
A Q1

Q2 −A∗
)(

I 0
X I

)
=
(
A+Q1X Q1

0 −A∗ −XQ1

)
(4.20)

on D(A) ∩X−1D(A∗)×D(A∗) ∩Q−1
1 D(X). For λ ∈ C and u ∈ D(X) we obtain

u ∈ ker
(
(A+Q1X − λ)|D(A)∩X−1D(A∗)

)k ⇔
(
u
Xu

)
∈ ker(T − λ)k, (4.21)

in particular σp(A+Q1X|D(A)∩X−1D(A∗)) = σp(T |Γ(X)).
If X : H → H is bounded, then

%
(
(A+Q1X)|D(A)∩X−1D(A∗)

)
= %(T |Γ(X)).

If moreover XD(A) ⊂ D(A∗), then Γ(X) is also (T − λ)−1-invariant for every
λ ∈ %(T ) ∩ %(A+Q1X).

Proof. Let u ∈ D(A) ∩X−1D(A∗), v ∈ D(A∗). Then, using the Riccati equation,(
A Q1

Q2 −A∗
)(

I 0
X I

)(
u
v

)
=
(
A Q1

Q2 −A∗
)(

u
Xu+ v

)
=
(
Au+Q1Xu+Q1v
Q2u−A∗Xu−A∗v

)
=
(

Au+Q1Xu+Q1v
X(Au+Q1Xu)−A∗v

)
.

If Q1v ∈ D(X), we can rewrite this as(
A Q1

Q2 −A∗
)(

I 0
X I

)(
u
v

)
=
(

Au+Q1Xu+Q1v
X(Au+Q1Xu+Q1v)−A∗v −XQ1v

)
=
(
I 0
X I

)(
A+Q1X Q1

0 −A∗ −XQ1

)(
u
v

)
and obtain (4.20). Now we consider the mapping

ϕ : D(X) → Γ(X), u 7→
(
u
Xu

)
,

which is bijective and maps D(A) ∩X−1D(A∗) onto Γ(X) ∩ D(T ). This implies

ϕ−1T |Γ(X)ϕ : D(A) ∩X−1D(A∗) → D(X), u 7→ Au+Q1Xu.

Consequently

ϕ−1(T |Γ(X) − λ)kϕ =
(
(A+Q1X − λ)|D(A)∩X−1D(A∗)

)k ; (4.22)
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hence (4.21) and the equality of the point spectra.
If X is bounded, then ϕ : H → Γ(X) is an isomorphism, and (4.22) with k = 1

implies the equality of the resolvent sets. Now suppose that XD(A) ⊂ D(A∗) too.
Then (4.20) holds on D(A)×D(A∗). Let E = A+Q1X, F = −A∗ −XQ1,

T̃ =
(
E Q1

0 F

)
,

and λ ∈ %(T )∩%(E). Then λ ∈ %(T̃ ). In particular, T̃ −λ is surjective and so F −λ
must be surjective. From the surjectivity of E − λ and the injectivity of T̃ − λ it
follows that F − λ is also injective. Consequently

(T̃ − λ)−1 =
(

(E − λ)−1 −(E − λ)−1Q1(F − λ)−1

0 (F − λ)−1

)
.

Therefore H × {0} is (T̃ − λ)−1-invariant. Since
(

I 0
X I

)
maps H × {0} onto Γ(X),

we conclude that Γ(X) is (T − λ)−1-invariant. �

Remark 4.3.8 For a diagonally dominant Hamiltonian operator matrix and solu-
tions X,Y : H → H of the Riccati equations

A∗X +XA+XQ1X −Q2 = 0 on D(A),
AY + Y A∗ − Y Q2Y +Q1 = 0 on D(A∗)

such that
(

I Y
X I

)
is invertible, we obtain the block diagonalisation(

I Y
X I

)−1(
A Q1

Q2 −A∗
)(

I Y
X I

)
=
(
A+Q1X 0

0 −A∗ +Q2Y

)
.

y

With the following proposition we establish a one-to-one correspondence between
bounded solutions of the Riccati equation and invariant graph subspaces of bounded
operators compatible with a spectral l2-decomposition of the Hamiltonian.

Proposition 4.3.9 Consider a diagonally dominant Hamiltonian operator T with
Q1 : H → H bounded and a finitely determining l2-decomposition H×H =

⊕2
k∈N Vk.

Suppose that there is a sequence (zk)k∈N in %(A) with ‖(A− zk)−1‖ → 0.

(i) If the graph Γ(X) of a bounded operator X : H → H is T -invariant compatible
with

⊕2
k Vk, i.e.

Γ(X) =
⊕2

k∈N
Uk with Uk ⊂ Vk T -invariant,

then X satisfies the Riccati equation (4.18) and we have

σ(T |Γ(X)) = σ(A+Q1X).

The subspaces Dk obtained by projection of Uk onto the first component form
a finitely determining l2-decomposition for A+Q1X.
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(ii) If A and T have compact resolvents, the decomposition
⊕2

k Vk is finitely spec-
tral, and X : H → H is a bounded solution of the Riccati equation (4.18), then
the graph Γ(X) of X is T -invariant compatible with

⊕2
k Vk.

Proof. (i): The family (Dk)k∈N forms an l2-decomposition by Lemma 4.2.3. From
the identity (4.22) in the previous proposition, we see that since each Uk is the
span of certain root vectors of T , Dk is the span of the corresponding root vectors of
A+Q1X|D(A)∩X−1D(A∗). SinceQ1 andX are bounded, we have ‖Q1X(A−zk)−1‖ < 1
for k sufficiently large. Then

A+Q1X − zk = (I +Q1X(A− zk)−1)(A− zk)

implies zk ∈ %(A + Q1X). Applying Proposition 2.3.8, we deduce that (Dk)k∈N
forms a finitely determining l2-decomposition for A + Q1X. In particular,

∑
k Dk

is a core for A + Q1X and hence (since Q1X is bounded) for A. Since moreover∑
k Dk ⊂ D(A) ∩X−1D(A∗), we can apply Proposition 4.3.5 to obtain (4.18). Now

Proposition 4.3.7 yields %(A+Q1X) = %(T |Γ(X)).
(ii): Since A has compact resolvent and

(A+Q1X − zk)−1 = (A− zk)−1
(
I +Q1X(A− zk)−1

)−1

for k sufficiently large, A + Q1X has compact resolvent too. By Proposition 4.3.7,
Γ(X) is (T − λ)−1-invariant for all λ ∈ %(T ) \ σ(A + Q1X), where σ(A + Q1X)
has only finitely many points in any bounded subset of C. We can thus apply the
reasoning from the proof of Proposition 2.4.5 to get Γ(X) =

⊕2
k Γ(X) ∩ Vk. �

4.4 Hamiltonian operators with spectral
l2-decompositions

Now we use the perturbation theory from Chapter 3 to obtain finitely spectral l2-
decompositions for Hamiltonian operator matrices where A is normal with compact
resolvent and Q1, Q2 are p-subordinate to A. For a nonnegative Hamiltonian, the
l2-decomposition enables us to prove the existence of infinitely many selfadjoint
solutions of the Riccati equation, see Theorem 4.4.1; in particular, we obtain a
nonnegative and a nonpositive solution X±. For a Hamiltonian such that Q1 and
Q2 are bounded, Theorem 4.4.4 yields a representation of all bounded solutions of the
Riccati equation in terms of invariant subspaces. In Theorem 4.4.5 we finally show
the existence of bounded, boundedly invertible, selfadjoint solutions for a uniformly
positive Hamiltonian with Q1, Q2 bounded and A skew-adjoint. We also obtain a
representation of every bounded solution as X = X+P + X−(I − P ) where P is a
projection.

For a dichotomous Hamiltonian operator with bounded Q1, Q2, the existence of
a selfadjoint nonnegative and nonpositive solution of the Riccati equation was shown
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by Langer, Ran and van de Rotten [31]. Under the additional assumption that −A
is maximal uniformly sectorial, which implies that the spectrum of A is contained
in a sector in the right half-plane strictly separated from the imaginary axis, the
boundedness of the nonnegative and bounded invertibility of the nonpositive solution
was shown. A similar result was obtained by Bubák, van der Mee and Ran [10] for
a Hamiltonian that is exponentially dichotomous with Q1 compact. By contrast,
Theorem 4.4.1 also holds for unbounded operators Q1, Q2 and non-dichotomous
Hamiltonians, compare Example 5.1.1. In Theorem 4.4.5, the operator A has its
spectrum on the imaginary axis.

For a Riesz-spectral Hamiltonian T , Kuiper and Zwart [29, Theorem 5.6] ob-
tained a representation of all bounded solutions of the Riccati equation in terms
of eigenvectors of the Hamiltonian. Under the assumption that all eigenvalues of
T are simple, the authors gave conditions such that T is Riesz-spectral. Theo-
rem 4.4.4 applies to the more general class of Hamiltonians with a finitely spectral
l2-decomposition and requires no assumption on the eigenvalue multiplicities.

For the Riccati equation from optimal control, the existence of a bounded non-
negative solution is usually proved via a semigroup based approach, see e.g. [14].
Curtain, Iftime, and Zwart [13] obtained the representation X = X+P +X−(I −P )
for all bounded selfadjoint solutions without requiring that the Hamiltonian is uni-
formly positive. However, they had to assume the existence of a bounded, boundedly
invertible, negative solution X− of the Riccati equation.

Recall that the point spectrum of a Hamiltonian with finitely determining l2-
decomposition is symmetric with respect to the imaginary axis by Corollary 4.1.3.
Also recall the notation N(r,A) for the sum of the multiplicities of all eigenvalues
λ of an operator A with |λ| ≤ r, see (3.24).

Theorem 4.4.1 Let T be a nonnegative Hamiltonian operator matrix such that A
is normal with compact resolvent, Q1, Q2 are p-subordinate to A with 0 ≤ p < 1,
and

ker(A− it) ∩ kerQ1 = ker(A− it) ∩ kerQ2 = {0} for all t ∈ R.

Suppose that the spectrum of A lies on finitely many rays from the origin and that

lim inf
r→∞

N(r,A)
r1−p

<∞.

Then σ(T ) ∩ iR = ∅ and T has a compact resolvent and a finitely spectral l2-
decomposition

⊕2
k∈N Vk.

Let σ(T ) = σ ·∪ τ be a partition of the spectrum of T which separates skew-
conjugate points. If

(a) ker(A− λ) ∩ kerQ1 = {0} for all λ ∈ C,
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then the compatible subspace associated with σ is the graph Γ(X) of a selfadjoint
core solution X(H → H) of the Riccati equation

X(A+Q1X) = Q2 −A∗X. (4.23)

The solutions X± corresponding to σ = σ±p (T ) are nonnegative and nonpositive,
respectively. If

(b) ker(A− λ) ∩ kerQ2 = {0} for all λ ∈ C,

then the compatible subspace associated with σ is the graph L(Y ) of a selfadjoint core
solution Y (H → H) of

Y (Q2Y −A∗) = AY +Q1. (4.24)

The solutions Y± corresponding to σ = σ±p (T ) are nonnegative and nonpositive,
respectively.

Proof. Since A is a normal operator, we have ker(A − λ) = ker(A∗ − λ) for λ ∈ C
and ‖Au‖ = ‖A∗u‖ for u ∈ D(A) = D(A∗). Hence N(r,A) = N(r,A∗) and Q1 is
p-subordinate to A∗. Proposition 3.4.5 thus shows that T has a compact resolvent
and a finitely spectral l2-decomposition; Proposition 4.1.6 implies σ(T ) ∩ iR = ∅.

We can now find an open discM ⊂ %(A)∩%(T ) with centre on the imaginary axis.
By Proposition 4.2.8, property (a) implies property (a2) from Proposition 4.2.11;
similarly, (b) implies (b2). Propositions 4.2.11, 4.3.4 and Remark 4.3.6 thus yield
the existence of the core solutions. The solutionsX± and Y± corresponding to σ±p (T )
are nonnegative and nonpositive by Lemma 4.2.10. �

Remark 4.4.2 Since T has a compact resolvent, σ(T ) consists of countably many
skew-conjugate pairs of eigenvalues (for dimH = ∞). A partition which separates
skew-conjugate points then amounts to the choice of one eigenvalue from each skew-
conjugate pair. There are thus uncountably many such partitions and we obtain
uncountably many corresponding core solutions of (4.23) and (4.24), respectively.

In contrast to the discrete nature of the choices from the eigenvalue pairs, a family
of solutions depending on a continuous parameter is also possible, see Example 5.1.3.

y

Corollary 4.4.3 Let the assumptions of Theorem 4.4.1 be satisfied.

(i) If X is a selfadjoint core solution of (4.23) such that Γ(X) is compatible with⊕2
k Vk and the condition (b) from Theorem 4.4.1 holds, then X is injective.

Similarly, if Y is a selfadjoint core solution of (4.24) such that L(Y ) is com-
patible with

⊕2
k Vk and (a) holds, then Y is injective.

(ii) Let both (a) and (b) be satisfied, σ(T ) = σ ·∪ τ a partition which separates
skew-conjugate points, and X the core solution of (4.23) corresponding to σ.
Then X is injective and Y = X−1 is the core solution of (4.24) corresponding
to σ.
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(iii) Suppose that (a) and Q2 > 0 or that (b) and Q1 > 0 holds. Then the solutions
X± of (4.23) corresponding to σ±p (T ) are positive and negative, respectively;
they are the uniquely determined nonnegative and nonpositive selfadjoint core
solutions of (4.23) whose graph is compatible with

⊕2
k Vk.

Proof. (i): From the proof of Theorem 4.4.1 we know that there exists an open disc
M ⊂ %(A)∩%(T ) and that the properties (a) and (b) imply (4.12) and (4.13), respec-
tively. Suppose that X is selfadjoint, Γ(X) is T -invariant compatible with

⊕2
k Vk,

and (b) holds. Then Γ(X) is J1-neutral, (T − λ)−1-invariant and Proposition 4.2.6
implies that Γ(X) = L(Y0) with some operator Y0. Hence X is injective. The proof
for Y is analogous.

(ii): This is a direct consequence of (i).
(iii): X± are injective by (ii) and thus positive and negative by Lemma 4.1.4.

Let X be nonnegative selfadjoint with

Γ(X) =
⊕2

k∈N
Uk, Uk ⊂ Vk T -invariant.

Then Γ(X) is J2-nonnegative and each Uk is the span of certain root vectors of T . By
Proposition 4.1.7, the root subspaces of T for eigenvalues in the right/left half-plane
are J2-positive/-negative. Therefore, Uk is spanned by root vectors corresponding to
the right half-plane and we obtain Γ(X) ⊂ U+ where U+ = Γ(X+) is the compatible
subspace associated with the spectrum in the right half-plane. So X ⊂ X+ and
hence X = X+ since both operators are selfadjoint. The proof of the uniqueness of
X− is analogous. �

Hamiltonian operators with bounded Q1 and Q2 typically occur in the theory
of optimal control. For this class of Hamiltonians the next theorem establishes a
one-to-one correspondence between bounded solutions of the Riccati equation and
compatible T -invariant graph subspaces. Note that we do not need the nonnegativity
of T here.

Theorem 4.4.4 Consider a Hamiltonian operator matrix T with Q1, Q2 : H → H
bounded. Suppose that A is normal with compact resolvent, σ(A) lies on finitely
many rays from the origin, and

lim inf
r→∞

N(r,A)
r

<∞.

Then T has a compact resolvent and a finitely spectral l2-decomposition
⊕2

k∈N Vk.
The bounded operator X : H → H is a solution of the Riccati equation

A∗X +XA+XQ1X −Q2 = 0 on D(A) (4.25)

if and only if its graph Γ(X) is T -invariant compatible with
⊕2

k Vk. In this case we
have σ(T |Γ(X)) = σ(A+Q1X).



138 4. Hamiltonian operators and Riccati equations

Proof. As in the proof of Theorem 4.4.1 we can use Proposition 3.4.5, now with
p = 0, to deduce the compactness of the resolvent of T and the existence of the
l2-decomposition. Since the spectrum of A lies on a finite number of rays, there
is a sequence (zk)k in %(A) with ‖(A − zk)−1‖ → 0. Hence all assumptions of
Proposition 4.3.9 are fulfilled and the assertion follows. �

For uniformly positive Hamiltonians, i.e. uniformly positive Q1 and Q2, we will
now prove the existence of bounded, boundedly invertible solutions of the Riccati
equation and derive the representation X = X+P +X−(I − P ).

Theorem 4.4.5 Consider a uniformly positive Hamiltonian operator matrix with
A(H → H) skew-adjoint with compact resolvent, Q1, Q2 : H → H bounded and
Q1, Q2 ≥ γ. Suppose that almost all eigenvalues of A are simple and

σ(A) ⊂
{
±ir±k

∣∣ k ∈ N}
where (r±k )k∈N are monotonically increasing sequences of nonnegative numbers such
that

r±k+1 − r±k ≥ 2δb for almost all k, b = max
{
‖Q1‖, ‖Q2‖

}
, δ >

4 + π

π
.

Then T has a compact resolvent, almost all of its eigenvalues are simple,

σ(T ) ⊂
{
z ∈ C

∣∣ γ ≤ |Re z| ≤ b
}
,

and T admits a Riesz basis of eigenvectors and finitely many Jordan chains.
For every partition σp(T ) = σ ·∪ τ which separates skew-conjugate points, the

compatible subspace associated with σ is the graph Γ(X) of a selfadjoint, bounded,
boundedly invertible solution X : H → H of the Riccati equation

−AX +XA+XQ1X −Q2 = 0 on D(A); (4.26)

in particular XD(A) ⊂ D(A). The solutions X± corresponding to σ±p (T ) are uni-
formly positive and negative, respectively; they are the uniquely determined nonnega-
tive and nonpositive bounded solutions of (4.26).

A bounded operator X : H → H is a solution of (4.26) if and only if its
graph Γ(X) is T -invariant compatible with the l2-decomposition of root subspaces⊕2

λ∈σ(T ) L(λ). In this case there is a projection P : H → H such that

X = X+P +X−(I − P ).

Finally, every bounded selfadjoint solution X of (4.26) is boundedly invertible
and satisfies

XD(A) = D(A), X− ≤ X ≤ X+, X−1
− ≤ X−1 ≤ X−1

+ .
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Proof. We apply Theorem 3.4.7 with p = β = 0, α = δb to the decomposition

T = G+ S, G =
(
A 0
0 A

)
, S =

(
0 Q1

Q2 0

)
.

G is skew-adjoint with compact resolvent, σ(G) ⊂ {±ir±k | k ∈ N}, and almost all
of its eigenvalues have multiplicity 2. S is bounded with ‖S‖ = b. Consequently, T
has a compact resolvent, almost all eigenvalues lie inside rectangular regions

K±
k =

{
±ix+ y

∣∣ |x− r±k | ≤ δb, |y| ≤ δb
}
,

and N(K±
k , T ) = 2 for almost all k. Since the spectrum of T is symmetric with

respect to the imaginary axis and due to Proposition 4.1.6, almost all K±
k contain

only one skew-conjugate pair of simple eigenvalues λ, −λ with |Reλ| ≥ γ. Therefore,
Theorem 3.4.7 implies that the root subspaces of T form an l2-decomposition of
H ×H and that almost all of them have dimension one. Lemma 2.3.15 then yields
the existence of the Riesz basis of eigenvectors and finitely many Jordan chains. In
view of Remark 3.4.2 we have σ(T ) ⊂ {|Re z| ≤ b} and obtain the asserted shape of
the spectrum.

With zk = k, k ≥ 1, Proposition 4.3.9 yields the correspondence between ar-
bitrary bounded solutions of (4.26) and invariant graph subspaces compatible with⊕2

λ L(λ). By Proposition 4.2.12, the compatible subspace associated with σ is the
graph of a selfadjoint isomorphism X. In particular, X solves (4.26). The solutions
X± are the unique nonnegative/nonpositive solutions by Corollary 4.4.3. Moreover,
the graph of any bounded solution may be written as

Γ(X) =
⊕2

Re λk>0

Uk ⊕
⊕2

Re λk<0

Uk with Uk ⊂ L(λk) T -invariant,

where (λk)k∈N are the eigenvalues of T . If Dk is the subspace obtained by projection
of Uk onto the first component, we have

H =
⊕2

Re λk>0

Dk ⊕
⊕2

Re λk<0

Dk

by Lemma 4.2.3. Let P : H → H be the projection onto
⊕2

Re λk>0Dk corresponding
to this decomposition. We obtain X = X+P +X−(I − P ) since X|Dk

= X±|Dk
for

Reλk ≷ 0.
Now let X be a bounded selfadjoint solution of (4.26). Taking the difference of

the Riccati equations for X and X+, we obtain

0 = (Au|(X+ −X)u) + ((X+ −X)u|Au) + (Q1X+u|X+u)− (Q1Xu|Xu)
= ((A+Q1X+)u|(X+ −X)u) + ((X+ −X)u|(A+Q1X+)u)

− (Q1(X+ −X)u|(X+ −X)u)
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for u ∈ D(A). With ∆ = X+ −X and t ∈ R we deduce

2 Re
(
(A+Q1X+ − it)u

∣∣∆u) = (Q1∆u|∆u) ≥ 0.

Proposition 4.3.9 implies that

σ(A+Q1X+) = σ(T |U+) ⊂ {z ∈ C | Re z ≥ γ}.

Thus
Re
(
∆u
∣∣(A+Q1X+ − it)−1u

)
≥ 0 for u ∈ H.

Since all eigenvalues of A+Q1X+ lie in the right half-plane, Proposition 2.6.4 yields

1
π

∫ ′

R

(A+Q1X+ − it)−1u dt = u for u ∈
∑

λ∈σp(A+Q1X+)

L(λ);

hence

π(∆u|u) =
∫ ′

R

Re
(
∆u
∣∣(A+Q1X+ − it)−1u

)
dt ≥ 0 for u ∈

∑
λ∈σp(A+Q1X+)

L(λ).

By Propositions 4.3.7 and 4.3.9 the root subspaces of A+Q1X+ form an l2-decom-
position of H. Thus (∆u|u) ≥ 0 for all u ∈ H, that is X ≤ X+. An analogous
reasoning yields X− ≤ X. From Proposition 4.2.5 we see that X is injective and we
have the decomposition

L(X−1) = W+ ⊕W−, W± =
⊕2

Re λk≷0

Uk, Uk ⊂ L(λk) T -invariant.

As in the proof of Proposition 4.2.12, this implies that X−1 is bounded. Using the
fundamental symmetry J2 : (u, v) 7→ (v, u) and setting

T̃ = J2TJ2 =
(
A Q2

Q1 A

)
, Ũk = J2Uk, Ṽk = J2L(λk),

we have that
⊕2

k∈N Ṽk is an l2-decomposition of root subspaces for T̃ and

Γ(X−1) = J2L(X−1) =
⊕2

k∈N
Ũk, Ũk ⊂ Ṽk T̃ -invariant.

Proposition 4.3.9 applied to the Hamiltonian T̃ then yields X−1D(A) ⊂ D(A) and
thus XD(A) = D(A). Finally, the same calculations as above for X−1, X−1

± and T̃
yield the relation X−1

− ≤ X−1 ≤ X−1
+ . �

In view of Remark 3.4.14, the assumptions onA in Theorems 4.4.1, 4.4.4 and 4.4.5
to be normal with spectrum on rays from the origin can be relaxed:
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Remark 4.4.6 Let A be an operator with compact resolvent and a Riesz basis of
Jordan chains, let Q1 be p-subordinate to A∗, Q2 p-subordinate to A, and consider
the decomposition

T = G+ S with G =
(
A 0
0 −A∗

)
, S =

(
0 Q1

Q2 0

)
.

Then A∗ and G also have a compact resolvent and a Riesz basis of Jordan chains.
Furthermore, S is p-subordinate to G, cf. Proposition 3.4.5. If A satisfies the condi-
tion (i) from Proposition 3.4.13, then so does G and that proposition implies

JTJ−1 = JGJ−1 + JSJ−1 = G0 + S0 + JSJ−1

where S0 + JSJ−1 is p-subordinate to G0. By Theorem 3.4.4, JTJ−1 and hence
also T have a finitely spectral l2-decomposition, and all conclusions of Theorem 4.4.1
and Corollary 4.4.3 hold if some assumptions are adapted: We need (4.6) to obtain
σ(T ) ∩ iR = ∅ and conditions (a2) and (b2) of Proposition 4.2.11 to show the
existence of core solutions of (4.23) and (4.24), respectively.

Analogously, Theorem 4.4.4 continues to hold if the spectrum of A is located in
strips around rays from the origin. For Theorem 4.4.5 we use case (ii) of Proposi-
tion 3.4.13 and obtain the condition

σ(A) ⊂
{
±ir±k + y

∣∣ k ∈ N, y ∈ [−α, α]
}

and b = ‖S0 + JSJ−1‖. y
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Chapter 5

Examples and applications

In this chapter we present examples and applications for the theorems from the pre-
vious chapter on Hamiltonian operator matrices and solutions of Riccati equations.
In Section 5.1 we consider explicitly solvable examples as well as non-trivial Riccati
equations involving differential and multiplication operators.

In Section 5.2 the theory is applied to the Riccati equation from optimal control.
We prove the existence of infinitely many selfadjoint solutions. So far, only the
existence of a nonnegative and a nonpositive solution has been shown [14, 31, 10].
Moreover, we study the heat equation with an unbounded control operator.

5.1 Examples for Hamiltonians with spectral
l2-decompositions

To illustrate the conditions and results from Section 4.4, we consider some examples
in which determining l2-decompositions of the Hamiltonian and solutions of the
Riccati equation can be explicitly calculated. The examples include cases with
unbounded solutions, invertible solutions with unbounded inverse, solutions that
are not invertible, non-selfadjoint solutions, a family of solutions depending on a
continuous parameter, and a Hamiltonian having Jordan chains of arbitrary length.
After this, we apply the theory to non-trivial examples of Riccati equations whose
coefficients are differential and multiplication operators.

Let T be a nonnegative Hamiltonian with compact resolvent such that A is
normal and the operators A,Q1, Q2(H → H) have a common finitely determining
orthogonal decomposition

H =
⊕
k≥1

Hk.

Then the subspaces Vk = Hk × Hk constitute a finitely determining orthogonal
decomposition for T (cf. Proposition 2.3.8).

143



144 5. Examples and applications

The first two examples show the existence of solutions of the Riccati equation
that are unbounded, bounded and not boundedly invertible, and unbounded and
not boundedly invertible, respectively.

Example 5.1.1 Let dimHk = 1, Hk = Cek where (ek)k≥1 is an orthonormal basis
of H. Let Q1 = I, Aek = iakek, Q2ek = q2kek with ak, qk ∈ R>0; so T |Vk

is
represented by the matrix

T |Vk
∼=
(
iak 1
q2k iak

)
. (5.1)

Consequently, T |Vk
has the eigenvalues and corresponding eigenvectors

λ±k = iak ± qk, v±k =
(

ek
±qkek

)
.

We choose ak = k2, qk =
√
k for k ≥ 1 so that Q2 is unbounded, 1/2-subordinate to

A, and T is positive: Theorem 4.4.1 can be applied. In particular, T has indeed a
compact resolvent and H ×H =

⊕
k Vk is a finitely spectral decomposition for T .

The selfadjoint core solutionXσ corresponding to σ from a partition σ(T ) = σ ·∪ τ
which separates skew-conjugate points is given by

Γ(Xσ) =
⊕
k≥1

Uk with Uk =

{
Cv+

k if λ+
k ∈ σ,

Cv−k if λ−k ∈ σ.
(5.2)

Hence

Xσek =

{
qkek =

√
k ek if λ+

k ∈ σ,

−qkek = −
√
k ek if λ−k ∈ σ;

(5.3)

in particular, Xσ is unbounded. The positive and negative solutions are given by
X±ek = ±qkek. Moreover, if a densely defined solution X satisfies Γ(X) =

⊕
k Uk

with Uk ⊂ Vk T -invariant, then for every k either Uk = Cv+
k or Uk = Cv−k ; hence

X = Xσ with σ appropriate. Every densely defined solution with Γ(X) compatible
with

⊕
k Vk is thus selfadjoint, unbounded and there are infinitely many of these.

Consider the sequence

xk =

(
2√
k
ek

0

)
=

(
1√
k
ek

ek

)
+

(
1√
k
ek

−ek

)
=

√
1 + k

k

v+
k

‖v+
k ‖

+

√
1 + k

k

v−k
‖v−k ‖

.

We have limxk = 0 while the components (1 + k−1)1/2v±k /‖v
±
k ‖ with respect to

Vk = Cv+
k ⊕Cv

−
k do not converge to zero. Consequently the algebraic direct sum⊕

k≥1

Cv+
k u

⊕
k≥1

Cv−k
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is not topological direct, the system of root subspaces (Cv+
k ,Cv

−
k )k≥1 does not form

an l2-decomposition, and the operator T is neither spectral nor dichotomous; yet
a strip around the imaginary axis belongs to %(T ); compare Remark 2.1.9, Theo-
rem 2.3.17, and Definition 2.4.8. y

Example 5.1.2 We modify Example 5.1.1 by setting qk = 1/k for k ≥ 1. So Q2 is
now bounded and Theorems 4.4.1 and 4.4.4 can be applied. The solutions Xσ,

Xσek = ±1
k
ek if λ±k ∈ σ,

are bounded, selfadjoint, injective, yet not boundedly invertible. Just as in Exam-
ple 5.1.1, the solutions Xσ cover all possible densely defined solutions whose graph
is compatible with

⊕
k Vk, and there are infinitely many of these. Again, the direct

sum
⊕

kCv
+
k u

⊕
kCv

−
k is not topological direct and the system of root subspaces

does not form an l2-decomposition.
We can further modify the example by setting

qk =

{√
k if k odd,

k−1 if k even.

The solutions Xσ are then unbounded and not boundedly invertible. y

Now we illustrate how multiple eigenvalues of the Hamiltonian lead to families
of selfadjoint and non-selfadjoint solutions of the Riccati equation which depend on
a continuous parameter.

Example 5.1.3 Suppose that dimH1 = 2, dimHk = 1 for k ≥ 2, Q1 = Q2 = I,
and A|Hk

= ik2IHk
for all k. So we are in the situation of Theorem 4.4.5. Let (e1, e2)

be an orthonormal basis of H1. Then T |V1 has the double eigenvalues i ± 1 with a
corresponding basis of eigenvectors

v±1 =
(
e1
±e1

)
, v±2 =

(
e2
±e2

)
.

Consider the invariant subspace

U1 = span
{
v+
1 + rv+

2 ,−rv
−
1 + v−2

}
⊂ V1 with |r| < 1. (5.4)

Then (
0
x

)
= α(v+

1 + rv+
2 ) + β(−rv−1 + v−2 ) =

(
(α− rβ)e1 + (rα+ β)e2
(α+ rβ)e1 + (rα− β)e2

)
implies

α− rβ = rα+ β = 0 ⇒ (r2 + 1)β = 0 ⇒ β = 0 ⇒ α = 0, x = 0.
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Hence U1 = Γ(X1) with

X1(e1 + re2) = e1 + re2, X1(−re1 + e2) = re1 − e2.

From (e1 + re2| − re1 + e2) = 0 it follows that X1 is selfadjoint. Together with
appropriate choices of invariant subspaces Uk ⊂ Vk, k ≥ 2, this leads to bounded
selfadjoint solutions X of the Riccati equation associated with T which depend on
the parameter r.

For the invariant subspace

Ũ1 = span
{
v+
1 , rv

−
1 + v−2

}
⊂ V1 with r ∈ C, (5.5)

we have the implication(
0
x

)
= αv+

1 + β(rv−1 + v−2 ) =
(

(α+ rβ)e1 + βe2
(α− rβ)e1 − βe2

)
⇒ α+ rβ = β = 0 ⇒ α = 0 ⇒ x = 0.

So now Ũ1 = Γ(X̃1) with X̃1e1 = e1 and

X̃1e2 = X̃1(re1 + e2)− rX̃1e1 = −2re1 − e2.

With respect to the orthonormal basis (e1, e2), X̃1 is thus represented by the matrix

X̃1
∼=
(

1 −2r
0 −1

)
,

i.e., X̃1 is not selfadjoint for r 6= 0. We obtain bounded non-selfadjoint solutions of
the Riccati equation which depend on r. y

This example features solutions that are not invertible:

Example 5.1.4 Let dimHk = 1 for all k, A selfadjoint, Q1 = I, and A|H1 = 1,
Q2|H1 = 0, i.e.

T |V1
∼=
(

1 1
0 −1

)
.

So in Theorem 4.4.1, assumption (a) is fulfilled while (b) is not. Eigenvectors cor-
responding to the eigenvalues 1 and −1 of T |V1 are(

1
0

)
and

(
1
−2

)
,

respectively. Hence, for the solution Xσ corresponding to σ such that 1 ∈ σ, we have
H1 ⊂ kerXσ; equivalently, Γ(Xσ) can not be written as a graph subspace L(Yσ). y
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The following example shows that in the setting of Theorems 4.4.1 and 4.4.4
Hamiltonians with Jordan chains of arbitrary length are possible.

Example 5.1.5 Suppose that dimHk = k, Q1 = Q2 and

A|Hk
= Ak =


ik2 1

−1 ik2 . . .
. . . . . . 1

−1 ik2

 , Q1|Hk
= Bk =


α 1

1 α
. . .

. . . . . . 1
1 α


with α > 2. So A is skew-adjoint and T |Vk

=
(
Ak Bk

Bk Ak

)
. Straightforward calcula-

tions show that

(k2 − 2)‖x‖2 ≤ (iAkx|x) ≤ (k2 + 2)‖x‖2,

(α− 2)‖x‖2 ≤ (Bkx|x) ≤ (α+ 2)‖x‖2

for all x ∈ Hk, k ≥ 1. From this it follows that A has a compact resolvent and
satisfies limr→∞N(r,A)r−1 < ∞. Furthermore, Q1 is bounded and positive, and
Theorems 4.4.1 and 4.4.4 are thus applicable. Now

Ak+Bk =


ik2 + α 2

. . . . . .
. . . 2

ik2 + α

 , Ak−Bk =


ik2 − α

−2
. . .
. . . . . .

−2 ik2 − α


and (

T |Vk
− (ik2 + α)

)(x
x

)
=
((
Ak +Bk − (ik2 + α)

)
x(

Ak +Bk − (ik2 + α)
)
x

)
,

(
T |Vk

− (ik2 − α)
)( x
−x

)
=
( (

Ak −Bk − (ik2 − α)
)
x

−
(
Ak −Bk − (ik2 − α)

)
x

)
.

Hence T has Jordan chains of arbitrary length. y

We apply the theory from Chapter 4 to Riccati equations whose coefficients are
ordinary differential operators. In the first example, we allow Q1 and Q2 to be
unbounded.

Example 5.1.6 Let H = L2([a, b]) and consider the operators A, Q1, Q2 on H
given by

Au = u′′′, Q1u = −(g1u′)′ + h1u, Q2u = −(g2u′)′ + h2u,

D(A) =
{
u ∈ W 3,2([a, b])

∣∣u(a) = u(b) = 0, u′(a) = u′(b)
}
,

D(Q1) = D(Q2) =
{
u ∈ C2([a, b])

∣∣u(a) = u(b) = 0
}
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where g1, g2 ∈ C1([a, b]), h1, h2 ∈ L2([a, b]), g1, g2, h1, h2 ≥ 0. Then A is skew-adjoint
with compact resolvent, 0 ∈ %(A), and

sup
r>0

N(r,A)
r1/3

<∞

(compare Example 3.5.1; the boundary conditions of A are regular). The operators
Q1 and Q2 are symmetric, nonnegative and 2/3-subordinate to A (see Proposi-
tions 3.2.15 and 3.2.16). Moreover Q1 is positive if g1 > 0 or h1 > 0, analogously
for Q2. If Q1 and Q2 are positive, then the Hamiltonian operator T corresponding
to A,Q1, Q2 satisfies σp(T ) ∩ iR = ∅ and Theorem 4.4.1 yields the existence of
infinitely many selfadjoint injective core solutions of

X(A+Q1X) = Q2 −A∗X.

All conclusions still hold if we replace A with eiϕA, ϕ ∈ [0, 2π]. y

For a skew-adjoint differential operator A and bounded, boundedly invertible
multiplication operators Q1, Q2, we prove the existence of bounded, boundedly
invertible solutions of the Riccati equation:

Example 5.1.7 Let H = L2([0, 1]) and consider the operators

Au = iu′′, D(A) =
{
u ∈W 2,2([0, 1])

∣∣u(0) = u(1) = 0
}
,

Q1u = f1u, Q2u = f2u, D(Q1) = D(Q2) = H

with f1, f2 ∈ L∞([0, 1]), f1, f2 ≥ ε > 0. A is skew-adjoint with compact resolvent
and simple eigenvalues. Q1 and Q2 are bounded and uniformly positive. The eigen-
values of A are λk = −iπ2k2, k ≥ 1, which implies |λk+1| − |λk| → ∞ as k → ∞.
Hence, all conditions of Theorem 4.4.5 are fulfilled, and in particular we obtain the
existence of infinitely many selfadjoint, bounded, boundedly invertible solutions of

−AX +XA+XQ1X −Q2 = 0 on D(A).

We can also apply the theorem if A is the operator of first derivation u 7→ u′ with
boundary condition u(0) = u(1). In this case the eigenvalues of A are λk = 2πik
with k ∈ Z, i.e. λk+1 − λk = 2πi, and we need the additional assumption

max
{
‖f1‖∞, ‖f2‖∞

}
<

π2

4 + π

to guarantee the spectral condition of Theorem 4.4.5. y
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5.2 Hamiltonian operators in optimal control

We apply the results from Section 4.4 to the linear quadratic optimal control of
infinite-dimensional systems. In Theorem 5.2.3 we prove the existence of infinitely
many selfadjoint solutions of the Riccati equation and obtain a representation of all
bounded solutions in terms of invariant subspaces of the Hamiltonian. As examples,
we consider heat and wave equations with distributed control; the final example
features an unbounded control operator B.

The only known methods to prove the existence of solutions of the Riccati equa-
tion for infinite-dimensional control systems seem to be the semigroup based ap-
proach from control theory, see Theorem 5.2.2, and the methods due to Langer,
Ran and van de Rotten [31], and Bubák, van der Mee and Ran [10] for the case of
dichotomous Hamiltonians. In both cases, only the existence of a nonnegative and
a nonpositive solution has been shown.

A characterisation of all bounded solutions of the Riccati equation in terms
of eigenvectors of the Hamiltonian was obtained by Kuiper and Zwart [29, The-
orem 5.6] for the case of a Riesz-spectral Hamiltonian. Under the assumption of
the existence of a bounded, boundedly invertible, negative solution of the Riccati
equation, Curtain, Iftime and Zwart [13] derived a representation of all bounded
selfadjoint solutions in terms of invariant subspaces of the semigroup generated by
A − BB∗X+; here X+ is the minimal nonnegative solution of the Riccati equa-
tion. Theorem 5.2.3 allows for the more general class of Hamiltonians with a finitely
spectral l2-decomposition and has no a priori assumption about the existence of a
solution of the Riccati equation.

We start by briefly reviewing the concepts of linear quadratic optimal control.
For more details we refer to the book of Curtain and Zwart [14] and to the intro-
duction.

Definition 5.2.1 A control system or state linear system is a system

ż(t) = Az(t) +Bu(t) for t ≥ 0, z(0) = z0,

y(t) = Cz(t)
(5.6)

with operators on Hilbert spaces A(Z → Z), B : U → Z, C : Z → Y , where A is
the generator of a strongly continuous semigroup T (t) and B and C are bounded.
The function z : [0,∞[→ Z is called the state of the system, z0 ∈ Z is the initial
state, and ż denotes the derivative with respect to the time t. u : [0,∞[→ U is the
input or control and y : [0,∞[→ Y the output. y

For z0 ∈ D(A) and u ∈ C1([0,∞[ , U) the control system has a classical solution
z ∈ C1([0,∞[ ,D(A)) given by the variation of constants formula

z(t) = T (t)z0 +
∫ t

0
T (t− s)Bu(s) ds. (5.7)
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For arbitrary z0 ∈ Z and u ∈ L2([0,∞[ , U), (5.7) yields a function z ∈ C0([0,∞[ , Z),
which is then called a mild solution of the state linear system.

The problem of linear quadratic optimal control on the infinite-time horizon is
now for given initial state z0 ∈ Z to minimise the so-called cost functional

J(z0, u) =
∫ ∞

0

(
‖y(t)‖2 + ‖u(t)‖2

)
dt (5.8)

among all controls u ∈ L2([0,∞[ , U), where z is the mild solution corresponding to
z0 and u.

For optimisable systems, this problem can indeed be solved [14, Theorem 6.2.4]:

Theorem 5.2.2 If the control system is optimisable, i.e., for every z0 ∈ Z there
exists u ∈ L2([0,∞[ , U) such that J(z0, u) < ∞, then the cost functional has a
minimum for every z0 ∈ Z and there is a nonnegative selfadjoint operator X ∈ L(Z)
such that

min
u∈L2([0,∞[ ,U)

J(z0, u) = (Xz0|z0) for all z0 ∈ Z.

The operator X is the minimal bounded nonnegative solution of the weak algebraic
Riccati equation

(Az1|Xz2) + (Xz1|Az2)− (B∗Xz1|B∗Xz2) + (Cz1|Cz2) = 0, z1, z2 ∈ D(A), (5.9)

and the optimal control is given by

u(t) = −B∗Xz(t).
�

The Hamiltonian operator matrix related to the control system has the form

T =
(

A −BB∗

−C∗C −A∗
)
. (5.10)

From Proposition 4.3.5 it follows that the bounded selfadjoint operator X : Z → Z is
a solution of (5.9) if and only if XD(A) ⊂ D(A∗) and the graph Γ(X) is T -invariant.
By Definition 4.1.1, the Hamiltonian T is nonpositive. Since in Section 4.4 non-
negative Hamiltonian operators were considered, we apply the respective theorems
to

−T =
(
−A BB∗

C∗C A∗

)
.

As a consequence, the compatible subspace associated with the spectrum of T in
the right half-plane is J2-nonpositive and the graph of a nonpositive solution X− of
the Riccati equation; the compatible subspace associated with the spectrum in the
left half-plane yields a nonnegative solution X+.
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Theorem 5.2.3 Consider operators on Hilbert spaces A(Z → Z), B : U → Z and
C : Z → Y such that A is normal with compact resolvent and B and C are bounded.
Suppose that the spectrum of A lies on finitely many rays from the origin,

lim inf
r→∞

N(r,A)
r

<∞,

and that ker(A − λ) ∩ R(B)⊥ = ker(A − λ) ∩ kerC = {0} for all λ ∈ C. Then the
Hamiltonian operator

T =
(

A −BB∗

−C∗C −A∗
)

has a compact resolvent, a finitely spectral l2-decomposition Z ×Z =
⊕2

k∈N Vk, and
its spectrum satisfies σ(T ) ∩ iR = ∅.

For every partition σ(T ) = σ ·∪ τ which separates skew-conjugate points, the
compatible subspace associated with σ is the graph Γ(X) of an injective selfadjoint
operator X(Z → Z) that is a core solution of the Riccati equation

X(A−BB∗X) = −C∗C −A∗X. (5.11)

The operator X± obtained for the compatible subspace associated with the spectrum in
the left and right half-plane is positive and negative, respectively. Moreover, every
selfadjoint core solution X of (5.11) such that Γ(X) is compatible with

⊕2
k Vk is

injective. If also R(B) ⊂ Z is dense or kerC = {0}, then X nonnegative/nonpositive
implies X = X±.

Finally, a bounded operator X : Z → Z is a solution of

A∗X +XA−XBB∗X + C∗C = 0 on D(A) (5.12)

if and only if its graph Γ(X) is compatible with
⊕2

k Vk.

Proof. We want to apply Theorems 4.4.1, 4.4.4 and Corollary 4.4.3 to the operator
−T and have to show that the conditions (a) and (b) in Theorem 4.4.1 are satisfied.
Indeed by Lemma 4.1.4,

z ∈ ker(BB∗) ⇔ (BB∗z|z) = 0 ⇔ ‖B∗z‖2 = 0 ⇔ B∗z = 0 ⇔ z ∈ R(B)⊥

and analogously ker(C∗C) = kerC. Moreover, BB∗ is injective if and only if
R(B)⊥ = {0} and C∗C is injective if and only if kerC = {0}. This yields the
uniqueness result for X±. �

Remark 5.2.4 In order to obtain selfadjoint core solutions of (5.11), it is sufficient
that ker(A− λ) ∩ kerC = {0} holds for all λ ∈ iR instead of λ ∈ C.

To show the existence of bounded solutions, we could apply Theorem 4.4.5 to
−T . Then we would have to assume that A is skew-adjoint and B, C are boundedly
invertible. However, these assumptions appear to be unnatural in control theory. y
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Motivated by examples in Curtain and Zwart [14] and Kuiper and Zwart [29],
we apply Theorem 5.2.3 to controlled heat and wave equations.

Example 5.2.5 Consider the two-dimensional heat equation on the unit disc B1(0)
with distributed control and Dirichlet boundary condition,

∂tz(t, x) = ∆z(t, x) + b(x)u(t, x) for (t, x) ∈ R≥0 ×B1(0),
z(0, x) = z0(x) for x ∈ B1(0),
z(t, x) = 0 for (t, x) ∈ R≥0 × ∂B1(0),

where ∆ = ∂2
x1

+ ∂2
x2

is the Laplacian, ∂B1(0) the boundary of the unit disc, and
b ∈ L∞(B1(0)), b ≥ 0, b 6= 0. We choose Z = U = L2(B1(0)) as the state and input
spaces and define A and B by

Av = ∆v, D(A) = W 2,2(B1(0)) ∩W 1,2
0 (B1(0)),

Bu = bu.

In addition, we take Y = Z, C = I, that is, we consider the cost functional

J(z0, u) =
∫ ∞

0

(
‖z(t)‖2 + ‖u(t)‖2

)
dt.

Then A is selfadjoint with compact resolvent and the asymptotic behaviour of
its spectrum is such that

lim
r→∞

N(r,A)
r

=
1
4
,

see Example 3.5.4. An orthonormal basis of eigenfunctions for A in polar coordinates
is given by

vkl(r, ϕ) = βk,|l|J|l|(αk,|l|r)e
ilϕ with k ∈ N \ {0}, l ∈ Z (5.13)

where Jn are the Bessel functions, αkn are the positive zeros of Jn, and βkn are
normalisation constants, see [12, §V.5.5]. In particular,

0 = (Bvkl|vkl) = (bvkl|vkl) =
∥∥√b vkl

∥∥2

implies
√
b vkl = 0 and thus b = 0, since the set of zeros of vkl has measure zero in

B1(0). But b 6= 0 by assumption, and hence (Bvkl|vkl) 6= 0 and vkl 6∈ R(B)⊥ for all
k, l. The Hamiltonian of this control problem is

T =
(
A −BB∗

−I −A

)
and Theorem 5.2.3 can be applied. y
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Example 5.2.6 Consider the following wave equation with distributed control,

∂2
tw(t, x) = ∂2

xw(t, x) + b(x)u(t, x) for (t, x) ∈ R≥0 × [0, 1],
∂tw(t, 0) = ∂tw(t, 1) = 0 for t ∈ R≥0,

with b ∈ L∞([0, 1]), b ≥ 0, b 6= 0. As a first step we reformulate the problem as
a system which is of first order in time. One possibility is to choose as new state
variables the momentum p and the strain q,

p(t, x) = ∂tw(t, x), q(t, x) = ∂xw(t, x).

The transformed system is then

∂t

(
p
q

)
=
(

0 ∂x

∂x 0

)(
p
q

)
+
(
bu
0

)
on R≥0 × [0, 1],

p(t, 0) = p(t, 1) = 0.

Let Z = L2([0, 1])2 be the state space, U = L2([0, 1]) the input space, and define
the operators A(Z → Z), B : U → Z by

A

(
p
q

)
=
(

0 ∂x

∂x 0

)(
p
q

)
, D(A) =

{
(p, q) ∈W 1,2([0, 1])2

∣∣ p(0) = p(1) = 0
}
,

Bu =
(
bu
0

)
.

As cost functional we consider

J(z0, u) =
∫ ∞

0

(
‖z(t)‖2

L2([0,1])2 + ‖u(t)‖2
L2([0,1])

)
dt,

i.e. Y = Z, C = I.
Straightforward calculations show that A is skew-adjoint with compact resolvent,

σ(A) = {iπk | k ∈ Z}, and

vk(x) =
(

sin(πkx)
−i cos(πkx)

)
with k ∈ Z

is an orthonormal basis of eigenvectors for A. This yields

lim
r→∞

N(r,A)
r

=
2
π

and (Bvk,1|vk) 6= 0 for all k, where vk,1 denotes the first component of vk. We can
thus apply Theorem 5.2.3 to the Hamiltonian

T =
(
A −BB∗

−I A

)
of the system. y
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Our final example is a system with unbounded control operator B. Although
the standard control theory from Theorem 5.2.2 and also Theorem 5.2.3 are not
applicable, we can nevertheless put the system in the form (5.6) with B unbounded
and apply Theorem 4.4.1 to the resulting Hamiltonian.

Example 5.2.7 We consider the one-dimensional heat equation with distributed
control,

∂tz(t, x) = ∂2
xz(t, x) + b(x)u(t, x) for (t, x) ∈ R≥0 × [0, 1],

z(0, x) = z0(x) for x ∈ [0, 1],
z(t, 0) = z(t, 1) = 0 for t ∈ R≥0,

with b ∈ L4([0, 1]), b ≥ 0, b 6= 0. We choose Z = U = L2([0, 1]) as the state and
input spaces and define the operators A(Z → Z) and B(U → Z) by

Av = ∂2
xv, D(A) = {v ∈W 2,2([0, 1]) | v(0) = v(1) = 0},

Bu = bu, D(B) = {u ∈ L2([0, 1]) | bu ∈ L2([0, 1])}.

Then A is selfadjoint with compact resolvent, σ(A) = {−π2k2 | k = 1, 2, . . .}, and

vk(x) =
√

2 sin(πkx) with k ≥ 1

is an orthonormal basis of eigenvectors. We have N(π2k2, A) = k and hence

lim
r→∞

N(r,A)
r1/2

=
1
π
.

The operator B is densely defined and symmetric, and for u ∈ C0([0, 1]) we have
u ∈ D(BB∗) and BB∗u = b2u. From Proposition 3.2.16 it follows that BB∗ is
1/2-subordinate to A. Since b ≥ 0, b 6= 0, we have

(Bvk|vk) = 2
∫ 1

0
b(x) sin2(πkx) dx 6= 0,

i.e. vk 6∈ R(B)⊥. As in the proof of Theorem 5.2.3 we have

z ∈ ker(BB∗) ⇔ z ∈ R(B)⊥

and thus vk 6∈ ker(BB∗) for all k.
Choosing C = I as the output operator, the Hamiltonian of the system becomes

T =
(
A −BB∗

−I −A

)
.
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We have σp(T ) ∩ iR = ∅ and can apply Theorem 4.4.1 to −T . In particular, for
every σ from a partition σ(T ) = σ ·∪ τ which separates skew-conjugate points, this
yields the existence of a selfadjoint injective core solution of

X(A−BB∗X) = −I −AX.

The solutionsX± corresponding to left and right half-plane are positive and negative,
respectively. y
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Notation index

N = {0, 1, 2, . . .}, the natural numbers including zero
R≥0 the nonnegative real numbers
]a, b[ open interval
Br(a) open ball with radius r around a in Rn or Cn

Ω(ϕ−, ϕ+), Ω(ϕ) sectors around the positive real axis in C, 73
dist(z,M) distance of z ∈ C to M ⊂ C

|A| cardinality of a set
A ·∪B, ·

⋃
λ∈ΛAλ disjoint union

spanD subspace spanned by the elements of D
(·|·) scalar product of a Hilbert space
〈·|·〉, [·|·] Krein space inner products, 46, 114
U〈⊥〉W orthogonal subspaces of a Krein space, 47
U 〈⊥〉 Krein space orthogonal complement, 47∑

λ∈Λ Vλ sum of subspaces, 19
U uW∑u

λ∈Λ Vλ

}
algebraic direct sum, 18, 19

U ⊕W topological direct sum, 18
U〈u〉W∑〈u〉

λ∈Λ Uλ

}
orthogonal direct sum in a Krein space, 47

H =
⊕

k∈N Vk orthogonal decomposition of a Hilbert space
V =

⊕2
λ∈Λ Vλ l2-decomposition of a Banach space, 21

T (V →W ) linear operator, 13
D(T ) domain of definition, 13
R(T ) range, 13
kerT kernel, 13
T ∗ adjoint operator in a Hilbert space, 14
T 〈∗〉 adjoint operator in a Krein space, 49
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162 Notation index

L(V ) space of bounded operators T : V → V
I identity operator

%(T ) resolvent set, 13
σ(T ) = C \ %(T ), spectrum
σp(T ) point spectrum, the set of all eigenvalues
σ±p (T ) point spectrum in the open right/left half-plane
r(T ) set of points of regular type, 36

L(λ) root subspace, 13
N(K,G) sum of multiplicities of all eigenvalues in K ⊂ C, 95
N(r,G) = N(Br(0), G), 95
N+(r1, r2, G) = N(]r1, r2[ , G), 84



Index

algebraic projection, 18

basis, 18
Riesz, see Riesz basis
unconditional, see unconditional ba-

sis
with parentheses, 31

biorthogonal systems, 48
block operator matrix, 97

diagonally dominant, 97, 128
boundary condition, 69

compact resolvent, 14
compatible subspace, 42

associated with σ, 44
complete sequence, 18
control system, 6, 149

with unbounded control, 154
core, 13
core solution, see Riccati equation, core

solution
cost functional, 6, 150

dense system of root subspaces, 37
dichotomous operator, 46
differential operator

and Riccati equation, 147, 148
finitely spectral l2-decomposi-

tion, 109–112
p-subordination property, 66, 67, 71

direct sum
algebraic, 18, 19
J-orthogonal, 47
topological, 18

exponentially dichotomous operator, 44

finitely linearly independence, 18
of subspaces, 19

fundamental symmetry, 47

generalised eigenvector, 14
graph subspace, 119

Hamiltonian operator matrix, 5, 114
of a control system, 7, 150

heat equation, 152
with unbounded control, 154

Hermitian operator, 14, 120
hypermaximal neutral subspace, 52

invariant subspace, 13

J-accretive operator, 54
J-orthogonal

complement, 47
subspaces, 47

J-selfadjoint operator, 49
J-skew-adjoint operator, 49
J-skew-symmetric operator, 49
J-symmetric operator, 49
Jordan chain, 14

Krein space, 46

l2-decomposition, 20
finitely determining, 32
finitely spectral, 38

linear quadratic optimal control, see op-
timal control
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164 Index

neutral subspace, 47
non-degenerate subspace, 47
nonnegative subspace, 47
normal operator, 14

operator, 13
optimal control, 6, 150
optimisable system, 7, 150

p-subordinate operator, 63
partition

which separates conjugate points, 52
which separates skew-conjugate

points, 126
point of regular type, 36
positive subspace, 47
projection, 19

relatively bounded operator, 64
relatively compact operator, 65
resolvent set, 13
Riccati equation, 5, 128–131

bounded solution, 130, 137, 138, 145,
148

core solution, 130, 136, 151
of optimal control, 6, 150, 151
solution depending on continuous pa-

rameter, 145
uncountably many solutions, 136
weak solution, 129–131

Riesz basis, 18
with parentheses, 31
with parentheses of Jordan chains,

37
with parentheses of root vectors, 37–

38
Riesz projection, 14
Riesz-spectral operator, 40
root

subspace, 13
vector, 13

skew-adjoint operator, 14

spectral
decomposition, 45
operator, 39
subspace, 44, 45

subspace, 13

unconditional basis, 18
of subspaces, 29
with parentheses, 31

uniformly positive subspace, 47

wave equation, 153
weak Riccati equation, see Riccati equa-

tion, weak solution


