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Chapter 1

Introduction

In this thesis we show the existence and obtain representations of solutions of the
algebraic Riccati equation

where the coefficients A, 1, Q2 and the solution X are linear operators on a Hilbert
space, which are unbounded in general, and )1, ()2 are selfadjoint. The existence
of solutions is a major problem because Riccati equations are quadratic operator
equations and the involved operators do not commute in general. Our approach uses
the well-known relation between solutions of (1.1) and invariant graph subspaces of
the associated Hamiltonian operator matrix

T = (512 _%b) . (1.2)

To obtain a description of the invariant subspaces of T', we introduce the concept of
finitely determining {?>-decompositions and apply perturbation theory to prove their
existence for Hamiltonian operators.

In Theorem 4.4.1 we show the existence of infinitely many selfadjoint solutions
of the Riccati equation for the case that ()1 and ()2 are unbounded and nonnegative.
The known existence results from control theory (see e.g. [14]) and by Langer, Ran
and van de Rotten [31] and Bubdk, van der Mee and Ran [10] only apply to the case
of bounded @)1, Q2 and only yield a nonnegative and a nonpositive solution. For
bounded @1, Q2 we derive characterisations of all bounded solutions of (1.1), see
Theorems 4.4.4 and 4.4.5. Similar characterisations were obtained by Kuiper and
Zwart [29] for Riesz-spectral Hamiltonians and by Curtain, Iftime and Zwart [13]
under the assumption of the existence of a bounded, boundedly invertible solution
of (1.1). Our notion of finitely determining (?>-decompositions is more general than
that of Riesz-spectral operators, and we prove the existence of bounded, boundedly
invertible solutions for the case that Q1 and Q5 are uniformly positive.
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6 1. Introduction

The Riccati equation (1.1) and the associated Hamiltonian operator play a key
role in the theory of linear quadratic optimal control, see e.g. the monographs of
Curtain and Zwart [14], Lasiecka and Triggiani [34], and Lancaster and Rodman [30].
Besides that, Riccati equations of the type (1.1) are also important in areas such as
total least squares techniques (cf. [30]) and inverse problems involving Neumann-to-
Dirichlet maps, see [8].

Before describing the results of this thesis in greater detail, we sketch the relation
between the theory of optimal control and the Riccati equation, see also [14] and
Section 5.2. A control system is a linear system of the form

z(t) = Az(t) + Bu(t), 2(0) = zo,

The state z of the system evolves in time subject to a parameter u, the control, and
determines the output y. The state, control and output are functions in respective
Hilbert spaces Z, U and Y. For systems described by ordinary differential equations
these spaces are usually finite-dimensional and A, B, C are matrices.

By contrast, systems governed by partial differential equations lead to an infinite-
dimensional Hilbert space of states, A becomes the generator of a strongly continuous
semigroup, and B and C are typically bounded operators. In this case, the control
system has a unique so-called mild solution z € C%([0, 0o[, Z) for every zy € Z and
u € L%([0,00[,U), see [14].

The problem of linear quadratic optimal control on the infinite-time horizon is
then the following: For given initial state zp minimise the cost functional

J(20,u) = /Ooo (1 + llu)lI?) dt (1.3)

among all controls u € L?([0,00[,U). Essentially, this amounts to bringing the
output back to the stationary point y = 0. The first term in (1.3) measures how
fast this is achieved, while the second term accounts for how much effort is needed.

The Riccati equation is connected to the problem of optimal control as follows:
For a bounded selfadjoint operator X we compute

i(Xz\z) = (Az + Bu|Xz) + (Xz|Az 4+ Bu) (1.4)

dt
= (Az[Xz) + (Xz[A2) + |lu+ B*Xz2|* - | B X2|* - ||ul?
= (A*X + XA— XBB*X + C*C)z|2) + |u+ B*Xz|* — [|Cz|]*> — ||u||*.

So if X is a bounded nonnegative solution of the Riccati equation

A*X + XA— XBB*X +C*C =0, (1.5)



then, integrating (1.4), we obtain

J(z0,u) = / (ICIP + ul?) dt

<sw( " (102 + ) dt + EEGED)

t1>0
(0.9]
= / |lu+ B*X z||? dt + (X zo|20).
0

For the case of feedback control ug, = —B*Xz, this yields J(zo,um) < (Xzo|20).
In particular, for every zy there exists a control u such that J(zp,u) is finite; the
system is said to be optimisable. In control theory the order of arguments is now
reversed: An orthogonal projection method is used to show that if the system is
optimisable, then there exists a minimal nonnegative solution X of (1.5) and the
problem of optimal control has a solution given by feedback control using X; see
[29, §6] and Theorem 5.2.2.

Our approach of solving the Riccati equation uses the well-known relation to
invariant graph subspaces of the associated Hamiltonian operator matrix and its
symmetry with respect to two indefinite inner products. For the brief discussion here,
we assume for simplicity that all operators are bounded. For unbounded operators,
the relations continue to hold formally but are much more subtle to formulate, see
Sections 4.2 and 4.3 for more details. In particular, there are several non-equivalent
notions of solutions of the Riccati equation in the unbounded case.

Consider an operator X whose graph

00 - {(3) e )

is invariant under T, i.e., for every u € H there exists v € H such that

A u\ [Aut+QiXu) [
<Q2 —A*) <Xu> o (qu— A*Xu) o (Xv) ’

Inserting the expression for v from the first component into the second one, we
obtain

Qou — A*Xu = X(Au+ Q1 Xu) = XAu+ X1 Xu forall we H;

X is a solution of (1.1). Obviously the other implication also holds: If X is a
solution of (1.1), then I'(X) is T-invariant; we have a one-to-one correspondence
between solutions of the Riccati equation and graph subspaces invariant under the
Hamiltonian.

Note that the Hamiltonian corresponding to the Riccati equation (1.5) from the

problem of optimal control is
A —BB*
= (—C*C’ —A* > '
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Because of the minus signs in the off-diagonal entries, a general Hamiltonian is

sometimes denoted by
A -D
_Q _A* 9

for example in [29] and [31]. Our sign convention in (1.2) was also used by Azizov,
Dijksma and Gridneva [4] and appears to be more natural in view of the Jy-accre-
tivity of the Hamiltonian discussed next.

Connected to both the Hamiltonian operator matrix and to graph subspaces are
two indefinite inner products on H x H defined by

(z]y) = (J1zly), [z,y] = (J2zy)

where (-|-) is the standard scalar product on H x H and

0 —il 0 I
Jl_(u 0)’ J2_<I 0)’

the pairs (H x H, (|.)) and (H x H, [-|])) are Krein spaces. We then have
<T <z) ) <f§>> = i(Au+ Qioly) — i(Qau — A*v|z)
—i(ulay - Qao) — it~ Qu — o) = ~( (1) [ (3)),

and hence T is skew-symmetric with respect to (-|-) or simply J;-skew-symmetric.

Moreover, from
()1 Gy =t xu

it follows that X is symmetric if and only if (z|z) = 0 for all z € I'(X); the graph
I'(X) is so-called Ji-neutral. For the inner product [-|-] we have

Re [T ("‘;) ‘ (Z‘)} = Re((Aulv) + (Q1v[v) + (Qaulu) — (v|Au))
= (Q1v|v) + (Qaulu).

So if @1 and Q2 are nonnegative, then Re[Tz|z] > 0 for all x € H x H and T is
called Jy-accretive. Furthermore, for symmetric X we find

() 1 (2] = 206010

hence X is nonnegative if and only if [z|z] > 0 for all z € I'(X); the graph is
Jo-nonnegative. In fact, we will use the Ji-skew-symmetry and Jo-accretivity of



the Hamiltonian to obtain Ji-neutral as well as Js-nonnegative and Jo-nonpositive
invariant subspaces.

In the finite-dimensional case, the method of solving Riccati equations using in-
variant subspaces of T' is well known in control theory. It goes back to Potter [41] in
1966, who considered diagonalisable Hamiltonians and gave an explicit formula for
every possible solution X of (1.1) in terms of eigenvectors of T. He also obtained
conditions such that X is symmetric or nonnegative. The case of generalised eigen-
vectors of T' was then studied by Martensson [38] in 1971. A comprehensive account
of the theory may be found in the monograph of Lancaster and Rodman [30].

The connection of J; to the Hamiltonian is also well known: It was used for
example by Potter [41], Lancaster and Rodman [30], Kuiper and Zwart [29], and
Langer, Ran and van de Rotten [31]. By contrast, the relation of Js to the Hamilto-
nian was first exploited by Langer, Ran and Temme [32] in 1997, followed by Langer,
Ran and van de Rotten [31] in 2001, Azizov, Dijksma and Gridneva [4] in 2003, and
Bubék, van der Mee and Ran [10] in 2005. The equivalences between properties of
an operator X and its graph I'(X) with respect to J; and Jy have been studied by
Dijksma and de Snoo [16] and Langer, Ran and van de Rotten [31].

The correspondence between solutions of Riccati equations and invariant graph
subspaces holds for general block operator matrices

()

Invariant subspaces of dichotomous block operator matrices have been used to prove
the existence of bounded solutions of Riccati equations by Langer and Tretter [33]
and Ran and van der Mee [42]. Kostrykin, Makarov and Motovilov [26] obtained a
characterisation of all (possibly unbounded) solutions of the Riccati equation asso-
ciated with a bounded selfadjoint block operator matrix.

A different method to prove the existence and also uniqueness of solutions of
Riccati equations uses fixed point iterations, see e.g. Motovilov [39] and Adamjan,
Langer and Tretter [1].

In the following we give a more detailed description of the main results of this
thesis including remarks on the actual state of research.

One major problem in our approach of solving the Riccati equation is the exis-
tence of invariant subspaces of the Hamiltonian. For a normal operator the spectral
theorem yields a complete description of all invariant subspaces of the operator.
However, Hamiltonian operators are non-normal in general, and the existence of in-
variant subspaces has only been proved for certain classes of non-normal operators,
e.g. spectral operators [18, 20], Riesz-spectral operators [14, 29] and dichotomous
operators [7, 31, 42].

In Chapter 2 we introduce the concept of a finitely determining [?-decomposi-
tion for an operator T. It yields a large class of invariant subspaces and amounts
to an [*>-decomposition of the Hilbert space into a sequence of finite-dimensional
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T-invariant subspaces Vj such that the restrictions 7’|y, determine the properties of
the whole operator T'. If the spectra of the restrictions are pairwise disjoint, we say
that the [2-decomposition is finitely spectral.

The notion of a finitely determining {>-decomposition is equivalent to the exis-
tence of a Riesz basis with parentheses of Jordan chains with the additional property
that each Jordan chain is completely contained inside some parenthesis. Riesz bases
of this kind are frequently used in the literature, for example by Markus [36] and
Tretter [47]. Sometimes the term “Riesz basis with parentheses of root vectors”
can be found: While strictly speaking this is a more general notion (see Exam-
ple 2.3.12), the operators in question usually have a Riesz basis with parentheses of
Jordan chains of the above kind.

Since for an operator T' with a finitely determining [?-decomposition the spec-
trum of a restriction T'|y, may be any finite subset of C, cf. Example 2.3.5, the
class of such operators generalises Riesz-spectral operators, for which each V}, is one-
dimensional, and spectral operators with compact resolvent, for which each 7’|y, has
one eigenvalue only. It also allows for non-dichotomous operators, cf. Corollary 2.4.9
and Example 5.1.1. The relations of finitely determining /2-decompositions to other
classes of non-normal operators including the above ones are summarised in Theo-
rem 2.3.17.

In Section 2.4 we show the existence of so-called compatible T-invariant sub-
spaces generated by the choice of an invariant subspace in each Vi. In particular,
for every subset of the point spectrum we obtain an associated compatible subspace;
these associated subspaces naturally generalise spectral subspaces for the class of op-
erators with a finitely determining I2-decomposition.

Finitely determining /?>-decompositions are then applied to symmetric and ac-
cretive operators in Krein spaces. In Theorem 2.5.16 we consider a J-symmetric
operator T with a finitely spectral [2-decomposition and no eigenvalues on the imag-
inary axis. We show the symmetry of the point spectrum o, (7") with respect to the
real axis and that the compatible subspaces associated with a partition of o, (7")
which separates conjugate points are hypermaximal neutral; i.e., the subspaces co-
incide with their J-orthogonal complement. In Proposition 2.6.6 we show that for
a J-accretive operator the compatible subspaces associated with the right and left
half-plane are J-nonnegative and J-nonpositive, respectively. The corresponding
result for J-accretive dichotomous operators was obtained by Langer, Ran and van
de Rotten [31] and Langer and Tretter [33]. For a J-skew-symmetric dichotomous
operator the hypermaximal neutrality of the spectral subspaces associated with the
right and left half-plane, respectively, was shown in [31].

In Chapter 3 we use an approach due to Markus and Matsaev [37] to prove
the existence of finitely spectral I>-decompositions for non-normal operators. We
consider an operator T'= G + .5 where G is normal with compact resolvent and S is
p-subordinate to G with 0 < p < 1. As an example of p-subordinate perturbations,
an ordinary differential operator of order k with bounded coefficient functions on
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a compact interval is k/n-subordinate to an nth order differential operator; if the
coefficients are L2-functions, it is (k+ 1)/n-subordinate, see Propositions 3.2.15 and
3.2.16.

The first perturbation result, Proposition 3.4.1 and Theorem 3.4.4, is a refor-
mulation of [36, Theorem 6.12]: If the eigenvalues of G lie on a finite number of
rays from the origin and the density of the eigenvalues has an appropriate asymp-
totic behaviour depending on p, then T has a compact resolvent, almost all of its
eigenvalues lie inside parabolas surrounding the rays, and 7" admits a finitely spectral
[2-decomposition. In Theorem 3.4.7 we make the stronger assumption that the spec-
trum of G has sequences of gaps on the rays, whose size depends on p. This allows us
to control the multiplicities of the eigenvalues of T and, under an additional assump-
tion, to show that T is a spectral operator. This additional assumption is satisfied
for example if almost all eigenvalues of G are simple, which reestablishes results due
to Kato [24, Theorem V.4.15a], Dunford and Schwartz [20, Theorem XIX.2.7], and
Clark [11]. Moreover, the assumption also holds in cases where the eigenvalues of G
have multiplicity greater than one, provided we have a priori knowledge about the
separation of the eigenvalues of T'; this is an important ingredient in the proof of
Theorem 4.4.5.

As an application of the perturbation results, we obtain finitely spectral 1%-
decompositions for a class of diagonally dominant block operator matrices (Proposi-
tion 3.4.5) and for ordinary differential operators on a compact interval with bounded
as well as unbounded coefficient functions, see Section 3.5. The existence of a Riesz
basis (possibly with parentheses) of root vectors is well known for differential op-
erators with bounded coefficients and regular boundary conditions [11], [20, Theo-
rem XIX.4.16], [43]. Unbounded coefficients are treated in [44].

In Chapter 4 we apply the results of the previous two chapters to Hamiltonian
operator matrices to obtain solutions of Riccati equations. We first derive results
about the symmetry and separation of the spectrum of the Hamiltonian with re-
spect to the imaginary axis (Corollary 4.1.3, Proposition 4.1.6) and conditions on
the Hamiltonian implying that all neutral invariant subspaces are graph subspaces
(Propositions 4.2.5, 4.2.6). Similar conditions were considered by Langer, Ran and
van de Rotten [31]. For the case that A, @1, Q2 and X are all unbounded, we
introduce the concept of a core solution of the Riccati equation, which implies that
a variant of (1.1) holds on a core of X. Unbounded solutions were also considered
in [31] for bounded @i, Q2 and by Kostrykin, Makarov and Motovilov [26] for the
Riccati equation associated with a bounded selfadjoint block operator matrix.

The main theorems of this thesis are then established in Section 4.4. In Theo-
rem 4.4.1 we consider a Hamiltonian such that A is normal with compact resolvent,
the eigenvalues of A lie on finitely many rays from the origin, @1, Q2 are nonnegative
and p-subordinate to A, and the density of the spectrum of A has an appropriate
asymptotic behaviour depending on p. We show that the Hamiltonian has a finitely
spectral [2-decomposition which is then used to prove the existence of infinitely
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many selfadjoint core solutions of (1.1), among them a nonnegative solution X and
a nonpositive solution X_. In Theorem 4.4.4 we consider bounded, not necessarily
nonnegative operators ()1, Q2 and derive a characterisation of all bounded solutions
of (1.1) in terms of invariant subspaces compatible with the [?-decomposition. In
Theorem 4.4.5 we assume that @)1, Q2 are bounded and uniformly positive, A is
skew-adjoint, and almost all of its eigenvalues are simple and sufficiently separated.
We then obtain the existence of infinitely many bounded, boundedly invertible so-
lutions and show that every bounded solution has the representation

X=X,P+X_ (I-P)

with some projection P. Moreover, every bounded selfadjoint solution is also bound-
edly invertible and satisfies

X_<X<X; and X“'<Xxt<Xxih

For dichotomous Hamiltonian operators with bounded nonnegative @1, (J2, the
existence of a selfadjoint nonnegative and a selfadjoint nonpositive solution was
obtained by Langer, Ran and van de Rotten [31]. The two solutions were shown to
be bounded and boundedly invertible, respectively, for the case that —A is maximal
uniformly sectorial, which implies that the spectrum of A is contained in a sector in
the right half-plane strictly separated from the imaginary axis. A similar result was
proved by Bubék, van der Mee and Ran [10] for a Hamiltonian which is exponentially
dichotomous with (1 compact.

For a Riesz-spectral Hamiltonian, Kuiper and Zwart [29, Theorem 5.6] obtained
a representation of all bounded solutions of the Riccati equation in terms of eigenvec-
tors of the Hamiltonian. Under the assumption that all eigenvalues of T" are simple,
the authors gave conditions such that 7' is Riesz-spectral. Theorem 4.4.4 applies to
the more general class of Hamiltonians with a finitely spectral {>-decomposition and
requires no assumption on the eigenvalue multiplicities.

For the Riccati equation from optimal control, i.e. Q1 = —BB*, Q2 = —C*C,
the representation X = X ;P + X_(I — P) was obtained by Curtain, Iftime and
Zwart [13] for all bounded selfadjoint solutions under the assumption that there
exists a bounded, boundedly invertible, negative solution of the Riccati equation.
On the other hand, they did not have to assume that the operators @1, ()2 are
uniformly positive. In the finite-dimensional case, the above representation was
derived by Willems [51] in 1971.

In Chapter 5 we first consider examples in which finitely spectral [?>-decomposi-
tions and solutions of the Riccati equation can be calculated explicitly. The examples
illustrate phenomena such as unbounded solutions, non-selfadjoint solutions, solu-
tions depending on a continuous parameter, and Hamiltonians with Jordan chains of
arbitrary length. Then we consider two non-trivial Riccati equations: Example 5.1.6
features unbounded differential operators @1, @2, whereas in Example 5.1.7 )1 and
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()2 are bounded multiplication operators, and bounded, boundedly invertible solu-
tions are obtained.

Finally we apply our theory to the problem of optimal control. In Theorem 5.2.3
we assume that A is normal with compact resolvent and B, C' are bounded. We
show the existence of infinitely many selfadjoint core solutions of the Riccati equation
and obtain a representation of all bounded solutions in terms of compatible invariant
subspaces of the Hamiltonian. The theorem is applied to the two-dimensional heat
and the one-dimensional wave equation with distributed control. In Example 5.2.7
we consider the heat equation with an unbounded control operator B and also prove
the existence of solutions of the associated Riccati equation in this case.

Preliminaries

Throughout this thesis, the term operator will denote a (generally unbounded) linear
operator. For an introduction to the theory of unbounded linear operators we refer
to the books of Davies [15], Dunford and Schwartz [19, Chapter XII], Gohberg,
Goldberg and Kaashoek [21], and Kato [24]. Here, we only recall and fix notions
and notations which are not always present in textbooks or occasionally differ among
them.

Let V be a Banach space. We say that a subset U C V is a subspace of V if it
is a linear subspace in the algebraic sense, not necessarily closed with respect to the
topology!. For a linear operator from a Banach space V into another Banach space
W, i.e., a linear mapping T : D(T') — W with domain of definition D(T) C V, we
use the notation T'(V — W). The range of T is denoted by R(T'), the kernel by
ker T'. For injective T, the inverse 7' (W — V) is an operator with D(T~!) = R(T)
and R(T~1) = D(T).

A subspace U C V is called T-invariant if x € U ND(T) implies Tz € U. We
say that a subspace D C D(T) is a core for T if for every x € D(T) there exists a
sequence (rx)ken in D such that zx — x and Txp — Tx.

For an operator T'(V — V) on a Banach space V, we define the resolvent set
o(T) to be the set of those z € C for which T'— z : D(T) — V is bijective with
bounded inverse. Then o(T') # & implies that T is closed. On the other hand, if
T is closed and T'— z : D(T') — V is bijective, then z € o(T') by the closed graph
theorem.

For A € C, the root subspace L(\) of T is defined by the formula

L) = | ker(T = M. (1.6)
keN

In particular £(\) # {0} if and only if A is an eigenvalue of T'. The non-zero elements
of L(\) are called root vectors. A finite sequence (z1,...,%,) of non-zero vectors in

! Another term used in this situation is linear (sub)manifold.
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L(A) is called a Jordan chain if
(T—Nz1=0 and (T —Nxp=x,_1 for k=2,...,n. (1.7)

The Jordan chain is said to be generated by x,, and the elements zo,...,x, are
called generalised eigenvectors. Note that a Jordan chain need not be maximal. In
particular, every non-zero element x of a root subspace is contained in a Jordan
chain, the Jordan chain generated by .

Suppose o C o(T') is a compact isolated component of the spectrum of 7'. Let I'
be the positively oriented piecewise regular boundary? of a bounded open set U C C
with ¢ C U and o(T)\ ¢ C C\ U. Then the operator

¢ -1
P—% 1“(T—)\) dA (1.8)
is a projection, R(P) and ker P are T-invariant, R(P) C D(T), T|g(p) is bounded,
and
o(T|rpy) = o, 0(T|kerp) =0(T) \ 0.

P does not depend on the particular choice of I" and is called the Riesz projection
associated with the component o of the spectrum; for a proof see [15, Theorem 1.5.4],
[21, Theorem XV.2.1], or [24, Theorem II1.6.17].

If (T — 2)~! is compact for some zy € o(T), we say that T is an operator
with compact resolvent. In this case, (T — 2z)~! is compact for all z € o(T), o(T)
is a discrete set and every A € o(7) is an eigenvalue with dim £(\) < oo, see
[24, Theorem II1.6.29]. If P\ is the Riesz projection associated with {A}, then
R(Py) = L(N).

Let H be a Hilbert space with scalar product (-]-) and T a densely defined
operator on H. The adjoint operator T*(H — H) is defined by

D(T*) = {y € H|D(T) >z — (Tzly) is bounded },
(Tzly) = (z|T"y) forall =z e D(T),ye D).

We have 2z € o(T) & z € o(T*) and ((T — 2)~1)* = (T* — 2)~! for z € o(T). In
particular, T" has a compact resolvent if and only if T has one.

An operator T on a Hilbert space is called Hermitian if (T'z|y) = (x|Ty) for all
z,y € D(T). A densely defined operator T is Hermitian if and only if T C T*; it is
said to be symmetric in this case. The operator is called selfadjoint (skew-adjoint) if
T =T* (T = —T%) and normal if it is closed and satisfies TT* = T*T. If T' is normal
with compact resolvent, then there exists an orthonormal basis of H consisting of
eigenvectors of T', see [24, §II1.3.8].

2That is, I' = U is a finite union of simply closed curves. Each curve v is piecewise continuously
differentiable with '(¢) # 0 always and oriented in such a way that U lies left of ~.
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Chapter 2

Operators with determining
I?>-decompositions

The spectral theorem provides a complete description of all properties of a normal
operator. For example it yields the existence of invariant subspaces and a formula for
the resolvent. For non-normal operators, tools similar to the spectral measure only
exist for certain classes, for example spectral operators [18, 20] and Riesz-spectral
operators [14, 29].

In order to obtain invariant subspaces of non-normal operators, we introduce the
concepts of finitely determining and spectral {?>-decompositions for operators. They
are a generalisation of Riesz-spectral operators and spectral operators with compact
resolvent and equivalent to the existence of a Riesz basis with parentheses of Jordan
chains where each Jordan chain lies inside some parenthesis.

In the first two sections we present results about /2-decompositions of Banach and
Hilbert spaces. In Section 2.3, finitely determining and spectral 2-decompositions
are defined, formulas for the spectrum and the resolvent are proved, and the relation
to other classes of non-normal operators is investigated. Invariant and spectral
subspaces are treated in Section 2.4. In the last two sections we apply the theory to
symmetric and accretive operators in Krein spaces.

2.1 [>-decompositions of Banach spaces

In this and the next section we study the well-known concept of an [?-decomposi-
tion of a Banach or Hilbert space into a sequence of subspaces and the relation of
[2-decompositions to Riesz bases. The presentation unifies material from the mono-
graphs of Gohberg and Krein [22, Chapter VI|, Singer [46, §15], and Markus [36,
pages 25-27]. The term “/?-decomposition” is used in [46], other notions are “basis
of subspaces equivalent to an orthogonal one” [22] and “Riesz basis of subspaces”
[50]. An I2-decomposition into finite-dimensional subspaces is equivalent to an un-

17
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conditional or Riesz basis with parentheses after choosing a basis in each of the
subspaces, see Proposition 2.2.12.

Although later we will always deal with countable I2-decompositions of Hilbert
spaces, the general case of Banach spaces and decompositions of arbitrary cardinality
is considered first. We study expansions in terms of the [2-decomposition and inves-
tigate how an I2-decomposition of the entire space gives rise to [?>-decompositions of
certain subspaces. To start with, we recall some facts about bases in Banach spaces,
see also the books of Singer [45] or Davies [15, Chapter 3].

Definition 2.1.1 Let (zx)ren be a sequence in a complex Banach space V. We say
that (zx)ken 1S

(i) finitely linearly independent if (xg,...,x,) is linearly independent for every
n € N;

(ii) complete if span{zy |k € N} C V is dense;

(iii) a basis if every x € V has a unique representation

o0
T = Zakfck with oy € C; (2.1)
k=0

(iv) an unconditional basis if it is a basis and the convergence in (2.1) is uncondi-
tional.

A sequence (zy)ren in a Hilbert space H is called a Riesz basis if there exists an
isomorphism 7" : H — H such that (T'xj)ren is an orthonormal basis of H. 4

Every basis is finitely linearly independent and complete. However, not every
finitely linearly independent complete sequence is also a basis. In a Hilbert space
the notions of unconditional and Riesz bases are equivalent, up to a normalisation
of the basis. For this and other equivalent conditions for a sequence to be a Riesz
basis, see Bari [6], Gohberg and Krein [22, §VI.2], and Proposition 2.2.10.

We recall some facts about direct sums of subspaces. By a subspace of a Banach
space V we understand a linear subspace in the algebraic sense, i.e., it need not
be topologically closed. For a finite system Uy, ...,U, C V of subspaces, the sum
Ui +---+ U, is called algebraic direct, denoted

Ul‘i’""i’Un,

it x1 +---+ 2, = 0 with z; € U; implies 1 = --- = x, = 0. The corresponding
projections P; : Uy + --- 4 U, — Uj are not necessarily bounded and we shall use
the term algebraic projection in this context. The sum is called topological direct,
denoted

Ul D---D Un ’
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if it is algebraic direct and the algebraic projections P, ..., P, are bounded. In this
case, the sum is closed (and thus a Banach space) if and only if every U; is closed.
The notion “projection on a Banach space V” will always refer to a bounded operator
P :V — V satisfying P? = P; such a projection gives rise to the topological direct
sum V = ker P @ R(P).

Let (V\)aea be a family of subspaces of a Banach space V with A an arbitrary
index set. We will denote by

ZVA: {‘/'U>\1 ++$>\n
AEA

neN,zy, € V,\j}

the sum of the family (V))xea in the algebraic sense. There is an obvious generali-
sation of algebraic direct sums to the case of infinitely many subspaces:

Definition 2.1.2 The family (V))aea of subspaces of a Banach space V' is called
finitely linearly independent if

:L',\l—i—-'-—l-aT)\n:O,l')\jEV)\j = x)\, =---=x), =0

n

for every finite subset {A1,..., A\, } C A. J

Lemma 2.1.3 For a family (V))xea of subspaces of a Banach space V', the following
properties are equivalent:

(i) (Va)aea s finitely linearly independent.

(ii) Bvery x € Y ycp Vi has a unique representation x = )\ o zx with x) € V)
and almost all xy zero.

(iii) There is a family of algebraic projections (Px)xea corresponding to (Vy)xea
with domain D(Py) = 3 ,cp Vi, range R(Py) = Vi, and the property that
P, P\ =0 whenever i # X.

Proof. The implication (i)=-(ii) is clear; for (ii)=-(iii) define P\(}_,z,) = x) for
each \ € A.

(iii)=(i): From R(Py) = V) and P,P, = 0 for i # X we obtain Pz, = 0 for

x, € Vy and p # A Hence wy, +---+xy, = 0 implies z), = Py, (zx, +---+my,) = 0.

O

Because of the uniqueness of the expansion = ), ., 2, we call the sum of the
finitely linearly independent family (V))xea algebraic direct and use the notation

Z+VA.

A€A
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Definition 2.1.4 We say that a family (V))xea of closed subspaces of a Banach
space V forms an [2-decomposition of V if

(i) the sum ) ., Vi C V is dense and

(ii) there exists ¢ > 1 such that

2D DI VGRS (D DY s Sy P (22

AEF AEF AEF

for all finite subsets F' C A and z) € V).

If we want to explicitly specify the value of ¢, we shall speak of a decomposition with
constant c. J

From (2.2) it follows that if a family (V) )xea forms an [?-decomposition then it
is finitely linearly independent. The corresponding algebraic projections Py onto V)
are densely defined. As the next lemma shows, they are even bounded and can thus
be extended to the entire space V.

Lemma 2.1.5 Let the family (Vy)aea form an 12-decomposition of a Banach space
V. Then we have:

(1) For every subset J C A there is a projection Py :V — V with Py|y, = Iy, for
A€ J, Psly, =0 for \¢ J, and | Py|| < c.

(ii) For A € A let Py be the projection corresponding to the subset {\} C A. Then
R(Py) = Vx. Moreover, Pxx =0 for all A\ implies x = 0.

(i1i) For every x € V, if J = {\ € A| Pyxx # 0} then Pjz = x.

Proof. (i): Since (V))aea is finitely linearly independent, we may consider the
algebraic projection P; with domain D(Py) = Z;\re A Vi defined by

~ xy if ) € V), A€ J,
Pjxy = .
0 if )€ Vi, A ¢,I

An arbitrary =z € D(ﬁ]) is of the form = = ), pxx, xx € V), with some finite
F C A, and (2.2) yields

~ 2
[Pl =] 3 @] e X laal? <Y ol < Pl

AEFNJ AeFNJ AEF

Hence, the densely defined operator P; has a bounded linear extension P; € L(V)
with ||Ps|| < ¢. The identity P? = P; holds on the dense subspace D(P;) and thus
on V; so Py is a projection.
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(ii): By (i), P is the bounded extension of ]5{)\} with R(ﬁ{)\}) = V). Since V) is
closed, this implies R(Py) = V). Now let z € V with Pyz = 0 for all A\, ¢ > 0, and
Y € >oxea Vo such that [z —y[| <e. Then y = 3"\cpyr, ya € Vi, for some finite
F ={\,...,\y}. We have Pp = P\, + --- + P, since this relation holds on the
dense subspace } .5 V. Therefore y = Pry, Prz =0, and

1yl = I1Pryll < [ Przll + | Pellllz =yl < cllz =yl

This implies
2l <z =yl + llyll < T+ o)lle —yll < (1 +c)e

and we conclude x = 0.

(iii): First observe that P\P; = Py for A € J and P\Py = 0 for A ¢ J since
these relations hold on Zje A V. Hence Py\(Pjx —z) =0 for all A, and using (ii) we
obtain Pyxr — x = 0. O

Proposition 2.1.6 Let the family (V\)xea form an 12-decomposition of a Banach
space V.

(i) Let Py be the projection onto Vy defined in the previous lemma. Then for
every x € V the relation

Y IPa)? < Jlz? < e Y|Pl (2.3)

AEA AEA
holds; in particular Pyxx # 0 for at most countably many .

(it) If zx € Vi with 3",y [|#a]* < 00, then the series S \cp Tx converges uncon-
ditionally.

(iii) Every x € V has a unique expansion

T = Zx)\ with x) € Vy; (2.4)
AEA

its members are given by x) = P\x.
Because of the uniqueness of the expansion z =), x, we use the notation
2
V= W (2.5)
AEA

for an [2-decomposition. In terms of this expansion, the projections P; defined above
are of the form



22 2. Operators with determining [?>-decompositions

Moreover, (2.3) shows that the original norm on V is equivalent to the I?-type norm
(3 en [IPAz[?)1/2, hence the notion “I2-decomposition”.

Proof of the proposition. For every x € V we first show that Pyxx # 0 for at
most countably many A. Consider a finite subset F* C A. For z € Zj{e AV, de.
T = Z)\EFO xy, x) € V), for some finite Fy C A, we know from (2.2) that

PO LEIEED SI ENCED DY FVCE D SF ¥

AEF AeEFNFy AEFy AEFy

i.e. >yep |Paz]l? < ¢f|z|>. By continuity, this relation is valid for all z € V. For
every n > 1 it follows that ||Pyz|| > n~! holds for at most finitely many \; hence
Pz # 0 for at most countably many A.

Now we want to prove the expansion (2.4). Let ()\;)jen be an enumeration of

J={NeA| Pz #0}
and consider € > 0. We know that = = lim, .~ y, where (y,)nen is a sequence in
Z)\GA V. With the help of the previous lemma we have x = Pyz = limy, oo PjYn.

Hence, there exists y € Y-, ; Vi with [z —yl| < e and y = >770,y;, y; € Vi, for
some ng. For every n > ng we obtain

n n n
[S=r =] = | S el + | S o]
=0 =0 =0
n
<(Ixm
j=0

; 1) e = yll < (c+ 1)e.

Therefore Z?:o Py, x converges to z as n tends to infinity. Since the enumeration
of J was arbitrary, the convergence is even unconditional. The inequality (2.3) now
follows from (2.2) if we set )y = Pz, F = {A1,...,\n}, and then take the limit
n — oo. Finally, given any expansion x = ), zx, ) € V), we have ) = Pyz; thus
the uniqueness of the expansion.

Only (ii) remains to be shown. The assumption Y, [lza[|> < oo implies that
the set J = {\ € A|x) # 0} is at most countable. Choosing an enumeration of .J,

we obtain
no 9 no
[ 32 an | <o X 1P

Jj=ni Jj=n1

hence (Z?:O T\, )neN is a Cauchy sequence. Therefore we have a converging series
T = Z(;io z);, and as we have seen in the previous paragraph, this expansion is
unique and unconditional. ]
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Remark 2.1.7 The family (Vj)g=1,. » of closed subspaces forms an [2-decomposi-
tion if and only if we have the topological direct sum

V=Vie---aV,.

Indeed for A = {1,...,n} finite, (2.2) just means that on V; + --- 4V}, the original
norm | - || of V' is equivalent to the norm

w1 + -+ anllz = Ve 2+ llzal?, a2 € Vs

and this is the case if and only if the sum Vi + --- 4+ V}, is topological direct. Since
Vi@ - - @V, is closed, it is dense if and only if it is equal to V.

If Py,..., P, are the projections corresponding to the topological direct sum, the
constant in (2.2) can be chosen as

c= [Pl + -+ (1P

This follows from the fact that if x = 1 + - - - 4+, with x; € V}, then

n n n
D lal? = 1Pl < O IIF)P - llz)® and
j=1 j=1 j=1

n 2 n n n
el < (Z ij\) <n SNl < SIRR- S sl
i=1 i=1 i=1 i=1

For the Hilbert space case, a sharper constant will be obtained in Lemma 2.2.6.

Now we turn to the question of how an existing 1>-decomposition V = @ie A WA
gives rise to other decompositions. Let Uy C V) be closed subspaces. As we can
restrict the relation (2.2) to the subspaces Uy, we clearly obtain the [2-decomposition

— 2
> Un=E . (2.6)
AEA AEA

In particular, if J C A and we have Uy = V), for A € J and U, = {0} otherwise, we

shall write 9
v
AeJ

For the projection Pj associated with the subset J, this yields
2 2
R(PH=EF V», kePr=H W,
AeJ AEA\J
and we get the topological direct sum

Ve @ o @ . (2.7)

ed AEA\J
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So we have split the [2-decomposition into two parts with every Vy entirely belonging
to one part. Alternatively, we may split each subspace V) itself:

Proposition 2.1.8 Suppose that for the 1*>-decomposition V = @ieA Vy\ we have
Vi =Uy® Wy. Then the sum

@2 Uy + @2 WycCcV (2.8)

A€A AEA
1s algebraic direct and dense.

Proof. Let = € @3 Uy N @5 Wy. We thus have the expansions = = Y, uy with
uy € Uy and z = ), wy with wy € Wy. As both are also expansions with respect to
@?\ V), they must be identical, uy = wy. Since Uy N Wy = {0}, this implies uy = 0;
hence z = 0. Moreover, the sum @ Uy 4+ @3 W) is dense since it contains every
subspace V). U

Remark 2.1.9 The sum (2.8) is not topological direct in general, see 5.1.1 as an
example of such a situation. In fact, (2.8) is topological direct if and only if the
projections Uy@& Wy — U, are uniformly bounded in A € A, and this is the case if and
only if the system (Uy, Wy)xea forms an [2-decomposition; compare Lemma 2.1.10
and Remark 2.1.7. a

The decomposition (2.7) can be generalised: Suppose A is written as a dis-
joint union A = (), cpJy. Then the closed subspaces @?\e 7, Va constitute an 12

decomposition of V,
2 2
v=@® (@ vA>; (2.9)

~vell  “ed,

we omit the simple proof. The next lemma analyses the reversed situation:

Lemma 2.1.10 Let V = @ie/\ Wy be an [?-decomposition with constant cy. Let
Wy = @ZEA Vi be 12-decompositions for all X\ € A with common constant c;.
Then the family (Vau)aea, pes, forms an 12-decomposition of V with constant cocy.

Proof. Since ), ., W is dense in V' and for every A € A the subspace Zue 7 Vo
is dense in Wy, we see that Z)\EA7MEJ,\ Vi is dense in V. Consider F' C A finite,
F\ C J, finite for each A € F, and x), € V),. Then

2 2
Yol o) || D | o) a ) el = Y e’

\eF xeF ! per, NeF  perly AEF
HEF) HEF)

and similarly || ZAGF,peF)\ JUA“H2 = 06101_1 Z)\GF,;LGFA Hx)\uH2- U
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Note that in the previous lemma the existence of the common constant c; is guar-
anteed if |Jy| = 1 for almost all A, that is, if only finitely many subspaces W) are
decomposed.

2.2 [>-decompositions of Hilbert spaces

In this section we focus on countable [>-decompositions of separable Hilbert spaces.
Following again Gohberg and Krein [22], Markus [36], and Singer [46], we ob-
tain several equivalent conditions for a sequence of closed subspaces to form an
[2-decomposition and also relations to Riesz bases.

The following observation shows that it is often natural to consider I>-decompo-
sitions of a Hilbert space:

Remark 2.2.1 Let V = @?\GA V) be an [?-decomposition of a Banach space such
that each V) is isomorphic to a Hilbert space Hy. Then V is isomorphic to the Hilbert
space orthogonal sum @y, H» by (2.3). This isomorphism induces a scalar product
on V giving it the structure of a Hilbert space with an orthogonal decomposition
V = @,ca Va- An example of such a situation is the case where all V) are finite-
dimensional. J

Up to an isomorphism, an I>-decomposition of a separable Hilbert space is com-
pletely determined by the dimensions of its constituting subspaces:

Proposition 2.2.2 Let H = @ieN Vi, be an [%-decomposition of a separable Hilbert
space and (Wi)ken a sequence of closed subspaces of H. Then (Wy)gen forms an
12-decomposition of H with dim V}, = dim W}, if and only if there is an isomorphism
T: H — H with T(Vk) = Wk.

Proof. (=): Since the subspaces Vi, and W}, are both closed and of the same Hilbert
space dimension (either finite or countable since H is separable) there exist isometric
isomorphisms T}, : Vi, — Wj. Define T with D(T) = Z:EN Vi, and T'|y, = Tj. Let
cy and cy be the constants of the decompositions @i Vi, and @z Wi, respectively.
For x = >} _oxx € S.f Vi we have

012 - 2 S 2 - 2 2
1Tl = || - T < ew 3 WThanl® = ow Y- Nzl < ewev e
k=0 k=0 k=0

and similarly || Tz|? > e eyt lz|?. Thus T extends to an isomorphism T of H with
the desired property.

(«<): Since the subspace ), Vj is dense in H and T is an isomorphism, > 5, W, =
T(> ", Vi) C H is dense as well. Now, for k =1,...,n, let y, € W}, and y, = T'xy.
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Then
I = [r | < iier Sl = evi S I wel?
k=0 k=0 k=0 k=0
n
< ey TIPITHP ) Nyl
k=0
and
n 9 1 n 9 071 n
-1 1% 2
ka > fHT ka > 1 2 Izl
szo T 1”2 Z T 1||2 Z
> |1 Tzy||* = (7
17 HT ITJ2IT=1]% £ Z 17 HT ITI2IT=1)% £ Z
Hence (Wj,)ren forms an [2-decomposition. O

Corollary 2.2.3 A sequence (Wy)ren of closed subspaces in a separable Hilbert
space H forms an 1?-decomposition if and only if there exists an orthogonal decom-
position H = @,cn Vi and an isomorphism T with Wy, = T(V4,), k € N.

Proof. Note that for any sequence dp € N U {oo} with >, di = dimH (in
particular for dj, = dim W},) we can find an orthogonal decomposition H = @, . Vi
with dj, = dim V},. Since every orthogonal decomposition is also an [?>-decomposition,
the claim is an immediate consequence of the previous proposition. O

This last characterisation explains the notion “basis of subspaces equivalent to an
orthogonal one” used by Gohberg and Krein [22, §VL5].

Our next aim is to derive a condition for the existence of an [?-decomposition in
terms of norms of the associated projections.

Lemma 2.2.4 Let V be a Banach space and (xn)nelN a sequence in V. If there

exists C > 0 such that for every reordering ¢ : N 2N and every n € N we have
||Zk 0 Tk || < C, then

n
sup H Z@kka <2C.
neN,ep=+1 1" ;=

Proof. Let eq,...,en € {—1,1} and consider reorderings ¢; and ¢y that move all +1
and all —1 in the sequence (gg,...,&y), respectively, to its beginning. Then, with
n1, Ng appropriate, we obtain

>

n n ni T2
e <| 3 = =X 2o+ E ] <2
k=0 k=0 k=0 k=0 k=0

ep=+1 ep=—1 0

n

"
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Lemma 2.2.5 Let H be a Hilbert space, xg,...,x, € H, and

E = {(50,...,5n)|5k = j:l}.
Then

n
2N "l = leomo + -+ + nanll®
k=0 eelr

Proof. We use induction on n. The statement is true for the case n = 0 since
2||zo|? = ||zo||> + || — zo]|>. Now suppose the statement holds for some n > 0; let

E = {(507'-~75n+1)}5k == :l:l}

and write x. = ggxg + - - - + €nTyp. Then

> oo+ +enprznia P =D (2 + @ | + 2 — znga |[?)

c€E e€E
_ 2 2\ __ 2 n+1 2
= 5 (@l + 2l ) =23 a2 + 2 27 ]
eeklk el
n
=2 (Z [l ]|* + Hxn+1!2> :
k=0

0

Lemma 2.2.6 Let Py,..., P, be projections in a Hilbert space H with P;P, = 0
for j # k. Then

n n 2 n
C2Y Pl < | S P < Y IPwl? oranl wem
k=0 k=0 k=0

where C = max{|| Y_}_q exPrll | e = £1}.

Proof. We write x, = Px and use the last lemma considering that € € E for which
lleoxo + - - - + en2yn|| becomes maximal. Then we obtain

S I1Pal? < lleozo + -+ + ental* = | (ZekPk) (Zm) | =X mel
k=0 k=0 k=0

k=0

On the other hand, if we choose ¢ € E such that ||egzg + - - - + £,2, || is minimal, we
find

I3 Pl = (S eum) (3|

n
< C?legzo + -+ + Enanl* < C* Y || Pez®.
k=0 m
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The following statement yields a sufficient condition for a sequence of projections
to generate an [?>-decomposition. It is a slight modification® of a result by Markus
[36, Lemma 6.2] and will be used in the next chapter to obtain determining [2-
decompositions for non-normal operators.

Proposition 2.2.7 Let H be a Hilbert space with scalar product (-|-) and (Pg)ren
a sequence of projections in H satisfying PjP, = 0 for j # k. Suppose that
Y wen R(Py) C H is dense and that

Y (Bl < Clizlliyll - for all @,y e H (2.10)
k=0

with some constant C > 0. Then the projections generate an I%-decomposition
2
H= R(P)
keN
with constant ¢ = 4C2.

Proof. From

’(ip’“”"y)’ Z (Prly)| < Cllz|lllyl]
k=0

we conclude that || ) Py|| < C for all n € N. This assertion remains valid after
an arbitrary rearrangement of the sequence (Pj)ren since the assumptions of the
proposition still hold for the rearranged sequence. An application of Lemmas 2.2.4
and 2.2.6 now completes the proof. ]

Remark 2.2.8 Suppose that we have a sequence (Qp)ren of orthogonal projections
with Q;Qr = 0 for j # k. Then

S 1Paly)l < (P - Quzly) | + 3 1(Qualy)|
k k k
<SP = Qu)xly) | + =Nyl
k

Therefore, in order to show Y 72 o [(Prx|y)| < Cllz|l||y|, it is also possible to show

o0
Z |((Px — Qi)z|y)| < Cllz|l|lyll forall z,y€ H (2.11)
k=0

with some constant C. _.

!Under the weaker assumptlon > oreo |(Pezly)| < oo forall 2,y € H, Markus proved the existence
of the decomposition H = @kGN R(Pk), but without obtaining a formula for the constant c.
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The conditions in Proposition 2.2.7 are actually one of several equivalent criteria
for a sequence of subspaces to form an [?>-decomposition. We say that the sequence
(Vk)ken is an unconditional basis for H if every x € H can be uniquely written as
T = ZZ’;O Tk, T € Vi, and the convergence of the series ZZO:O xy, is unconditional;
compare Singer [46, page 534].

Theorem 2.2.9 For a sequence of closed subspaces (Vi )ren in a separable Hilbert
space H the following conditions are equivalent:

(i) (Vi)ken forms an [?-decomposition for H.

(ii) There is an isomorphism T : H — H such that the subspaces T'(Vy), k € N,
form an orthogonal decomposition of H.

(i1i) (Vi)ken is an unconditional basis for H.
() The sum Y, Vi, C H is dense and there exist projections Py, k € N, such that
Vi = R(Py), PjP, =0 for j # k, and there is a constant C > 0 with

H Z PkH < C for every finite F C N.
kel

(v) The sum ), Vi, C H is dense and there exist projections Py, k € N, such that
Vi = R(P), PjP, =0 for j # k, and there is a constant C > 0 with

> I(Paly)| < Cllalllyll  for all a,y € H.
k=0

Moreover, in the two last statements the density condition can be replaced by the
condition that Prx =0 for all k implies x = 0.
Proof. We already know that

(1) & (it) and (v) = (iwv) = (i) = (i),

compare Proposition 2.1.6, Corollary 2.2.3, and the proof of Proposition 2.2.7. We
only sketch the remaining implications, see Gohberg and Krein [22, §VI.5] and
Singer [46, §15] for more details:

(i) = (v): Let Wi = T(Vj) and denote by Q) the orthogonal projections
corresponding to the decomposition H = @, Wj. Then @3 Vi, and @; T*(Wy) are
both [2-decompositions with corresponding projections P, = T7'Q.T and P =
T*QiT~* and constants ¢ and ¢, respectively. This yields

Do 1Baly)l = (Pl Biy) < ) Nl Pecellll Pyl
k k k

1/2 1/2
< (Z HPka2> (Z !!Pé‘y!2> < V||l
k k
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(#4i) = (i): Since (Vi)ren is a basis, the sum ), Vi is dense in H and the
projections P onto the components zj, given by the unique expansion x = >7  x
are bounded. Moreover, the projections " ;_ Py are uniformly bounded in n. Since
the basis is even unconditional, this remains true after an arbitrary rearrangement
of the sequence (Pg)ren. Using the principle of uniform boundedness in the version
for continuous, convex, positively homogeneous functionals (cf. [3, §18]), one can
deduce that?

n
sup HZEkPkH < 0.
n€N,ep==%1 k=0

Then Lemma 2.2.6 yields the I>-property.

Now suppose we have (iv) with the density condition replaced by the assumption
that Pyax = 0 for all k£ implies x = 0. By Lemmas 2.2.4 and 2.2.6 we have, for every
x € H,

" n 2 " 2
@ZHP]“‘TW < HZP;CCCH < HZP’“H |z||? forall neN
k=0 k=0 k=0
oo
= ) |[Peal* < 4C 2] < o0

k=0

m 2 m
— HZPMEH §4C2Z||Pkac\|2—>0 as m,m — oo.
k=n k=n
Consequently, Y2 Py converges for every x € H. Let y =z — Y~ Pyz. Then
o0
Py=Pz—)Y PiPa=Pax-Pz=0 forall jeN

k=0

and thus z = Y2 ) Pyx. In particular, >, Vj is dense in H.
Finally, if @Z V}, is an [?-decomposition, we know that P,a = 0 for all k implies
x=0. ]

We end this section with statements about the connection between [?-decompo-
sitions and Riesz bases, see also Gohberg and Krein [22, §VI.2].

Proposition 2.2.10 For a sequence (xg)ren in a Hilbert space the following prop-
erties are equivalent:

(i) (xk)ken is a Riesz basis.

2Note that we can not use Lemma 2.2.4 here since a priori we have different bounds for each
rearrangement.
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(ii) (zk)ken is complete and there exist constants m, M > 0 such that

n n 2 n
m lagf? < H Zakajku <MYyl (2.12)
k=0 k=0 k=0
holds for alln € N, o € C.

(117) (z1)ken is an unconditional basis with infren ||zk|| > 0, suppen [|zx| < oc.

(iv) The subspaces Vi, = Cxj, form an 1>-decomposition and infpen ||zx| > 0,
supgen |2k < oo.

Proof. The equivalence (i) < (iv) is immediate from Definition 2.1.1 and Corol-
lary 2.2.3. (i) < (iv) holds by definition of an I2-decomposition and (iii) < (iv)
follows from Theorem 2.2.9 and Definition 2.1.1. O

A generalisation of the concept of bases are bases with parentheses, see e.g.
Markus [36, page 27] and Vizitei and Markus [50, §1].

Definition 2.2.11 A sequence (xj)ren in a Banach space V is called a basis with
parentheses if there is a strictly increasing sequence k, € N with kg = 0 such that
every x € V has a unique representation

0o [knt1—1
T = Z( Z oakxk), ay € C, (2.13)

n=0 \ k=k,

i.e., instead of (2.1) only the subsequence (227;61 akxk)n e ©of the sequence of all
partial sums converges to x. If the convergence in (2.13) is unconditional, (zj)ren
is called an unconditional basis with parentheses. a

In a Hilbert space an unconditional basis with parentheses is also called a Riesz
basis with parentheses (or brackets), see Shkalikov [43].

Proposition 2.2.12 The sequence (xg)ren in a Hilbert space is an unconditional
basis with parentheses if and only if it is finitely linearly independent and the sub-
spaces Vy, = span{xy,,, ..., 2y, 1} form an 12-decomposition.

Proof. This is immediate from Theorem 2.2.9. ]

2.3 Finitely determining /?>-decompositions

In this section we introduce the class of (generally non-normal) operators with a
finitely determining I?>-decomposition. This amounts to the existence of an [2-decom-
position into finite-dimensional invariant subspaces such that the properties of the
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whole operator are determined by its restriction to these subspaces. For example,
we obtain formulas for the domain of definition, the spectrum, and the resolvent.
If the spectra of the restrictions are pairwise disjoint, the decomposition is called
finitely spectral.

The notion of a finitely determining I>-decomposition is equivalent to the exis-
tence of a Riesz basis with parentheses of Jordan chains such that each Jordan chain
is contained inside some parenthesis, see Proposition 2.3.11. Riesz bases of this kind
are frequently used in the literature, e.g. by Markus [36] and Tretter [47].

Other classes of non-normal operators that provide similar descriptions of prop-
erties of the operator are spectral and Riesz-spectral operators. The notion of a
spectral operator was introduced by Dunford [18] (see [20] for a comprehensive pre-
sentation) and is in general not comparable with a finitely determining or spectral
I2-decomposition. However, a spectral operator with compact resolvent has a finitely
spectral {?>-decomposition such that all restrictions of the operator to the subspaces
of the decomposition have one eigenvalue only. Riesz-spectral operators are used
for example in control theory (see [14] and [29]) and allow for a finitely spectral
[2-decomposition where all subspaces are one-dimensional.

The relations of finitely determining (?-decompositions to the above and other
classes of non-normal operators are summarised in Theorem 2.3.17.

Definition 2.3.1 Let T(H — H) be a closed operator on a separable Hilbert space
H. We say that an [?>-decomposition H = @ieN Vi is finitely determining for T if

dimV, < o0, Vi C D(T), T(Vk) c W,
and ), Vi is a core for T g

A finitely determining I>-decomposition is not uniquely determined since any finite
collection of the subspaces Vi can be replaced by its sum.

Note that the restrictions T'|y, : Vi — Vj are bounded since the Vj are finite-
dimensional. The assumption of ), Vj being a core for T' will then enable us to
carry over results for the finite-dimensional parts 7’|y, to the whole operator T". In
Proposition 2.3.8 we show that this “core property” is automatically satisfied for
operators with non-empty resolvent set. Without the core property, the theory still
applies to an operator generated by the parts T'|y;:

Lemma 2.3.2 Let T(H — H) be an operator and H = GBi@N Vi an 1%-decom-
position with dim Vi, < oo, Vi € D(T), and T(Vy) C Vi. Then the restriction
Ty = T‘Zke]N v, s closable and GBZE]N Vi, is finitely determining for the closure Ty.

Proof. Let P, be the projection onto Vj corresponding to the given I2-decompo-
sition. Suppose we have y, € D(Tp) with y, — 0 and Tpy, — 2. We may write
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Yn = D_jen Ljyn, where the sum is actually finite since D(Tp) = > ) Vi. The T-
invariance of the Vj’s yields PyToy, = P > j T Pjy, = T Pyyy,. Therefore

sz = Pk lim T()yn = lim PkTgyn = lim T‘Vkpkyn
n—oo n—oo n—oo
=T|y, lim Pyy, =Ty (0) =0,
n—o0
where we have used the fact that T'|y, is a bounded operator because Vj, is finite-

dimensional. Now, from P,z = 0 for all £ we conclude that z = 0, i.e., Ty is closable.
>~k Vi is then a core for Ty and the assertion follows. g

The next proposition shows that an operator with a finitely determining I%-
decomposition is in fact determined by its finite-dimensional parts T'|y,. For the
case of an orthogonal decomposition, the spectrum of an operator defined by (2.14)
and (2.15) was calculated by Davies [15, Theorem 8.1.12].

Proposition 2.3.3 Let T(H — H) be a closed operator with finitely determining
12-decomposition H = @2€N Vi. Then

D(T) = {Zxk e P v

D Ta|? < oo}, (2.14)

keN keN kelN
Tox=Y Tz, for z=Y axecDT). (2.15)
keN kelN

T is bounded if and only if the restrictions Ty, are uniformly bounded and in this
case
1T < ¢ sup [Ty |-
keN

The point spectrum, residual spectrum and resolvent set are given by

op(T) = | o(Tlv), o(T) =2,
kelN

oT) = {= € ©\oy(T) | sup (Tl — )7 < oo} (2.16)

Proof. We denote again by P, the projections onto Vj, corresponding to the I2-
decomposition.

(i): We derive (2.14) and (2.15). Let y € D(T). Since ), V} is a core for T,
there is a sequence y, € >, Vi with y, — y, Ty, — Ty. Analogously to the proof
of Lemma 2.3.2, we obtain P,Ty, =T P.y, and

BTy = Py lim Ty, = lim P;Ty, = Ty, lim Py, = T'Pyy.
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Hence 3 [T Pyyl* = 304 | BTyl < ¢ Ty|* < oo and

y=> Pye {Zxk € @2 Vi | > lITai|” < oo} with
k k k

keN
Ty=> PTy=>» Thy.
k k

If on the other hand 3", 3 € @; Vi with 3, || Tx]|? < oo, then
n oo n n o0
D(T) > Zxk — Zxk and TZxk. = Zka — ZTxk.
k=0 k=0 k=0 k=0 k=0
Hence ), x;, € D(T) since T is closed.
(ii): Suppose that L = supy, ||T|v;|| < oo. Then for z =", z1, € D(T):
2
IT2® = || Y Tlvae]|” < e 1T v
k k

<L) el < L)%
k

thus T is bounded with norm < ¢ L.

(iii): Next we compute the point spectrum. We use the notation o, = o(T|y;,).
Evidently o1, C 0,(T) for all k € N. Now suppose that A\ € 0,(T"). Then there exists
Y xxr € D(T) \ {0} such that

0=(T-XN)> zp=> (TN,
keN keN

ie. (T|y, — A)zg = 0 for all k. Since zy, # 0 for some ko, we find A € oy,.

(iv): To see that o,(T) = @, note that for z ¢ o0,(T) the injective operator
T — z maps each finite-dimensional T-invariant subspace V. onto itself. This implies
>k Vi C R(T — z); the range is thus dense.

(v): Now we want to derive the formula for the resolvent set. For one inclusion,
consider z € ©\ J,, o, such that L = supy, ||(T|y;, — 2) || < oo. Using steps (i) and

(ii), we see that
S Z T — Z(T’Vk — z)*lxk
keN keN

defines a bounded operator S : V' — V, which has the finitely determining decompo-
sition @3 Vi and R(S) € D(T — z). Obviously, we have (T —2)Sz =  for all z € V.
Since z & 0,(T), i.e., T — z is injective, we obtain z € o(T) with (T'—z)~! = S. For
the other inclusion, if z € o(7T") then clearly z & oy, for all k. Since Ty, C T, we
also have (T|y;, —2)~! C (T — 2)~! and thus

(Tl =2) 7 < (T = 2)7H| forall k.
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Corollary 2.3.4 If T is closed with a finitely determining decomposition @i, Vi,
then the point spectrum of T is non-empty and at most countably infinite. For
x =3,z € @F Vi we have

reL(A) & xp€L(N) forall keN. (2.17)

Moreover, EB%E]N Vi, is finitely determining for (T — 2z)~Y, z € o(T), and

(T —2)" o = Z(T\Vk —2) ey, for x= Z Ty € @2 Vi . (2.18)

keN keN keN
O

Example 2.3.5 Let H = @, Vi be an orthogonal decomposition of a Hilbert
space into finite-dimensional subspaces Vi, and Ty : Vi, — Vj linear. We can define
an operator T(H — H) by

I
DIT)=> Vi, Ty =T
keN

Lemma 2.3.2 implies that T" is closable and that @, V) is a finitely determining
[?-decomposition for T'. Proposition 2.3.3 then yields o,(T) = U, o(T})-
In particular, for any given non-empty subset ¢ C C which is at most countable,

we may choose the operators T}, such that o,(T") = 0. 4

Proposition 2.3.6 Let H = EDZGN Vi be a finitely determining 1%-decomposition
for a closed operator T(H — H).

(i) If dimVy, =1 for almost all k, then

o) ={z € @‘ dist(z, | o(T)) >0}, e o) = | o(Tlv).

keN keN

(ii) (T — 2)~1 compact & limg_o |(T|y, —2)7 Y = 0.

Proof. (i): Let J C N be the subset of those k for which dim V}, = 1 and let A\ be
the corresponding eigenvalues. Then

1Ty, — 2)7 Y = e — 2L for kel

With o, = o(T'|y;,) and since {0} |k € N\ J} is a finite collection of finite sets, we
have

Uor={lkestu |J o

keN keN\J
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For z € C\ U, ok we thus obtain

z%Uak s zéd{)\|keJ}
k
& inf M\, -2 >0 <& sup|(Tly, —2)7 Y < oo
keJ keN

for the last equivalence, we used again that N\ J is finite. Applying the character-
isation (2.16) of the resolvent set, the proof is complete.

(ii): Suppose first that |(T|y, — z)7!|| — 0 as k — oo. Then the sequence of
finite-rank operators Y r_(T'|v;, —2) ', n € N, converges uniformly to the resolvent
(T — z)~! since

| S 27 <esmp @y, — 2 =0 as n— oo
kon k>n

by Proposition 2.3.3. The resolvent is thus compact. If on the other hand we have
I(T|v, — 2)7Y| # 0, there is a monotonically increasing sequence of indices k; and
elements x; € Vi, with |lz;]| = 1 such that y, = (T — 2) 'z, satisfies inf; ||y]| > 0.
Let P, be the projections corresponding to the I2-decomposition. From y; € Vi
it follows that lim;_, Pry; = 0. Consequently every converging subsequence of
(y1)1en must converge to zero. But this is impossible, so (y;);en has no converging
subsequence. Therefore (T — z)~! is not compact. O

Now we show that the “core property” from Definition 2.3.1 is automatically
satisfied if 7" has a point of regular type.

Definition 2.3.7 For an operator 17" on a Banach space we say that z € C is a point
of regular type of T if there is a constant C' > 0 such that

(T — 2)x|| > C||z|| forall ze D(T).

The set of all points of regular type of T' will be denoted by r(T'). g

Evidently z € 7(7T) if and only if T — z is injective with bounded inverse (T — z)~!.

The set r(7T") is open and satisfies o(T') C (T') and o,(T) N r(T) = @, see Akhiezer
and Glazman [3, §78].

Proposition 2.3.8 Let T(H — H) be a closed operator satisfying r(T) # & and
H = @i@N Vi an [%-decomposition into finite-dimensional T-invariant subspaces
such that Vi, C D(T). Then @ieN Vi is finitely determining for T'.

Proof. By Lemma 2.3.2, the restriction Ty = T]Zk v, is closable, and @i Vi is
finitely determining for Tp. Let 2z € r(T). As Ty C T we have z € 0,,(Tp) and

(Tl =2)7 ' < (T = 2)7'|| forall keN.
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Hence z € o(Tp) by (2.16). Now if Ty & T then the surjectivity of T(L_ z would
imply that T — z could not be injective, which is a contradiction; thus 7o, =7. U

As a consequence of the previous proposition, T' =T |Zk v, is the only possible
extension of T'|y~ v, with o(T) # @. Also note that in the proof we have shown
that r(T') = o(T). This property actually holds for a larger class of operators:

Definition 2.3.9 We say that an operator 7" on a Banach space V has a dense
system of root subspaces if

Z L(A) CV is dense.
Aeop(T) ¥
Obviously, the density of the system of root subspaces is equivalent to the com-
pleteness of the family of root vectors. Also observe that an operator with a finitely
determining [?-decomposition has a dense system of root subspaces.

Lemma 2.3.10 If T(V — V) is closed with a dense system of root subspaces, then
r(T) = o(T).

Proof. Let z € 7(T), i.e., the operator (T — 2)~! : R(T — z) — D(T) exists and is
bounded. It is also closed since T is closed. Consequently R(7T — z) is closed. Now
let A € 0,,(T) and consider the T-invariant subspace U generated by a Jordan chain
in £(A). Then U is finite-dimensional and the injective operator T'— z maps U onto
itself; in particular U C R(T — z). Therefore R(T — z) C V is dense, which implies
R(T —z) =V and z € o(T). O

Another class of operators related to finitely determining />-decompositions are
operators having a Riesz basis with parentheses of root vectors.

Proposition 2.3.11 Let T(H — H) be an operator with o(T) # @. Then T
has a finitely determining 1?-decomposition if and only if T has a Riesz basis with
parentheses of Jordan chains such that each Jordan chain is entirely contained in
some parenthesis.

Proof. If H = @ieN Vi is finitely determining for 7', the choice of a basis of
Jordan chains in every subspace Vj yields the desired Riesz basis with parentheses
by Proposition 2.2.12. On the other hand, suppose that 7" has a Riesz basis with
parentheses of Jordan chains where each Jordan chain lies inside some parenthesis.
Then the subspaces generated by the parentheses are T-invariant and form an [%-
decomposition which is finitely determining for 7" by Proposition 2.3.8. g

Riesz bases with parentheses of Jordan chains are frequently constructed in the
literature, see e.g. Markus [36, §6] or Tretter [47]; the condition that each chain lies
inside some parenthesis is typically satisfied due to the methods used for constructing
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the basis. However, not every Riesz basis with parentheses of root vectors needs to
satisfy this additional condition:

Example 2.3.12 Consider the shift operator S : [> — [2, Seqg = 0, Sexr1 = ex,
where (eg)ren is the standard orthonormal basis of 2. Then we have 0 € 0,(S) and
er € L£(0) for every k. Hence (er)ren is an orthonormal basis of root vectors, but it
is not possible to place parentheses such that the corresponding subspaces become
S-invariant. r

A natural subclass of finitely determining [?>-decompositions are finitely spectral
[2-decompositions:

Definition 2.3.13 If @ielN V} is a finitely determining /2-decomposition for a closed
operator 1" with the additional property that the sets o(T'|y, ) are pairwise disjoint,
then we say that @ieN Vi is finitely spectral. J

As for the case of finitely determining decompositions, finitely spectral 2-decompo-
sitions are not uniquely determined.

Lemma 2.3.14 Let T(H — H) be a closed operator. A finitely determining de-
composition H = @ZGN Vi for T is finitely spectral if and only if

Vi= Y L(\) foral keN. (2.19)
Aea(Tly,,)

In this case op(T') is countably infinite (provided dim H = oo) and all root subspaces
L(\) are finite-dimensional.

Proof. Let the [>-decomposition @7 Vi be spectral for T. Let A € o(T|y,) and
r € L(A) with x = 37,2, z; € V;. Then z; € L(A) for all j by (2.17). Since
the decomposition is spectral, we have A ¢ o(T|y;) for j # k and hence x; = 0
for j # k. This implies z = zy, i.e. L(A) C Vi. As Vj is the sum of all the root
subspaces of T'|y,, (2.19) holds. On the other hand, if (2.19) holds, then each L£(\)
is completely contained in some V},. Hence the o(T'|y; ) are pairwise disjoint and the
decomposition is spectral. The other assertions are immediate. ]

Lemma 2.3.15 Consider an operator T(H — H) with o(T) # @.

(i) If T has a Riesz basis of Jordan chains, then there exists a finitely determining
I2-decomposition for T. If in addition dim L()\) < oo for all X € a,(T), then
the root subspaces L(A\) form a finitely spectral 1?-decomposition for T.

(ii) T admits a finitely spectral 1?-decomposition H = @ieN Vi that satisfies
dimVy = 1 for almost all k if and only if almost all eigenvalues of T are
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simple, dim L(\) < oo for all X € 0,(T), and T' has a Riesz basis of eigenvec-
tors and at most finitely many Jordan chains. The subspaces Vi can be chosen
as the root subspaces of T.

Proof. (i): If T has a Riesz basis of Jordan chains, the subspaces V. generated by
each Jordan chain form an [2-decomposition of H, see Proposition 2.2.10 and (2.9);
it is finitely determining by Proposition 2.3.8. Now suppose that dim £(\) < oo for
all A. Since every T'|y, has only one eigenvalue A, (2.17) implies

L(N) = Z Vi forall \eoy(T),
A=A

where the sum is finite. Using again (2.9), we see that the root subspaces form a
finitely spectral [2-decomposition.

(ii): If @2 Vj is finitely spectral for T, Lemma 2.3.14 yields dim £(\) < co and
that each Vj is the sum of root subspaces. Then dim V;, = 1 for almost all k£ implies
that almost all root subspaces are one-dimensional, i.e., the corresponding eigenval-
ues are simple. To construct the Riesz basis, we choose a normalised eigenvector in
every Vi with dimension one and a basis of Jordan chains in those finitely many Vj,
with dimension bigger than one. Due to Lemma 2.1.10 and Proposition 2.2.10 this
procedure yields a Riesz basis.

For the other implication, the system of root subspaces forms a finitely spectral
-decomposition by (i), and since almost all eigenvalues A\ are simple, the corre-
sponding £(A) are one-dimensional. O

12

The classes of spectral operators (see Dunford and Schwartz [20]) and operators
with finitely determining or spectral [>-decomposition are in general not comparable.
On the one hand, spectral operators (which include selfadjoint operators) may have
empty point spectrum which is not possible for operators with a finitely determining
I2-decomposition. On the other hand, there are operators with a finitely spectral
[2-decomposition whose spectrum is separated into two parts but corresponding spec-
tral subspaces do not exist (cf. Section 2.4 and Example 5.1.1); spectral operators
always have corresponding spectral subspaces.

For the case of operators with compact resolvent, the situation is different:

Proposition 2.3.16 Let T be an operator with compact resolvent and Py, k € N,
the Riesz projections associated with its eigenvalues. Then T is spectral if and only

if
(i) there exists C > 0 such that ||}, cp Prl| < C for every finite F C N and
(ii) Pyx =0 for all k € N implies v = 0.

Proof. This is an immediate consequence of the definition of a spectral operator in
[20, Definition XVIII.2.1]. O
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With Theorem 2.2.9 we conclude that operators with compact resolvent are spectral
if and only if their root subspaces form an [?>-decomposition.?

A closed operator T is called Riesz-spectral (see Curtain and Zwart [14] and
Kuiper and Zwart [29]) if all its eigenvalues are simple, T" has a Riesz basis of
eigenvectors, and o,(T) is totally disconnected?. In [29, Corollary 4.6] it is shown
that the Riesz-spectral operators with compact resolvent are exactly the spectral
operators with compact resolvent and simple eigenvalues.

The various classes of operators considered so far can be put into a hierarchy as
follows:

Theorem 2.3.17 Let T(H — H) be an operator with o(T) # & and dim L(\) < oo
for all X\ € 0,(T). For the properties

(i) T has a dense system of root subspaces,
(ii) T has a Riesz basis with parentheses of root vectors,

(iii) T has a finitely determining 1*-decomposition,
(< T has a Riesz basis with parentheses of Jordan chains such
that each Jordan chain lies inside some parenthesis)

(iv) T has a finitely spectral 12-decomposition,
(< T has an [*-decomposition of finite sums of root subspaces)

(v) T has an 12-decomposition of root subspaces,
(If T has a compact resolvent, this is equivalent to T being a
spectral operator.)

(vi) T has a Riesz basis of Jordan chains,

(vii) T has a Riesz basis of eigenvectors and finitely many Jordan chains, and almost
all ergenvalues are simple,
(< T has a finitely spectral 1%-decomposition with almost all
subspaces one-dimensional)

(viii) T is a Riesz-spectral operator,
we have the implications

(viti) = (vii) = (vi) = (v) = (i) = (i) = (i) = (i).
If we drop the assumption dim L(\) < oo, we still have the implications

(vi) = (iii) = (i) = (i). -

3Spectral operators with compact resolvent are also called “discrete spectral”.
1A set S C € is totally disconnected if no two points from S can be joined by a path lying in S.
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In this thesis, the properties (iii), (iv), (vi), and (occasionally) (i) will be used as
assumptions in theorems. The perturbation results from Sections 3.4 and 4.4 yield
operators of type (iv), (v), and (vii).

With the help of Example 2.3.5 it is not hard to see that the implications (viii) =

- = (7i7) in Theorem 2.3.17 are strict. An example of an operator with compact

resolvent and a finitely spectral I2-decomposition that is not a spectral operator is
the Hamiltonian operator in Example 5.1.1.

We end this section with the example of an operator with a finitely spectral
[2-decomposition whose spectrum is not the closure of its point spectrum, compare
(2.16) and Proposition 2.3.6(i).

Example 2.3.18 Consider an orthogonal decomposition H = @~ Vi such that
dim Vj, = 2 and an operator To(H — H) with D(Tp) = Y, Vi such that all Vj, are
invariant and the restrictions Tp|y, have eigenvalues k and k + ¢. By Lemma 2.3.2
and Proposition 2.3.3, Tp is closable and 0,(Tp) = U, {k, k + i}. Moreover, if there
are unit length eigenvectors v, wy € Vi corresponding to k& and k + i, respectively,
which satisfy

(vi|wg) =1 — k71

with ¢ > 6, then o(Tp) = C.
Proof. Let z € C\ U, {k,k +i}. Consider some k > 1 and let
M=k—2z, X=k+i—2z w=(vg|wg).
Then we get
lor = wiell* = [[ogl* = 2(x|wg) + [Jwg]|* = 2(1 — w),
(T0|Vk — z)_l(vk —wg) = )\flvk — A;lwk,

and, using 0 < w < 1,

-1, y-1 2 -112 _ I ey 1
H<T0|Vk—2)_1H22 ”)\1 VL )\2 ’U)kH _ ‘)\1 ’ QRe()\l )\2 )W‘F’AQ ‘

log, — w2 2(1 —w)
N Vi et Y R L v (e B B
= 2(1 — w) 21 —w)

With z =z + iy, z,y € R, we find
M= Aol — [
Vi—w  VT=wlMl |- (M) + A2))
(k2P + (1 -y)P - ((k—2) +)
CVE k=2 [k +i— 2| (k= 2|+ |k +i—2])
_ k92(1 - 2y)
k=2 ek +ri—z|(k -2+ k+i—z])
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Since ¢/2 > 3 and if y # 1/2, this last expression tends to +00 as k — oo and we can
conclude that supy ||(Tolv, — 2)7!|| = oo in this case. Using the characterisation
(2.16) of the resolvent set, we see that

{zeC|Imz#1/2} C o(Tp).

Since the spectrum is a closed set, this implies o(Tp) = C. O

2.4 Compatible subspaces of determining
[>-decompositions

In this section we show that for every operator with a finitely determining (?>-decom-
position there exists a large class of invariant subspaces, so-called compatible sub-
spaces. In particular we obtain compatible subspaces associated with arbitrary
subsets of the point spectrum. We argue that these associated subspaces are a nat-
ural generalisation of spectral subspaces for operators with a finitely determining
[2-decomposition.

Existence results for invariant and spectral subspaces of unbounded non-normal
operators are known in special cases only: For a bounded isolated component of the
spectrum the corresponding Riesz projection yields a spectral subspace. Dichoto-
mous operators as defined by Langer, Ran and van de Rotten [31], see also Langer
and Tretter [33] and Definition 2.4.8, have spectral subspaces associated with the
spectrum in the right and left half-plane.

Lemma 2.4.1 Let H = @ielN Vi be a finitely determining 1%-decomposition for a
closed operator T(H — H). If Uy C Vi are T-invariant subspaces, then the subspace

2
@ Uy is T-invariant and (T — \) " -invariant for all X € o(T).
keN

In particular, @26] Vi is T- and (T — )~ *-invariant for every J C N.
Proof. This is evident from the formulas (2.15) and (2.18) for 7" and (T — A)~L. O

The statement of the lemma suggests the next definition.

Definition 2.4.2 We say that a T-invariant subspace U C H is compatible with
the finitely determining decomposition H = @z@N Vi if

2
U= @ U, with Ug CV, T-invariant.
kEN
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Let ¢ C 0,(T) be an arbitrary subset of the point spectrum of an operator
T(H — H). A subspace naturally associated with o is the closure of the sum of the
root subspaces corresponding to o,

U=> L.

A€o

If T'is bounded, it is immediate that U is T-invariant; for unbounded T this need not
be the case. However, U is (T’ — \)~-invariant for every A € o(T) and Y, ., £(})
is T-invariant.

Now let us assume that H = @ieN V} is a finitely determining [?-decomposi-
tion for T'. Since Vj is finite-dimensional, o(T'|y, ) is a finite set consisting of the
eigenvalues of T'|y,, and we can decompose V}, into the invariant subspaces Uy and
W), corresponding to the eigenvalues in o and 0,(T") \ o, respectively:

Vi=Ug® Wy, o(T|y,)=0T|v,)No, oT|w,)=0c(T|y,)\o. (2.20)
We can then show that U is compatible with GazelN Vi

Proposition 2.4.3 Let T(H — H) be an operator with a finitely determining 1*-
decomposition H = @zeN Vi, and 0 C op(T) a subset of its point spectrum. Let
Uk, Wi be the invariant subspaces of Vi, corresponding to o and 7 = o,(T) \ o, as
defined in (2.20). Then the subspaces

U=> L) and W= L(}

\eo AeT
are T-invariant compatible with @i Vi,
V=P . W= w, (2.21)
keN keN
and we have op(T|y) = o, 0p(T|w) = 7. Moreover,
(i) U+ W C H is algebraic direct and dense and
(it) (D(T)NU)+ (D(T)NW) C D(T) is a core for T.

Proof. First we derive (2.21). Let z € L(\) with A € 0. Applying (2.17) to
the decomposition © = Y, xy, xp € Vi, we obtain x;, € Uy for all k. Therefore
L(A\) C @ Uy Together with the inclusion Uj, C Y reo £(A) this yields (2.21).
Hence U is a compatible T-invariant subspace and o,(T|7) = 0. The sum U + W is

algebraic direct and dense by (2.8), and >, Vj is a core for T' which is contained in
(D(T)NU)+ (D(T)NW). O

The above invariance result justifies the following definition:
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Definition 2.4.4 Let T(H — H) be an operator with a finitely determining I2-
decomposition. For a subset o C 0,(T") of the point spectrum we call

U=> LA (2.22)

A€o

the compatible subspace associated with o. J

If the I?-decomposition of the operator is finitely spectral, the subspace U defined
by (2.22) has the following uniqueness property:

Proposition 2.4.5 Suppose that T has a compact resolvent and a finitely spectral
12-decomposition @iGN V.. Then the compatible subspace U associated with a subset
o C o,(T) is the unique mazimal closed T-invariant subspace with o(T|y) = o that
is also (T — \)~L-invariant for all X € o(T).

Proof. Suppose that U is closed, T- and (T — \)~-invariant, and o(T|y) = o. Note
that the projections P, onto Vj corresponding to the decomposition are the Riesz
projections of T associated with the respective part of the spectrum. The invariance
of U then implies Py(U) C U and hence U = @ (U N V;). Moreover with Uy from
(2.20) we have U NV}, C Uy and the claim follows by (2.21). O

For unbounded operators, the notion of a spectral subspace is typically used only
for certain classes of operators. Often it comes in conjunction with a corresponding
class of projections whose images are the spectral subspaces. For example, if the
spectrum of an operator has a bounded isolated component, then the range and ker-
nel of the associated Riesz projection are spectral subspaces. For normal operators,
spectral subspaces appear as images of the spectral projections.

The notion of an exponentially dichotomous operator T'(V — V') was introduced
by Bart, Gohberg and Kaashoek [7], see also Krein and Savéenko [28]. Such an
operator admits a decomposition V' = Uy @ U_ into T-invariant subspaces such that
—T|y, and T|y_ are generators of Cyp-semigroups of negative exponential type. As
a consequence, a strip around the imaginary axis belongs to o(T'), and o (7|7, ) and
o(T|y_) lie in the right and left half-plane, respectively. Here U, and U_ are the
spectral subspaces.

The properties shared by the above examples may be used to give a general
definition of a spectral subspace:

Definition 2.4.6 Consider an operator T'(V — V') on a Banach space, a partition
C = X1 UXH, and a topological direct sum V = Uy @ U such that

D(T)=(D(T)nUy) @& (D(T)NUs) (2.23)
and Uy, Us are T-invariant. If

op(Ty;) € X5 and o(T|y;) € X; for j=1,2,
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then V = U; @ Us is called a spectral decomposition corresponding to the partition
and Uj is the spectral subspace associated with ;. J

It is easy to see that (2.23) implies that the subspaces Uy, Uz are also (T — \)~1-
invariant for every A € o(T') and

o(T) = o(Tlo,) Vo (Tlw,),  0p(T) = op(T|vy) Uap(Tlus)- (2.24)

In particular o,(7T|y;) = 0,(T) N % for a spectral decomposition.

The next proposition shows that, for operators with a finitely determining 1%-
decomposition, compatible subspaces associated with subsets of the point spectrum
are a natural generalisation of spectral subspaces.

Proposition 2.4.7 Let T(H — H) be an operator on a Hilbert space and consider
a partition C = X1 U Xy of the complex plane.

(i) If H=U; ®Us is a spectral decomposition for T corresponding to 31, Yo and
T has a dense system of root subspaces, then

Ui= > L) for j=12

)‘G‘T;D(T|Uj)

(ii) Let T have a compact resolvent and a finitely determining [-decomposition

H = @i@N Vi such that for all k
either o(T|y,) C X1 or o(T|y,) C Xa.

Then the compatible subspaces U and W associated with o = 0,(T) N X1 and
T = 0p(T) N o, respectively, have the form

U=P Vi and W= Vi with J={keN|o(T|;)C D}
keJ kEN\J

and constitute a spectral decomposition for T corresponding to 31, Xo.

Proof. (i): It is easy to show that for A € o,(T") either L(X) C Uy or L(X) C Us.
Hence on(Tlu,) L(X) C Uj;. That these inclusions are also dense follows from the
density of the system of root subspaces.

(ii): With the notation from Proposition 2.4.3, either Uy, = Vj, or Uy, = {0} holds.
Hence U and W have the stated form and their sum is topological direct by (2.7).
From (2.14) we obtain the formula for D(T") in (2.23). Finally we have o(T") = o, (T")
since T has a compact resolvent, and the proof is complete. [l

Langer, Ran and van de Rotten [31] generalised the concept of exponential di-
chotomy as follows:



46 2. Operators with determining [?>-decompositions

Definition 2.4.8 A closed, densely defined operator T is called dichotomous if a
strip around the imaginary axis belongs to o(7") and there exists a spectral decom-
position corresponding to the parts of the spectrum in the left and right half-plane.

_I

Corollary 2.4.9 Let T be an operator with compact resolvent and a finitely deter-
mining 1%-decomposition GazelN Vi. If a strip around the imaginary axis belongs to
o(T') and every o(T|v,) is contained either in the right or left half-plane, then T is
dichotomous. O

Note that for an operator with a finitely determining {>-decomposition the com-
patible subspaces associated with the point spectrum in the right and left half-plane,
respectively, even exist in cases where the operator is not dichotomous; see Exam-
ple 5.1.1.

2.5 J-symmetric operators and neutral
invariant subspaces

We apply the theory of finitely determining [?-decompositions to symmetric op-
erators in Krein spaces. For a J-symmetric operator with a dense system of root
subspaces we obtain the symmetry of its point spectrum with respect to the real axis
and a J-orthogonal decomposition in terms of root subspaces, see Theorem 2.5.12. In
Theorem 2.5.16 we show that if the operator has a finitely spectral 2-decomposition
and no eigenvalues on the real axis, then the compatible subspaces associated with
a partition of the point spectrum which separates conjugate pairs are hypermaximal
neutral, i.e., they coincide with their J-orthogonal complements.

Orthogonality relations for the root subspaces of a J-symmetric operator are well
known [5, 16]. For a J-selfadjoint operator with compact resolvent, the symmetry of
the point spectrum immediately follows from the symmetry of the spectrum. Langer,
Ran and van de Rotten [31] considered a dichotomous operator 7' such that i7" is
J-selfadjoint and showed that the spectral subspaces associated with the right and
left half-plane are hypermaximal neutral.

For an introduction to Krein spaces and operators therein we refer to the mono-
graphs of Azizov and Iokhvidov [5], Bognar [9], and Dijksma and Langer [17]. One
possible way to define a Krein space is as follows:

Definition 2.5.1 A complex vector space V together with a Hermitian sesquilinear
form (-|-) is called a Krein space if there exists an involution J : V' — V such that

(z|ly) = (Jxly) for z,yeV (2.25)

defines a scalar product and (V, (-|-)) is a Hilbert space. 4
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The involution J is called a fundamental symmetry. While it is not uniquely deter-
mined, the Hilbert space norms induced by different fundamental symmetries are
equivalent. We will always consider a fixed J and denote by || - || the norm induced
by the scalar product. It is easy to see that J is selfadjoint with respect to (-|-) and

(x|ly) = (Jzx|y) forall z,ye V. (2.26)

The inner product (:|-) is typically indefinite: We say that an element x € V is
positive, neutral, and negative if (z|x) > 0, = 0, and < 0, respectively. A subspace
U C V is called nonnegative, positive, and uniformly positive if (x|z) > 0, > 0, and
> af|z||? for all x € V' \ {0} and some constant a > 0. The notions of a nonpositive,
negative, and uniformly negative subspace are defined accordingly. The subspace is
called neutral if (z|x) = 0 for all 2 € U. The closure of a neutral subspace is again
neutral.

We may define orthogonality with respect to the inner product (:|-): Two ele-
ments x,y € V are called orthogonal if (x|y) = 0. Two subspaces U, W C V are
orthogonal, denoted by U(L)W, if (z|y) =0 for all z € U, y € W. The orthogonal
complement of U is defined by

U ={z eV |(z|ly) =0forally € U}. (2.27)
A subspace U is neutral if and only if U C UM, If necessary, we will use the term
J-orthogonal to distinguish orthogonality with respect to the Krein space inner
product (-|-) from orthogonality with respect to the scalar product (-|).

Definition 2.5.2 We say that the algebraic direct sum Zie A Un is orthogonal direct
if the subspaces Uy are mutually orthogonal. In this case we use the notation

s,

AEA
For an orthogonal direct sum with two components we write U (+)W. 4

Note that the orthogonal direct sum of neutral subspaces is again neutral.

In contrast to the Hilbert space case, two orthogonal subspaces of a Krein space
need not form a direct sum. As an extreme example, a neutral subspace is orthogonal
to itself. And even if a sum is orthogonal direct, it is not necessarily topological
direct.

A subspace U C V is called non-degenerate if for every x € U \ {0} there exists
y € U such that (z|y) # 0 or, equivalently, if U N U™ = {0}. The Krein space V.
itself is non-degenerate since (Jz|z) = ||z||? for all z € V.
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Lemma 2.5.3 Consider a family of subspaces (Ux)xep of V' forming an orthogonal

direct sum @
>, U
AEA

which is dense in V. Then each U) is non-degenerate.
Proof. Let © € Uy \ {0}. Since V is non-degenerate and the direct sum is dense, we

have (aly) # 0 for some y = g, + -+ + . v, € Uy, Now {zly,) = 0 for every
index A; # A by orthogonality of the sum. Therefore one of the indices Aq,..., A, is

equal to A and (z|yy) # 0. O
Definition 2.5.4 Two systems (z1,...,x,) and (y1,...,y,) of elements in a Krein
space V' are called biorthogonal if (x;|yr) = d;1, for all j, k. N
As a consequence of the definition, if two systems (z1,...,x,) and (y1,...,y,) are

biorthogonal, then they are both linearly independent.

Lemma 2.5.5 Let U, W be subspaces of a Krein space such that U NW ) = {0}.
Then forn < dimU there are systems (z1,...,x,) in U and (y1,...,yn) in W which
are biorthogonal. In particular we have dimU < dim W.

Proof. We use induction. For n = 1 take z; € U\ {0}. Since U N WL = {0}
there exists y3 € W with (z1]|y1) = 1. Now suppose we have n + 1 < dimU and
biorthogonal systems (z1,...,2,) in U, (y1,...,y,) in W. We choose an element
x € U\ span{zy,...,z,} and set

n

Tos1 = — ) _{wly;)a;.

J=1

This yields (zp41|yx) = 0 for &k = 1,...,n. Moreover x,11 # 0 by the choice of z
and hence there exists a y € W with (z,4+1]|y) = 1. We set

n
Uni1 =Y — Y _(ylz;)y;
7j=1

and find (yp+1|zg) =0 for k=1,...,n as well as (zp11|ynt1) = (Tppaly) = 1. O

Corollary 2.5.6 Let U, W be two neutral subspaces. If their sum U + W is non-
degenerate, then dimU = dim W and the sum s algebraic direct.

Proof. Let x € U \ {0}. By assumption there exist elements z; € U, y; € W such
that (x|z1 + y1) # 0. Furthermore (z|x1 + y1) = (x|y1) by neutrality of U and
hence z ¢ W), An application of the previous lemma yields dimU < dim W.
Analogously we obtain dimW < dimU and thus equality. Finally, an element
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xo € UNW satisfies (xglx +y) = 0 for all x € U, y € W; consequently o = 0 by
the non-degeneracy of U + W. O

The definitions of symmetric and selfadjoint operators in Krein spaces are anal-
ogous to the Hilbert space case:

Definition 2.5.7 Let T(V — V') be a densely defined operator. Then
(i) T is symmetric if (Tz|y) = (x|Ty) for all x,y € D(T);
(ii) the adjoint operator T is defined by

(Taly) = (z[T™y) for all z € D(T), y € D(T™) where
D(T<*>) — {y eV | D(T) 3 x — (Tz|y) is a bounded linear form};

(iii) T is selfadjoint if T =T,
(iv) T is skew-symmetric if (Tx|y) = —(z|Ty) for z,y € D(T') and skew-adjoint if
T=-T®,

-

Again we shall use the terms J-symmetric, J-selfadjoint and so forth if we need to
distinguish the Krein space concepts from those in a Hilbert space.

Remark 2.5.8 It is easy to see that T is J-symmetric/-selfadjoint if and only if JT
is symmetric/selfadjoint with respect to the scalar product (-|-). As in the Hilbert
space case we have that

(i

(ii) T is symmetric if and only if T € 7™, and T is closable in this case;

) is closed;

) T
)
(iii) T is skew-symmetric (skew-adjoint) if and only if i7" is symmetric (selfadjoint);
(iv) ker ™ = R(T));
(v) if T is symmetric and there exist A\, A\ € o(T), then T is selfadjoint;

)

(vi) if T is bijective with bounded inverse, then the same holds for T¢) and
(1)~ = (1),

|

A new phenomenon in the Krein space context is that a selfadjoint operator may
have spectrum outside the real axis. The next proposition shows that the spectrum
is symmetric with respect to the real axis:
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Proposition 2.5.9 Let T(V — V) be a selfadjoint operator. Then we have
ANeo(T) <= Xeo(T).

Proof. Let \ € Q(T)Li.e., T — A is bijective with bounded inverse. Then the adjoint

(T — N\ =T# — X =T — Xis also bijective with bounded inverse. O

Another new aspect in Krein spaces is the possible existence of generalised eigen-
vectors for (skew-)symmetric operators, see Example 5.1.5. Yet it is possible to
derive orthogonality properties similar to the situation in a Hilbert space. The cor-
responding result for linear relations in a Krein space was obtained by Dijksma and
de Snoo [16, Proposition 3.2].

Proposition 2.5.10 Let T(V — V) be a densely defined operator and \,u € C
with X # . Then

ker(T — A)F (L) ker(T™ — p)F for all k€ N.

Proof. The proof is by induction on k. The case k = 0 is clear. Suppose the
assertion is true for some k € N and let € ker(T — \)¥*1, y € ker(T™ — p)*. We
set 19 = (T — \)x € ker(T — A\)*. Then (o|y) = 0 which yields
Maly) = (Tzly) — (woly) = (@|TWy) = (@[(T™) = p)y) + Alzly),
thus
(A=) (zly) = (@|(T™ = w)y).

Since also (T — )y, ..., (T™ —p)*=1y € ker(T™) — 1)*, we can use the last formula
repeatedly and find

A=)k zly) = A=) a|(T™ - p)y)
= (=) 2l (T = p)Py) == (T = p)y) = 0;

therefore (z|y) = 0. Now consider z as above and y € ker(T) — p)F*1. With
yo = (T — )y € ker(T™ — p)* we have (x|yo) = 0,

Alely) = (@|Ty) — (zlyo) = (Tzly) = (T = N)zly) + Mzly),

and therefore
(7= M) (zly) = (T = A)zly).

As above, iterated use of this formula yields
(7= N aly) = (T = N aly) = 0.

Consequently (z|y) = 0 and the proof is complete. O
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Corollary 2.5.11 Let T(V — V) be symmetric and A\, u € C with X\ # . Then
the root subspaces L(N\) and L(p) of T are orthogonal. In particular every L(\) with
A € R is a neutral subspace.

Proof. Since T € T™), we have ker(T — p)* C ker(T™ — p)*. The claim thus follows
from the previous proposition. In particular £(A)(L)L(A) for A € R, i.e., L(N) is
neutral. 0

For symmetric operators with a dense system of root subspaces, we can now show
that their point spectrum is symmetric with respect to the real axis and compute
an orthogonal decomposition in terms of root subspaces.

Theorem 2.5.12 Suppose that a symmetric operator T on a Krein space V has a
dense system of root subspaces. Then the point spectrum o,(T') is symmetric with
respect to the real axis and we have an orthogonal decomposition

S e = P m S e o), (2.28)
Aeop(T) teop(T)NR /\I€U§\,(’I(;)

in which each summand L(t) and L(\)+ L(N) is non-degenerate. Moreover, the root

subspaces L(N) and L(A) with Im XA > 0 are neutral and satisfy dim £(\) = dim L(\).
Proof. We start by defining
oco={Ae€C|ImA>0and (A€ oy(T) or A € g,(T)) };

so A € o need not necessarily be an eigenvalue of T, but if not then X is. We may
thus write the sum of all root subspaces as

Y L= Z* L(t) + Z+(£(A)+£(X)).

Aeop(T) teop(T)NR A€og

By the preceding corollary, two root subspaces £(A) and £(u) can be non-orthogonal
only in case of yt = A. Therefore, we get the orthogonal direct sum

S ey =20 () ST oy + 2oy,

Aeop(T) teop(T)NR A€ao

Since this sum is dense, Lemma 2.5.3 shows that its summands are non-degenerate.
Applying Corollary 2.5.6 to the neutral subspaces £(\) and L(\) for A € gg, we can
now conclude that their dimensions coincide. Consequently the point spectrum of

T is symmetric with respect to the real axis and o9 = {A € 0,(T) | Im X > 0}. O

We will now study neutral invariant subspaces of symmetric operators. Recall
that a subspace U is neutral if and only if U € U'Y); we are in fact interested in the
stronger condition U = U, In Chapter 4, invariant subspaces of this type will be
used to construct selfadjoint solutions of Riccati equations.
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Definition 2.5.13 A subspace U of a Krein space satisfying U = U is called

hypermazximal neutral. a

The notion is justified by the following observations, see also Azizov and lokhvi-
dov [5, §1.4] and Dijksma and de Snoo [16].

Remark 2.5.14 Let U = UY. Then U is neutral, in particular nonnegative and
nonpositive. Consider a nonnegative subspace W such that U ¢ W. For u € U,
w € W, the relation

0 < (Mu+ w|du + w) = 2Re(Mu|w)) + (w|w) for all X e C

shows that (u|w) = 0. Consequently W c U = U, i.e., U is maximal nonnegative.
Analogously we see that U is maximal nonpositive.

Now suppose that U is neutral and also maximal nonnegative or maximal non-
positive. If W is neutral and U C W, then, as W is in particular nonnegative
(nonpositive), we find U = W. Hence U is maximal neutral.

In fact the following equivalences were shown by Azizov and Iokhvidov [5, §1.4]: U
is maximal neutral if and only if U is neutral and, additionally, maximal nonnegative
or maximal nonpositive; moreover U = U+ if and only if U is maximal nonnegative
and maximal nonpositive. a

In order to obtain invariant subspaces, we use finitely determining /2-decompo-
sitions and consider the compatible subspaces U associated with subsets o C 0,(T)
of the point spectrum. Then the requirement U = U'Y) has certain consequences
for o and the point spectrum of T

Proposition 2.5.15 Consider a symmetric operator T(V — V') with a dense sys-
tem of root subspaces, a subset o C 0,(T") of the point spectrum, and the subspace

U=> L. (2.29)

AEo

Then U is neutral if and only if o does not contain any conjugate pair of eigenvalues.
Moreover if U = US| then we have op(T) NR = @ and o induces a partition
op(T) = 0 U7 which separates conjugate points, i.e.,

AE€o & MerT.

Proof. The first assertion is an immediate consequence of Theorem 2.5.12. Let
U = U™ and assume that we have t € 0,(T) for some t € R, i.e. £L(t) # {0}. From
Theorem 2.5.12 we know that £(¢) is non-degenerate and since U is neutral this
implies £(t) ¢ U and t ¢ 0. Moreover, L(t) is orthogonal to any other root subspace
of T, in particular to all £()\) with A\ € o. Therefore we get £(t) c UD = U, a
contradiction.
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Suppose now that there is a conjugate pair A\; # A of eigenvalues such that
neither A; € o nor A} € 0. Consider U; given by (2.29) with o replaced by o U{\;}.

Then U G U; which implies Ulu‘> G UL Furthermore U; is neutral, U; C Uf”,
and we obtain the contradiction U ;Cé UL, OJ

The necessary condition for U = U™ from the previous proposition is also

sufficient if T has a finitely spectral 2-decomposition:

Theorem 2.5.16 Consider a symmetric operator T on a Krein space V with a
finitely spectral 1?-decomposition V = GaieJN Vi and 0,(T)NIR = @. If the partition
op(T) = 0 UT separates conjugate points, then the associated subspaces

U=> LK), W=> LN

A€o AET
satisfy

Note that due to Proposition 2.4.3, U and W are of the form

U= @QUk, W = @2Wk

kEN kEN
where U, and Wy, are the spectral subspaces of Vi, corresponding to ¢ and 7, respec-
tively.
Proof of the theorem. As ¢ contains no conjugate pairs, Proposition 2.5.15 shows
that U is neutral, U ¢ U, To prove the other inclusion, let

(L)

zeU with x:Zxk, T =ur +wg € Vi and wug € Uy, wi € Wy.

keN

We aim to show that all wy are zero. Consider one particular £ € IN. Since every
Vj is the sum of root subspaces of T', there is a finite subset 79 C 7 such that

Wi=> L) and W;C > L()) forall j#k.
AETY )\ET\’TO
Hence by Theorem 2.5.12, every
yedy LA cU

AETY
is orthogonal to W; for j # k and to all U;. Therefore
0= (aly) = _(wjly) = >_{wily) = (wily)-
JjeN JjeEN
Since the subspace Wiy, + >\ L()\) is non-degenerate, we conclude that wy = 0.

Consequently z = ), nur € U, ie. U = UL, The assertion for W follows by
symmetry. O



54 2. Operators with determining [?>-decompositions

2.6 J-accretive operators and positive
invariant subspaces

In this section we study operators with a finitely determining /2-decomposition which
are accretive in a Krein space. We obtain a separation of the spectrum at the imag-
inary axis and the positivity and negativity of the compatible subspaces associated
with the point spectrum in the right and left half-plane, respectively. Analogous
results for dichotomous operators have been shown by Langer, Ran and van de
Rotten [31] and Langer and Tretter [33].

Definition 2.6.1 An operator T'(V — V') on a Krein space is called
(i) accretive if Re(T'z|x) > 0 for all x € D(T),
(i) strictly accretive if Re(T'z|x) > 0 for all x € D(T) \ {0},
(iii) uniformly accretive if there exists 4 > 0 such that Re(Tx|z) > 7||x||? for all

x € D(T).

_I

Proposition 2.6.2 Let T(V — V) be an operator on a Krein space.
(1) If T is strictly accretive, then op(T) NiR = @.

(ii) If T is uniformly accretive with constant v, then a strip around the imaginary
azxis belongs to the set of points of reqular type for T,

{Ae C||ReA| <~} Cr(T).
If in addition T is closed with a dense system of root subspaces, then

{Ae C||ReA| <~} Co(T).

Proof. (i): Consider an eigenvalue A € 0,,(7T") and a corresponding eigenvector x # 0.
Then
0 < Re(Tz|x) = Re(Az|z) = Re X - (z|x),

in particular Re A # 0.

(ii): Let A € C\ r(T). Then there exists a sequence x,, € D(T) with ||z,] =1
and (T'— Nz, — 0 as n — oo. For o, = Re((T' — A)zp|2y,) this implies o, — 0.
Using the fundamental symmetry J, in particular ||J|| = 1, we obtain

N = 7”%1”2 < Re(Txy|xn) = an + Re X - (zy|zy)
< am| + [Re M| [(Jzn|zn)| < fan| + | Re>‘|Han2 — |Re )|
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as n — oo, i.e. v < |ReA|. The additional assertion immediately follows from
Lemma 2.3.10. O

For operators with a finitely determining /2-decomposition and no spectrum on
the imaginary axis there are the compatible subspaces U, and U_ associated with
the part of the spectrum in the right and left half-plane, respectively. The algebraic
projections Py corresponding to the direct sum U, + U_ can be represented by a
resolvent integral along the imaginary axis. Integrals of this kind have also been
studied by Langer, Ran and van de Rotten [31] and Langer and Tretter [33].

Lemma 2.6.3 Let A € C with Re A # 0. Then we have

! . if ReAd >0, !
/ dz :{ W% Zf © and / Lk:() for k>2,
iRA— 2 —7i if Re\ <0, iR (A —2)

where the prime denotes the Cauchy principal value at infinity, that is fi/]Rfdz =

lim, oo er fdz.

Proof. For k > 2 we compute

ir

— 0 as 1 — 00,

wr dZ _ 1
/—ir A=2)F " (k—1)(\— 2)kL

which proves the second assertion. To show the first one, we consider the two
branches of the complex logarithm defined by

—ir

log, (z) =log|z| +iarg, () with arg,(z)€ |- g,g[ for Rez > 0,
log_(z) =log|z| +iarg_(z) with arg (z)€ ]g, 3%[ for Rez < 0.

For Re A > 0 and < 0, respectively, this yields

ir d ir \ .
/_ir 3 _ZZ = —log (A —2) = log :/\tz:: + i(argy (A +ir) — argy (A —ir)).

The first summand vanishes as r goes to infinity whereas for the arguments we obtain

—7/2
argy (A +ir) — T and argy (A —ir) — ™/ as r — o0.
2 3m/2
Consequently, the integral converges to im and —im, respectively. O

For an operator T we denote by o, (T) and o, (T) the set of all eigenvalues in
the right and left half-plane, respectively.
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Proposition 2.6.4 Let T be an operator on a Banach space with op(T) NiR = @.
Consider the algebraic direct decomposition of the sum of all root subspaces

Socy= > v+ > Lk

Aeop(T) Aeap (T) A€oy (T)

and the associated algebraic projections Py and P—_ onto the first and second com-
ponent, respectively. Then we have

1 !/

— | (T —2)"'zdz=Px—P.x forall z € Z L(N). (2.30)

iR Aeap(T)
Note that we do not need the stronger assumption iR C o(7"): In the integrand, the
inverse (T — z)~! acts, for each x, on a finite sum of finite-dimensional subspaces
generated by Jordan chains. Therefore (T — 2)~!z is a continuous function in z.
Proof of the proposition. By linearity and since every x € ZUP(T) L(A) is a finite
sum z = x1+- - -+ 2, of elements x; € L(\;), each contained in some Jordan chain,
it suffices to consider x € £(\) and the Jordan chain generated by z. This Jordan

chain is the basis of an invariant subspace and in this basis 7" is represented by a
Jordan matrix of the form

A=

So, we only have to show that
!/
/ (A — 2)"Ydz = il
iR
for Re A > 0 and Re A < 0, respectively. As the inverse of A — z is given by
A=z =(A=272 (A-2)

-3
A—2)"1 —(A—2)2
(A-2)7'= ( ) E/\_Zg—l

an application of the previous lemma completes the proof. O

Using a Riesz basis of Jordan chains, we derive an estimate for the integral over
the squared norm of the resolvent along the imaginary axis:

Proposition 2.6.5 Let T(H — H) be an operator on a Hilbert space with a Riesz
basis of Jordan chains S. Suppose that o,(T) NiR = & and that the eigenvalues of
T are contained in a strip around the imaginary axis, i.e.

a =sup{|Re\| |\ € 0,(T)} < o0.
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Then
1

o0
— T —it) ' 2dt>L$2 or x € spanS, 2.31
N e et U A 2:31)

where m and M are the constants from (2.12) associated with the Riesz basis.

Proof. Let x € span S. Then there is a finite system B = (z1,...,2,) C S consisting
of Jordan chains such that © = ayx1 + ... + a,T,. span B is an invariant subspace
of T with basis B. The matrix representing 1" with respect to B is block diagonal
with blocks of the form

A=
A
one for each Jordan chain in B. Accordingly, (T —it)~! is represented by a block
diagonal matrix C with blocks of the form (A —it)~1. Then

n

(T —it)~ m—Zak —it)” mk:Zaijkxj.

k=1
Putting £ = (a1, ..., a;,) and using the Euclidean norm on C" we find
I =it alP = m 30| S k| = micel.
7j=1 k=1

Now ||C¢€||? is the sum of terms of the form ||(A — it)~!v||?, one for each Jordan
chain in B with v the part of ¢ corresponding to that Jordan chain. So in order to
estimate [ ||(T —it)~1z|?dt, it suffices to estimate [ ||(4 —it)~1v||*dt. From

A —at] < |x—it| + || (0 ! 0) | < |x—it|+1
it follows that

1
2 vl

A=t > s

With v = Re A, v = Im A, the calculation

/OO dt - /OO dt _ 1/00 dt
oo (A=t +1)2 T g 2(A—dt|2+ 1) 2 ) o 1+uZ+ (t—v)?

1 t—w 0o T T
= ———arctan | —— ‘ = >
21 4+ u? (\/1+u2> t=—c0 214+ u? = 2V1+ a?

yields

b A—it)y Ww)2dt > — ||
| =i e L



58 2. Operators with determining [?>-decompositions

Putting it all together, we arrive at

(T —it) Lz ||? dt > m————

/ el > T o
—o 241 2M\/1 +a

O

Part (i) of the following proposition was obtained by Azizov and Iokhvidov [5,
Corollary 2.2.22].

Proposition 2.6.6 Let T(V — V) be an accretive operator on a Krein space with
op(T)NiR =@ and

Ur= > LK), U= > LN (2.32)
Aeat (T) A€oy (T)

the closed subspaces generated by the root subspaces corresponding to the right and
left half-planes, respectively. Then

(i) Uy is nonnegative, U_ is nonpositive.

(ii) If T is closed, uniformly accretive with constant ~y, has a Riesz basis of Jordan
chains, and o,(T') is contained in a strip around the imaginary azis,

a =sup{|Re ||\ € 0,(T)} < o0,

then Uy and U_ are uniformly positive and negative, respectively, with constant
my

2MV1+ a2

Here m, M are the constants from (2.12) associated with the Riesz basis.

o =

Proof. (i): Let

Yo LK) and Wo= > L(N)

Ao (T) A€oy (T)

Then Uy = W, U_ = W_ and we get an algebraic decomposition W -+ W_ of the
sum of all root subspaces. Let Py and P_ be the corresponding algebraic projections
onto W, and W_, respectively. Using Proposition 2.6.4, we have

1 [ .
/ (T —it) 'zdt = Prx —P.x for xcW,+W_.
TR

For x € W, this yields

(alz) = (Pra — P_alz) = jr/ (T = it) | dt

R
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We rewrite the integrand as
(T —it) x|z = (T —it) ra|T(T — it) " ta) + it (T — it) Lz |(T — it) "'z,

where the last summand is purely imaginary. Since (z|x) € R and using the accre-
tivity of T', we obtain

gzca::l /e —it) x|z _ 1 /e — i) (T —it) 'z
(z|x) TF/RR«T 1 Lalz) dt W/]RR(T(T D L2|(T — it)"a) dt > 0.

>0

Thus W, and hence also U, are nonnegative. For x € W_ the similar calculation

—(x|z) = (Pyx — P_x|z) = i/}RRe<T(T —it)a|(T —it) ta)dt > 0

implies that W_ and hence also U_ are nonpositive.

(ii): We use the same notations as in (i) and Proposition 2.6.5 to estimate the
resolvent integral. Denote by WY the span of the Jordan chains from the Riesz basis
corresponding to o, =(T). Then W9 C Wy and for x € W0 we find

(z|z) = (Pyx — P_x|z) = 1/Re( (T — it) L (T —it) " 'x) dt

/|| - it) el > Tl

By Proposition 2.6.2 we know that o(T') # @&. The subspaces generated by the
Jordan chains of the Riesz basis thus form a finitely determining 12-decomposition,
see the proof of Lemma 2.3.15(i). Then (2.17) implies £(A) C WY for A € o;f (T') and
hence WE = W,. Consequently U, = W, is uniformly positive with the specified
constant. For z € W9 the relation —(z|z) = (Pyx — P_x|z) again leads to the
corresponding result. ]
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Chapter 3

Perturbation theory for spectral
I>-decompositions

The purpose of this chapter is to prove the existence of finitely spectral (?>-decom-
positions for non-normal operators with compact resolvent. Compared to normal
operators, a number of new problems arise: First, apart from eigenvectors, the ex-
istence of generalised eigenvectors is possible too. Second, in contrast to a normal
operator with compact resolvent, which always has an orthonormal basis of eigen-
vectors, the system of root vectors of a non-normal operator with compact resolvent
need not be complete. And third, even if the system is complete, this does not imply
that it has additional basis properties.

To solve these problems we use an approach due to Markus and Matsaev [37],
[36, §85,6], and consider an operator 7' = G + S where G is normal with compact
resolvent and S is p-subordinate to G. Under appropriate conditions on the spectrum
of G we prove that T has a compact resolvent and admits a finitely spectral 12-
decomposition. Strengthening the assumptions we even obtain an [2-decomposition
of root subspaces, i.e., T is a spectral operator. These results extend theorems due
to Kato [24], Dunford and Schwartz [20], and Clark [11].

In the first section we prove an auxiliary result on the completeness of the system
of root vectors. In Section 3.2 the notion of a p-subordinate perturbation is defined
and differential operators are considered as examples. Section 3.3 contains several
estimates for Riesz projections corresponding to T'. The main perturbation theorems
are proved in Section 3.4 and applied to diagonally dominant block operator matri-
ces. In the last section we show the existence of a finitely spectral 2-decomposition
for an ordinary differential operator with possibly unbounded coefficient functions.

61
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3.1 Completeness of the system of root subspaces

We derive a completeness result for the system of root subspaces of an operator with
compact resolvent. In the proof we use ideas from a similar theorem for a relatively
compact perturbation of a normal operator due to Keldysh [25], cf. [36, §4]. Our
result is of auxiliary nature and will be used in the proof of the main perturbation
theorems in Section 3.4. Hence we do not consider a perturbation here and instead
assume that the resolvent is appropriately bounded.

Recall that the adjoint of an operator with compact resolvent on a Hilbert space
also has a compact resolvent.

Lemma 3.1.1 Let T(H — H) be a densely defined operator with compact resolvent
on a Hilbert space H and
M= Y LM

Aeo(T)
the sum of all root subspaces of T'. If P is the Riesz projection of T™* corresponding

to an eigenvalue \ € o(T*), then M+ C ker P. Moreover, M+ is T*-invariant and
(T* — 2)~t-invariant for every z € o(T*); in particular o(T*) C o(T*|31).

Proof. We have A\ € o(T*) if and only if A\ € o(T). Observe that if P is the

Riesz projection of 7™ corresponding to A, then P* is the Riesz projection of T

corresponding to A. Since R(P*) C M we find M+ C R(P*)* = ker P. Now let
v € M and z € o(T*). Then Tw, (T — 2)~'v € M and we find

we MND(T*) = (T ulv) = (u|Tv) =0,

wve Mt = ((T* — z)flu‘v) = (u

(T —2)" ') =0.

Therefore M~ is T*- and (T* — z)~-invariant, and this in turn implies the inclusion
o(T™) C o(T™|p2)- D

Corollary 3.1.2 Let T and M be as above. Then o(T*|p;1) = C.

Proof. Since T has a compact resolvent, the same holds for 7% and T%|;;.. Con-
sequently if A € o(T™|),1), then X is an eigenvalue of T%|,,1, i.e., T*u = Au for
some u € M*\ {0}. In particular X is an eigenvalue of T* and we have u € R(P)
where P is the Riesz projection of T* corresponding to A. Now the previous lemma
implies v € M+ C ker P and hence v = 0, which is a contradiction. Therefore
o (T*’ ML) = . ]

Proposition 3.1.3 Let H be a Hilbert space and T(H — H) a densely defined
operator with compact resolvent. Suppose that the eigenvalues of T all lie in a finite
number of pairwise disjoint sectors

Qj:{ze(DHargz—Hj\<¢j} with, 0<¢j§%> j=1,...,n.
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If there is a constant My > 0 such that
(T =27 <My for 2¢QU...UQ,
and for each sector §; there is a sequence (xy)pen with xj, — oo and
(T —2)7Y < My for z€Qj, Re(e ™i2) =uay, k€N,
then T has a dense system of root subspaces.

Proof. Let M be as before. For u,v € M we consider the holomorphic function
defined by

F(2) = (T age = )" ulo).

From the previous corollary we know that its domain of definition is C. Since
(T |pre = 2) ST =) = (T = 2)7 | for =€ o(T),

we see that |f(z)| < Mollu||||v|| holds for z € Q; with Re(e~"z) = x, as well as for
Z¢& N U...UQ,. Using the maximum principle, we find that |f(z)| < Mo|lull||v]|
for every z € C; by Liouville’s theorem f is constant. Since w and v have been
arbitrary, the mapping z +— (7|, — z)~! is also constant. For u € M~ we obtain

(T|y)u= (T = D7 = (T = (T |y2)u=u

= (T*|y)'u=0 = wu=0.

Hence M+ = {0}, i.e., M C H is dense. O

3.2 p-subordinate perturbations

The concept of p-subordination is taken from the book of Markus [36, §5], see also
Krein [27, §1.7.1]. In a certain sense it is an interpolation between the notions of
boundedness and relative boundedness. As examples of p-subordination we consider
differential operators with boundary conditions and bounded as well as unbounded
coefficient functions.

Definition 3.2.1 Let G(V — V) and S(V — V) be operators in a Banach space
and p € [0, 1]. The operator S is said to be p-subordinate to G if D(G) C D(S) and
there exists b > 0 such that

1Sull < bllu]P||GulP for all u € D(G). (3.1)

The minimal constant b > 0 such that (3.1) holds is called the p-subordination bound
of S to G. r
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For the case p = 0, subordination simply reduces to the boundedness of S. For

p > 0, the following proposition gives a connection to relative boundedness, cf.

Krein [27, page 146]. The operator S(V — V) is called relatively bounded with

respect to G(V — V'), or simply G-bounded, if D(G) C D(S) and there exist a,b > 0
such that

|Sul| < al|ul| + b||Gu|| for all u € D(G). (3.2)

The infimum of all such b is called the G-bound of S.
Proposition 3.2.2 Let G, S be operators in a Banach space with D(G) C D(S)

and 0 < p < 1. Then S is p-subordinate to G if and only if there is a constant
C > 0 such that

1Sull < CeP|lu]| + X P||Gull)  for all uwe D(G), & > 0. (3.3)

Proof. First note that
N4> for A >0. (3.4)

Indeed, we have \? > 1 for A >1and W71 >1for 0 < A < 1.

As the case u = 0 is trivial, we may assume u # 0. Suppose first that S is
p-subordinate to G. If |Gul| = 0 then ||Su| = 0 and (3.3) holds. If ||Gul| # 0, we
use (3.4) with A\ = |Jul|(¢]|Gul|)~! and obtain

p p—1
Sul| < bljul)*P||Gul” ( e ) +( ] ) = b lul| + " 7P| Gul).
Iul M\HH(€WW T (Pl + <Gl

Vice versa, suppose that (3.3) holds. If ||Gu|| = 0 then

|Sull < CePllull =0 as & — oo,

that is ||[Su|| = 0. If ||Gul| # 0, we use (3.3) with e = ||u||/||Gul| to get

ull \ 7P ul| \'7P _
nwmc«$MM+w%)uwoﬁmWW@w

Corollary 3.2.3 If the operator S is p-subordinate to G with bound b, then S is
G-bounded with G-bound 0 for 0 < p <1 and G-bound < b for p=1. O

O

While boundedness implies relative boundedness, there is in general no relation
between p-subordination for different p. For example, if ker G # {0}, then the
condition ker G C ker S is necessary for a bounded (i.e. 0-subordinate) operator S
to be p-subordinate to G with p > 0. The situation is different for 0 € o(G):

Lemma 3.2.4 If S is p-subordinate to G and 0 € o(G), then S is q-subordinate to
G for all q € [p,1].
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Proof. For u € D(G) we have
1Sull < bllul P Gull? = bllul* =G Gul 7P| GulP < BIGTH|TP ull | Gl .
U

If G has a compact resolvent, connections of p-subordination to the boundedness
of SG™P and to relative compactness can be obtained:

Remark 3.2.5 Let H be a Hilbert space, G(H — H) normal with compact resol-
vent, and 0 € o(G). We may then define fractional powers of G: Let (ex)ren be an
orthonormal basis of eigenvectors and A, the corresponding eigenvalues. For p € R
we set

D(GP) = {u €EH

5= Inulen) < o0

keN

GPu = Z Mo (uleg)er  for we D(GP)
keN

where \? = |\[Pe®Pa8 X with arg A €] — 7, ).

Now the following can be shown, see Markus [36, §5] and Krein [27, §1.7.1]: If
the operator S(H — H) is such that SG™P € L(H) with 0 < p < 1, then § is
p-subordinate to G; the converse implication is wrong in general. However, if S is
p-subordinate to G with 0 < p < 1, then SG™7 € L(H) for all ¢ > p; in particular,
S is relatively compact to G, i.e., SG™1 is compact. J

As an example of p-subordination we investigate differential operators. We need
some facts about Sobolev spaces; see Adams [2] for a detailed treatment. Let Q C
R™ be open. For n € N we consider the Sobolev space

W™2(Q) = {u e L*(Q) | Oqu € L?(Q) exists for o] < n}

where O,u is the weak derivative corresponding to the multi-index «. The space
W™2(Q) is a Hilbert space with respect to the norm

1/2
ullynsey = (Z \|aaurr%2(m)

laj<n

and C*°(Q) is a dense subspace. W' 2(Q) is by definition the closure of C5e(82) (the
space of smooth functions compactly supported in Q) in W™2(Q).

In the one-dimensional case, 2 =]a1, as[ a bounded open interval, we have the
characterisation [23, Theorem VII.1.1]

u € W"’Z(]al,ag[)

& ue " Yay,a)), uY

is absolutely continuous, u'™ € L?(Jay, as|).
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In particular, the point evaluations u(z),...,u 1 (z) are well defined for every
x € [a1,az], and we will therefore use the notation W™2([ay, as]) for the Sobolev
space over an interval. C"([a1, az]) C W™2([a1, az]) is a dense subspace.

For differential operators with certain kinds of boundary conditions, e.g. Dirichlet
or periodic boundary conditions, we obtain a subordination property in a straight-
forward way using partial integration:

Example 3.2.6 On L?([a1,az]) consider the following second order differential op-
erator with Dirichlet boundary condition:

Gu=1u", D(G)={uc W22([ay1, as)) | u(ar) = u(az) = 0}.
Then the first order operator
Su =1 with D(S) = C([a,as])

is 1/2-subordinate to G: Integrating by parts and using the boundary condition and
the Cauchy-Schwarz inequality, we obtain for u € D(G)

/a2 o ()2 da = /@2 o ()l (7) dae

ai ai

a2
. / w(@) @) dz < [[ull 22(jayaap) 14”1 22 for oa) -

al

Hence
1/2 1/2
1Sl 2 (ar.aal) < Nl o, gy 16U o, 0y for wED(G). (35)

Obviously, this result continues to hold for every choice of boundary conditions such
that the boundary terms in the integration by parts vanish. a

Example 3.2.7 Consider the Laplacian on a domain 2 C R™ with Dirichlet bound-
ary conditions,

G(LA(Q) — L2(), Gu=Au, D(G)=W>*Q)nW,>*Q).

Then the operator 9y, of taking the kth partial derivative with domain W12(Q) is
1/2-subordinate to G: Analogously to the previous example we find for u € D(G)

| toruta \Qdaj<2/8u 0ju(z) Z/

_ /Q w(w) @) de < [l 2 | Gl (e
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In the case of periodic boundary conditions we can derive a subordination prop-
erty for higher order derivatives.

Proposition 3.2.8 Forn € N consider the operator D,, on L*([a1,as]) given by
Dpu = ul™,
D(Dy) = {u € W"*([a1,a2]) | u® (ay) = u® (ag) for k=0,...,n— 1}.
Then for 0 <k <n andn > 1, Dy is k/n-subordinate to D,,,
1Dyl < =M [ Dyl for w € D(Dy). (3.6)

Proof. As the cases k = 0 and k = n are trivial, we consider 0 < k < m and use
induction on n. The calculation in Example 3.2.6 shows that the assertion is true
for n = 2. Now suppose that (3.6) holds for some n > 2 and let u € D(Dy1). Using
(3.6) twice, one time with n = 2, we find

1 -1
1Dyt D)2 < lu® DY Dou™ V| < Jlul| | Dyl = [ Dnyrul]
9_n=1 ntl 1
= | Dpull" "7 = [[Dypull = < [lul|» || Dnyrul|
1 _n_
= [|Dnull < [lul[ "7 || Dpjaul =+

Using (3.6) again, we obtain for k <n —1

=

E n

_k k _ 1 _n_
|Dyull < flull' =% Dol < [l (Il 757 1| D] 757)

_k k _k __k _k
= [l 7RO || Dy = [l | Dyl 7T 0

The next example shows that differential operators without boundary conditions
do not satisfy a subordination property in general:

Example 3.2.9 Let G and S be operators on L?([0,1]) defined by

Gu=1u", D(G)=W?2(0,1]),
Su=u/, D(S)=w(0,1])

For A € € consider the function uy € D(G) given by

A
uy(r) = Za? 4 x.
2
We have v} (z) = Az + 1, v} (z) = X and hence Suy # 0, (G — A\)uy = 0. Therefore
S is not p-subordinate to G — A for 0 < p < 1. As S is also not bounded, S is not
p-subordinate to G — A for any p € [0,1] and A € C. J
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Now we derive a subordination property for ordinary differential operators with
general boundary conditions. The proof is based on the following interpolation
inequality for Sobolev spaces. While such an inequality holds on arbitrary domains
Q C R™ with sufficiently smooth boundary, see Adams [2, Theorem 4.14], we will

only need the simpler version over a compact interval. For a proof we also refer to
[2, Theorem 4.14].

Proposition 3.2.10 Let a1 < as and n > 1. Then there exists K > 0 such that
for0<e <1 and 0 <k <n we have

1™ L2 (far.an)) < K™ ™ ull 2taran)) + K™ ] L2 (far.a0)) (3.7)
for all w € W™2%([a1, as)). -
Remark 3.2.11 Replacing ¢ with e ~%)/" in inequality (3.7), we obtain

[u® 2 < K (e a2 + /" [u™)]| 2)

for u € W™2([a1, az]) and 0 < ¢ < 1. While this inequality is of the form (3.3), we
can not use it directly to proof k/n-subordination since it does not hold for all € > 0.
On the other hand, no boundary conditions are involved in Proposition 3.2.10.  _

Corollary 3.2.12 Given a1 < ag, n > 1, there are constants K > 0, L > 0 such
that

el (ayas) < K (1l 22 (ar.as)) + 1022 (ar.aap))  and
4™ loo < L(lull 220y a2y + 1™ | 22 ({0 00]))
for all w € W™%([ay,az]), 0 < k < n.
Proof. The first estimate is obtained from (3.7) with e = 1 and
lullwnz < flull gz + -+ [[at™]] 2.
The second one then follows by the Sobolev imbedding theorem [2, Theorem 5.4]

W™2([ay,az)) — C"Y([a1,az]) continuous. -
The following inequality also holds on arbitrary domains 2 C R™ with suffi-
ciently smooth boundary, see Adams [2, Theorem 4.17].

Corollary 3.2.13 Fora; < as, n > 1, and 0 < k < n there is a constant C > 0
such that " b

1—
HUHW’%Q([al,aQ]) < CHUHB([GT,@D||U||W:,2([a1,a2])

for all w € W™%([ay, as]).
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Proof. The inequality is trivial for K = n and £k = 0, so let 0 < &k < n. By the
previous corollary there exists Ko > 0 such that

lullwrz < Ko(llull 2 + [u]12).

For £ €]0, 1] we have

—k/(n—k

ullg> < e o] 2

together with (3.7) this yields
lullwe < Ko(K + 1) (e P ul g2 + e a2
< Ko(K + 1) (el 12 + eluflwn2).-

Since |lu||z2 < ||u|yn2 we may choose € = (||ul|p2/||ullyn2) ™ *)/™ and obtain the
assertion. u

For a differential operator of order n on the interval [a, as], boundary conditions
can be specified as follows: For V : C?" — C linear and u € W™2([a1, az]) we define

V(u) = V(u(al),u/(al), R u("fl)(al),u(ag),u’(ag), ... ,u("*l)(ag)).

Then V(u) = 0 is a linear, homogeneous boundary condition. A treatment of bound-
ary conditions for ordinary differential operators and their relation to eigenvalues
and eigenfunctions may be found, for example, in the book of Naimark [40].

The next proposition yields an a priori estimate for solutions u of u(™ — \u = f
subject to boundary conditions, see also Goldberg [23, Theorem VI.6.2].

Proposition 3.2.14 Let Vi,...,V, : C** — C be linear and linearly independent
and consider the nth order differential operator G on L*([a1, az]) defined by

Gu=u™, D(G)={uecW"([ar,a)) | Vi(u) =+ =Vu(u)=0}.  (3.8)
Then for every A € C\ 0,(G) there is a constant C > 0 such that
[ullwn2(araz)) < CING = MNullL2((ay,00))  for w e D(G).

Proof. Since C™([a1,az]) is dense in W™2([a1,az]), we may assume u € C"([a1, as))
with Vi(u) = --- = V(u) = 0. We set f = u(® — Au and consider the solution
ug € C"(Ja1, azg]) of the Cauchy problem

uén) —dug = f, wuplar) =up(ay) =+ = uén_l)(al) =0.
Setting z = (uo, ..., uén_l)), we may rewrite this as the first order system 2’ = Az+g,

z(a1) = 0 with g = (0,...,0,f) and A € C"*". Denoting by | - | the maximum
norm on C", we find

o) = [0 +g0) > @< |

al ai

a2z

ww@ﬁ+/umvw%w
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By the Gronwall inequality it follows that

az
|2(2)] oo S/ lg(t)|oc dt - el

al

and thus

[u(2)|? < |2(2)[3, < IAN@2740) (a, — al)/ l9(t)[3c dt = CO/ (6 dt

al al

with Cy > 0. Therefore

luollz2 < +/Co(az — a1) || fllz2,

g lza = X + fllz2 < Aluoll 2 + 11112 < (INv/Colaz = ar) + 1) 1] 2.

Now let ui,...,u, be a fundamental system of solutions of the homogeneous
equation u™ — X = 0. Set M = (Vj(up))jr=1,..n and B = (Vi(ug), ..., Vn(uo)).
The matrix M is invertible since A & 0,(G). Then u is of the form

U= Ul + - + opy + U,
and writing o = (a, ..., a,) we have
Viluy=---=Vu(u) =0 <= Ma=-0.

We obtain

lullzz < (luallze + -+ lunllz2) oo + [luoll 2,

_ _ -1
koo < 1M 1Bloo < CallM [ max{ o oo - - "}
with C1 = max{||Vi]],...,||Vall}. Due to the above calculations and Corollary 3.2.12,

there is a constant Cy > 0 such that Hu(()k)Hoo < Co||fllg2 for k = 0,...,n — 1.
Altogether this yields

lullze < ((luallze + -+ anllz2) Oy 1Mo + v/Colar —an)) 17112 = Cll 2
with C3 > 0. Since moreover
[u™ 2 < Alllullrz + 1122 < (ACs + D)1 fllze,

the proof is complete in view of Corollary 3.2.12. O

We can now prove a subordination property for ordinary differential operators
with general boundary conditions and bounded coefficients.
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Proposition 3.2.15 Let G be an nth order differential operator on L*([a1,az]) as
in (3.8) and A € C\ 0p(G). Then for 0 < k <n and go,...,gr € L>([a1,a2]), the
differential operator

k
Su=>Y_gu, D) =W"([a1, as))
j=0

of order k is k/n-subordinate to G — \.
Proof. Using Corollary 3.2.13, we have

k k

: 1-k k
1Sullzz <3 lgillsole@ 2 <3 llgilloo - lullwne < bollulljz™" ull/n
j=0 j=0

with some constant by. The claim is thus an immediate consequence of Proposi-
tion 3.2.14. 0

When the coefficients of S are L2-functions, we can still prove a subordination
property, though with larger constant p.

Proposition 3.2.16 For 0 < k <n—1 and go,...,g9x € L*([a1,a2]) consider the
differential operator S on L?([a1,as]) given by

k
Su = Zgju(j), D(S) = C*(Jay, a)).
=0

If G is a differential operator as in (3.8) and A € C\ 0,(G), then S is (k+1)/n-
subordinate to G — .

Proof. Let u € W™2([a1,as]). Using Corollaries 3.2.12 and 3.2.13 we find

k k
15ull2 < S Mgl @ oo < LS Mlgjllre (lull g2 + w94V 2)
7=0 j=0
1—(k+1 k+1
< bollullyrsre < b flull | 0D

with some constants bg,b; > 0. The assertion is again a consequence of Proposi-
tion 3.2.14. O

3.3 Estimates for Riesz projections

In this section we consider the operator T' = G + S where G is normal and S is
p-subordinate to G. We derive estimates for the resolvent and for Riesz projections
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of T. They will be used to prove the perturbation theorems for finitely spectral
[2-decompositions in the following section. Lemma 3.3.2 and Propositions 3.3.8 and
3.3.12 may be of interest on their own. The key ideas are taken from the book of
Markus [36, §§5,6].

Lemma 3.3.1 Let G be a normal operator on a Hilbert space, S p-subordinate to
G with bound b, and T =G+ S. If 0 <e <1 and z € p(G) such that

] P 1
b1+ dist(z,a(a))) dist(z,0(Q)F =

then z € o(T') and

€
1—¢

—e) !
IS - <6 I -7 < gD s 27 <

st(z,0(Q))’

Proof. Using the spectral theorem for normal operators [19, Theorem XII.2.3, Ex-
ercises XI1.9.9 and XII1.9.12], see also [24, §V.3.8], we have

1 1
G—2)7Y = sup = —
I )l Ao (G) IA—z| dist(z,0(G))

and ]
GG—2) Y = T+2(G—2) Y <14+-—T10
IG@E =27 = I +2(C =7 < 1+ g s
With the definition of p-subordination this yields

IS(G = 2)7tull SBIG(G = 2) ullPI(G — 2) " ul 7P
|| P 1
dist(z,a(G))> dist(z,0(G))

<b(1+ 5 llull < ellu

for every u € H, hence ||S(G — 2z)7!|| < e < 1. Since
T—z=(I1+S8(G-2""G-=2),
a Neumann series argument shows that z € o(7T") with

(T —2) 7 < (G =) +8(G—2)7H) 7|
1 o - g)~!
1—|IS(G —2)71Y| — dist(z,0(G))’

<G =27

Finally, the identity S(T — 2)~! = S(G — 2)"Y(I + S(G — 2)~1)~! implies that
1S(T —2)7 Y| <e(l—¢e)~ L O
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Figure 3.1: The situation of Lemma 3.3.2

In the remaining part of this section we use the notations

Qo i) ={re”|[r>0,p_<p<pi} and Qp)=Q(—p,¢p)

for the sectors lying between the rays with arguments ¢_, ¢y and —, ¢, respec-
tively. Furthermore, we always assume that

ag(G)NQ2p_,2p4) CR>p with —7<¢p_ <0< ¢; <m.

The next lemma states that in this situation the sets g1, g2, 03 belong to the
resolvent set of the perturbed operator T' = G+S, compare Figure 3.1. The set 91Ugo
comprises all points z with |z| large enough, inside the closed sector Q(¢_, ¢4 ), but
outside a parabola around the real axis. The strip g3 corresponds to large gaps of
o(G) on the positive real axis. Sufficient conditions for the existence of such gaps
may be found in Proposition 3.3.12, Theorem 3.4.7 and Lemma 3.4.10; examples are
the ordinary differential operators in Section 3.5.

Lemma 3.3.2 Let G be a normal operator such that o(G) N Q(2¢p_,2¢4) C Rxo
with —m < p_ <0< @y <m. Let S be p-subordinate to G with bound b, 0 <p < 1,
and T =G+ S.

Then for a > b, b/ae < e < 1, and 0 < ¢ < min{—p_, o, n/2} there exists
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Figure 3.2: Estimates for dist(z,0(G)) in Lemma 3.3.2

ro > 0 such that the sets

01={z€Qp_,04) |2l =710, 2 € Q) },
02 ={z=a+iy e UY)| Iz > ro, [yl > aa?},
03 = {z =z +iy € Q) ‘ |z| > 710, ly] < azP < dist(z,a(G))}

satisfy 01 U pa U o3 C o(T), and for z € 01 U p2 U p3 we have

U e s = 1

HS(G_Z)AH < e, H(T_Z)AH < ma 1=

Furthermore there is a constant M > 0 such that
(T —2)"Y <M forall z€o01UpaU oz

Proof. We want to apply the last lemma and write d = dist(z,0(G)). So we have to

show that
1

v =

C:b(1+|2|>p

First we analyse the geometry of the situation, see Figure 3.2. For z = x + iy we
have the implications

cp_gargzg—g or ggargzggmr = d>|z, (3.9)

max{go_,—g} <argz < min{tp+, g} = d>]y, (3.10)
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as well as
p<lagz| <5 = |yl > |e|siny, (3.11)
largz| <¢¥ = x> |z|cos. (3.12)

Now let z € p1. If op_ < argz < —7/2 or /2 < argz < ¢4, then (3.9) yields
C < 2Pb|z[P~1 < ¢, provided rg is large enough. If ¢ < |argz| < 7/2, then (3.10)
and (3.11) imply d > |z|sin+ and hence

c<b(1+ : )p ! <
€
- siny/ (|z]siny)—P —
for rg sufficiently large.
For z € g9, implications (3.10) and (3.12) apply and with |y| > aaP we find
d > azP. For p > 0 we use the Minkowski inequality to get the estimate

Pt |yl “d + dp 1
(”@)pﬁ(”xzm)pf”x;}y'§1+o‘+=2+d1‘p

i.e. C < 2bdP~! 4+ b/a. Since b/a < & and d > a(]z| cos )P, we obtain C < ¢ for 7o
sufficiently large. On the other hand, if p =0 then d > o and C =b/d < b/a < e.
In the case z € g3, (3.10) and (3.12) apply, and we have d > axP by definition of
the set p3. In the same manner as for z € g2, we conclude that C < ¢ if rq is large
enough.
Finally, to prove that ||(T — 2z)~!|| is uniformly bounded, we need to show that
d~ ! is bounded independently of z. For z € g; we have

either d>|z|>rog>0 or d>|z[siny > rgsiny > 0.
For z € g2 U p3 we obtain

d > a|z| cos)? > a(rgcosyp)P > 0. 0

We will now focus on the case where GG is normal with compact resolvent. The
next two lemmas yield estimates for some resolvent integrals along contours associ-
ated with the parabola from Figure 3.1.

Lemma 3.3.3 (Markus [36, Lemma 6.6]) Let G be normal with compact resol-
vent and o(G) N Q(2¢p) C R>p with 0 < ¢ < 7/2. Then for 0 <p <1, o > 0 there
exists rg > 0 such that the contours

'y ={z+iyeClz >ry, y=tazl} (3.13)

satisfy Iy C o(G) NQ(¢) and we have

/F [2PI(G = 2) "l |dz| < Cylul, / 2P G(G — 2)"hul® |dz| < Colfull?
+

I+
for all w € H with some constants C1,Cy > 0.
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Figure 3.3: Two points separated by a sector

Proof. Since G is normal with compact resolvent, there is an orthonormal basis
(uj)jen of eigenvectors with corresponding eigenvalues \;. For u € H and z € o(G)

we thus get
(G = =)t = ZM 5 (k) .

We have I'y. C Q(yp) if we choose ry large enough. Hence I'y C o(G),

/Fi|z|f’||<a o)l |dz] = Z / |2|dz|r<u|ug>\

|Z’p 2
< sup / I SN
J j |)‘J - Z|2

and similarly
p—2 )Y 2
PG - )l o] < sup | PN g .
) N — 2|2
Ty J 'y | 7 Z|

We need estimates for the differential forms dz, dx, dy: For z = x 4+ iy € ' and rg
large enough we find
|dz|? = dz® + dy? = (1+ (apxp_1)2) dz? < 2dz? and
2 < |22 = 2% + a2 = (1 +a2$2(p—1))x2 < 222,
Figure 3.3 shows that if two points w, z in the complex plane are separated by a
sector of angle > ¢, then |w— z| > |z|sin ¢ and also |w — z| > |w|sin ¢ by symmetry.

So if A; € Rso, then A\; & Q(2¢) and we obtain |\; — z| > max{|z|, ||} sin¢p for
z € I'x. Hence

p 1 2 * d
| e < I VI [T
v, Dy sin? g sin? g Jy, 727
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as well as

P=2|)\ |2 1
/ M |dz] < — / 12|P72 |dz| < oc.
r. A — 2| sin® ¢ Jr,

If on the other hand A\; € R>o and z € I'y., then
Ay — 22 = () — 2) + (aa?)? = min{1, a2}, — 2)? + %),

and it suffices to prove the two assertions

/oo P J 00 t21,p72 J
sup — - ar < 00, sup/ — - ar < 00.
>0 Jry (. —1)2 +22P >0 (x —1)% + a2

T0

For 0 < t < /2 we have
/oo P dx </°° 2P dx </°° P dx /Oo 4dw<
_—_— _— _— 007
o @=1)2+2% = [ (z—1Lr)2 " )y (z— 32)? vy T3P
/OO t22P~2 dz </°° 2P dx </°° 4dx<
—_— —_— — < 0.
Yy @R =) ot ),
Using 1 < t/x for x € [ro/2,t] and t/x < 1 for x € [t, 00[, we obtain for t > ry/2
/OO P dx < /t t2aP~2 dx n /OO P dx
ro (@—=0)2+a% = [ (@—t)2+a% [, (z—t)2 42
/OO t22P~2 dx < /t t22P~2 dx n /OO 2P dx
ro (=12 42 = o (x—t)2+2®  f, (x—t)2 2%
For ¢y with ro/2 <t <ty we get
/°° zP dx - /Qto dx +/00 P dr /%O dx +/°° ddr_
— < — — < — 00,
¢ (=124 T [ xP oy (v —1)? roj2 TP Jog, 2P

/t t22P~2 dx < /to 3 dx <
—— 00
ro/2 (;U - t)2 + % T ro/2 z2tp

0

Thus it remains to be shown that

. o0 P dx . t t20P=2 dg
lim sup 5 5, <00 and limsup o oy, <0
t—oo Jr (z—1)%+ % t—oo Jrgs2 (@ —1)% + 2P

Assuming t + tP < 2t, we have

t+tP 2P dr t4-tP 1 t4tP 1
/ g/ dxg/ LIy
. (z—t)2+a? ¢ aP ¢ tp
2t P 2t d 00 d
/ 962962<(2t)p/ 962<(2t)p/ g,
e (T — )2 + 2% tr (T — 1) e (T — 1)

/Oo zP dx </°° zP dx _4/00 dv 4
o (=12 +2% = Jy (z— ) o 2P (1—p)(2t)t-P’
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which yields

> P dx
lim su — < 1+2P
tﬂoop/t (x — t)2 +x 2p —

For ro/2 <t/2 <t — tP we have the estimates

g/wz 72 dy <:<2>i/“2172d < <2>i/“> da 951
——— <[ = x < |- = )
roj2 (E=2)2 + 22 =\t ) Jryp t) Jropp @ 21 —p)rg”
/t—“’ W Pde _ (\" /Hp de__(t\"P 1 2\ _2r
vy (E—a)2+ a2~ \2 e (-2 \2 wo1)= 2 0™

/t P2 dx < /t dz < /t dzx B tP
- (t— $)2 + 2%~ t—tp x2tr — t—tp (t - tp)2+p B (t— tp)2+p '

Therefore

| /t 2mep—Q dr 23—1) 2 p | t2+p
im sup < 4+ 2P+ limsup ————
t—oo Jros2 (T —1)2 + 2% T (1 - )Té p too (L —tP)2HP
25~
= ———+22P+1
(1- p)ro
and the proof is complete. O

Lemma 3.3.4 (Markus [36, Lemma 6.7]) Let G be normal with compact resol-
vent and o(G) N Q(2¢) C R>o with 0 < ¢ < w/2. Let (a:k)k>1 be a sequence of
positive numbers, 0 < p < 1, and «,c1,ca > 0 such that azl” < tan ¢ and
P — ac,lc_p >ci(n—k) for n>k, dist(zy,o(Q))>coxl for k>1.
Then the lines
Ve = {ar +iy € C|ly| < aal} (3.14)

satisfy v C 0(G) N Q() and we have

00
Zl‘k H (G—2)""ull? [dz] < Ciflul, Z$Z2/ IG(G—2) " ull? |dz| < Colul®

k=1 Tk
for all w e H with some constants Cq,Cy > 0.

Proof. The assumptions on (x1 )y yield that the sequence is monotonically increasing
and that v, C Q(p); hence v C o(G) for all k. Then, analogously to the previous
proof,

>0 dz
St [ 1@ - o)l |de] = Z%Z/ "mmw
k=1 Tk J
> dz| |dz
I IR oy e I
J Yk J

k=1 Tk I k=1
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holds; similarly

- — A2
Zxk / IG(G — ) ul? d2] < sup % 2/ Sl
"/k| ] Z‘

Tk J k=1

From the assumption on (xj); we conclude that xi_p > can for all n > 1 with
c3 = min{c;/2, l‘%ip}. For \; & €2(2¢) we obtain the estimates

[e.9] o0

|dz| 204xk 2 1
< oo,
k-z / BY —z|2_sm k:z _035111 gpklsz
oo 2 0o 0o
# ‘dz| < L T 2axP < 2704 i
kg /% Aj — z|? - sinzg:); ke k= c3s1n2cp;k2
Otherwise A\; € R~ and we have
2p
ldz| c- Ly
Zxk/ Ry
k=1 "7

e}

2 22

p—2 A 2p—2 j
X dZ <2a Xz D EE——
k [Yk I\ — |2| | Z (A\j — m)?

k=1 J

Now there exists n € N with z, < A\j < 2,41 (where we have put o = 0). Then

|z — Aj| > @y — 2, for k<n, |z — A\j| > a2 —xp1 for E>n+1,

|zy, — Aj| > coal, and [Zny1 — Nj| > conl .

In addition, for [ > k,

zp— x> 2l (z, P — 2y P) > el (l - k).
Using this, we obtain the estimates
00 2p 2p 2p
T 2 T x
k <24 k 4 k
20 w? =G P 2 P
2p 00
2 x 1 2 2 1
L eI <ZeiASh
= 3 2 2 2 = 2 2 2
G o Cion (n—k)? O ci(k —n—1) @ aok
as well as o o
00 2,.2p 2,.4P P
Z )\]:ck - )\j:ck N Z xy,
1 (A — ) ~ k<n (Aj — zk)? lon (Aj — zk)?
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T
- — 1
/
/ Ly Vr+1

70 T T41 €T

\\

—— T

Figure 3.4: The boundary contour from Lemma 3.3.5

and
)\2-$2p_2 )\2:E2p_2 4$2p 4 [e's) 1 o'} $2p
77k J7k k k
3 < ey T w5 < 5 — +4
gl (Aj — z)? xkg/z (A;/2)? ,é; (A —2k)? ~ ; k2 ; (Aj = z)?
$k>>\j/2
which complete the proof. O

With the previous resolvent estimates at hand, we derive an estimate for a se-
quence of Riesz projections associated with the parabola I'y, see Figure 3.4.

Lemma 3.3.5 Let G be normal with compact resolvent, o(G) N Q(2¢) C R>o with
0< ¢ <m/2, S p-subordinate to G with bound b, 0 <p <1, and T =G+ S.

Let o > b, let (zk)k>1, Yk be as in Lemma 3.3.4, and suppose that there is a
constant M > 0 such that

W Co(T) and ||S(T—2)7"<M forall z€y,k>1

Then there exist rog > 0, ko > 1 such that xp, > ro and the following holds: If I'y
is as in (3.13) and 'y, with k > kg is the positively oriented boundary contour of the
region enclosed by Vi, U'—, Yg+1, L+, then Ty, C o(T). If Py is the Riesz projection of
T associated with 'y, then

(e.]
> 1(Beulo) < Cllulljv]l  for all w0 € H
k=ko
with some constant C > 0.

Proof. We want to apply Lemmas 3.3.2, 3.3.3 and 3.3.4, and choose ¢ € |b/a, 1] and r¢
accordingly. The assumptions on (zy) imply that the sequence tends monotonically
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to infinity and we choose kg such that xy, > 79. By Lemma 3.3.2, [|S(T — 2)7!|| is
uniformly bounded on I'y.. We thus have

IhCo(G)No(T) and ||S(T —2)"Y|| <My forall ze&Ty k> ko,

with some My > 0. Consider now the Riesz projections Q)i of G associated with I'y,
which are orthogonal since G is normal. In view of Remark 2.2.8 it suffices to prove

S ((Pe = Quyulv)| < Clullfv].

k=ko
Now
i -1 -1 —1 -1 -1
— = — — — — = — — — d
Py — Qx 27r/Fk((T ) (G—2)"")d= 5 I‘k(T 2)'S(G—2)"dz
and hence

(B = @) < 5 [ 156 =)l — =) .

Then, with the help of

G—z2=I-8S(T—2)"(T-z2)

— ( ) =(G—-2)" (I S(T —2)7)

= =(I-S(T-2)"H)(G-2""

- ||(T UH <1+ [IS(T = 2) )G = 2) 7]

%,_/
<My
and ||(G — 2z)~*v|| = ||(G — 2)~tv]|| (since G is normal), we find

> 1A= Qo) < 25M S [ s -2l -l s
k=ko k=ko

1+ M, -
S ([ 1S(G = ) ul[[(G = 2)" o] |dz].
2
™ F+ F7 k:ko /Yk

Using p-subordination, Lemma 3.3.3, and (for p # 0) Holder’s inequality, we estimate

/F 1S(G = 2)~ llll(G — )~ o) |dz]

1/2 1/2
g(/ |z|—pHS<Gz>—1uu2|dzr> (/ |sz<Gz>—1v||2|dz|> ,
't Iy

<Cylvl?
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J/ 2 PUS(G — =)Vl |d=
ry
sw/'mmﬁwma—a*w%mmﬂWw—@*wawu
Iy

p 1-p
g#(/ pw2w%G—z)%mﬂwo (/ VPMG—@WVVho
Iy It

< b2CHCY P |lul)?,

which yields
AIW@—@AMWG—@*ﬂMASbCf%§MMﬂ-
+

In the same way, with Lemma 3.3.4, we see that

S [ 156 =2 ull@ =2l a2
1/2 1/2
}j(/:@ﬂw )*mﬁua) </°ﬁmc—zr%Whm0
k Tk Tk
1/2 1/2
(21/@ﬂw >”mﬂm0 (?;/xwm—w*w%wo
] k Tk
<Cillv||?
and
j{ju/":rkpns< o)Vl |dz
k Yk

2 _ _
<¥Z/mf|m ) PP (G — 2) PO )

P 1-p
<v? m“%ae—@*w%wo ( ﬁmc—@*w%wo
(=) s/

k Yk
< VOO P ul*
]

We briefly review some facts about the determinant of operators [36, §2.5], see
also [21, Chapter VII], [22, §IV.1] and [24, §II1.4.3]. Let A be an operator of finite
rank n in a Hilbert space, i.e. dimR(A) = n. The determinant of I + A is defined
by

det(I + A) = det((I + A)|v) (3.15)



3.3. Estimates for Riesz projections 83

where U is a finite dimensional, A-invariant subspace with U+ C ker A. Such a
subspace U always exists, and the value of the determinant does not depend on the
choice of U.

Lemma 3.3.6 Let A € L(H) with dimR(A) =n. Then
(1) [det(I + A)] < (1 + [[A])";

(i) I+ A is invertible if and only if det(I + A) # 0, and in this case

o A
I+ A7 < rr )

(iii) if the operator-valued function B : Q — L(H) is analytic on a domain Q C C,
then z — det(I + AB(z)) is analytic on  too.

Sketch of the proof. The first two statements essentially follow from the relations

[det(I+C)| =[[s;(I+C) and  s;(I+C) <1+ 5(C),
j=1

where C' is an m x m-matrix and s;(C) denotes the singular values of the matrix.
The third assertion is proved by approximating B(z) in a neighbourhood of a point
zo by a polynomial

By + Bi(z — 29) + -+ - + Bg(z — zo)k

and noting that the mapping B +— det(/ + AB) is uniformly continuous on sets of
the form {B € L(H) | ||B]| < ¢}. O

In the proof of the next proposition, we need an auxiliary result from complex
analysis, cf. [36, Lemma 1.6]:

Lemma 3.3.7 Let U C C be a bounded, simply connected domain, F C U compact,
zo an interior point of F', and n > 0. Then there exists a constant C > 0 such that
the following holds: If a,b € C and f : aU + b — C with f(azg +b) # 0 is
holomorphic and bounded, then there is a set E C C being the union of finitely
many discs with radii summing up to at most |a|n such that

|f(azo +b)['+€

111G 45,00

|f(2)| > forall z € (aF +0b)\E.

Proof. A proof for the special case of U and F being discs, zo =0, a =1, b =0, and
f(0) =1 can be found in Levin [35, Theorem 1.11]. The general form stated here is
obtained from this particular case by means of a conformal mapping. ]
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The following proposition permits us to estimate the resolvent of the perturbed
operator even close to its eigenvalues by artificially creating a gap in the spectrum
of G. We denote by N, (r1,72,G) the sum of the multiplicities of all the eigenvalues
of G in the open interval |ry, o],

Ni(ri,r2,G) = > dimL(N). (3.16)

Aop(G)N]r1,re|

Proposition 3.3.8 (Markus [36, Lemma 5.6]) Let G be normal with compact
resolvent, 0(G) N Q(2¢) C R>o with 0 < ¢ < m/2, S p-subordinate to G with bound
b, 0<p<l,andT =G+ S.

Let I >b,0<Ilg<l—0bandn > 0. Then there are constants Cy, C1,19 > 0 such
that for every r > rg there is a set E, C C with the following properties:

(i) E, is the union of finitely many discs with radii summing up to at most nrP.

(ii) For every z € Q(¢) \ E, with |Rez — r| < lyr? we have

L CyCm B .
seo) and |(T-2)7Y <=L, ST -2 < GG

where m = Ny (r —lrP,r +rP, G).
Proof. We choose I1 €]lp,1 — b[ and «, b such that
b<b<a<l-—1I.

Let » > ro. We may assume that » — Ir? > 0 by choosing r¢ large enough. Let
A1, ..., A be the eigenvalues of G in A, =|r—UrP, r+1rP[, Py,..., P, the orthogonal
projections onto the corresponding eigenspaces, and

K. =Y (A= X\)P; with X; =

{r =P it Ay <,
j=1

r+1IrP if Aj >

Then G, = G — K, is a normal operator with o(G,)NQ(2¢) C R>p and A, C o(G,).
K, has rank m and satisfies || K,|| < IrP. Setting Py = [ — P; — ... — P, and noting
that A\j/A; <r/(r —IrP) for all j, we have

n n _ )\2
IGu|® = |GPoul® + > X|IPjul® = |GPoul® + > X3 - X%IIPJ-UIIQ
Jj=1 Jj=1 J

LS r 2 r 2
<llGPoul? + YN (=7 ) 1Pl < (——5 ) Il
j=1

r—1rP —lrp
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Since 1 — IrP~1 — 1 as r — oo and b < b, we conclude

1

ISull < bl Gull"ul " < b(+—

p N
Y IGulPull=» < Byl i,

provided rg is sufficiently large. Thus S is p-subordinate to G, with bound less or
equal than b.
Next, we want to prove that

e —r| <lr?P = Jz—azP,x+ azP[C o(G,) (3.17)

for ro sufficiently large. Let |x —r| < [;rP. Since the function x — = — az? is
monotonically increasing for large =, we have

z—ax? >r—Lr? —alr—0rP)’ >r— P —ar? > ¢ —Ir?,
ro large enough. Furthermore
x4 az? <r+hr? +a(r+0r?)" <r+ 0P,
where the last inequality holds if and only if
all+hrP Y <i-1,
and this is in turn satisfied for rg sufficiently large. We have thus shown
|z — aaP x4+ azP[C A, C o(G,).

In order to prove the proposition, we want to apply Lemma 3.3.7. We introduce
the two sets

Up={z+iy|lz—r| <lrP, |y| < 4brP},
Fo={z+iy|lz—r| <lor?, |y| < 3brP}.

For rg sufficiently large we have U, C (). Using (3.17), we can apply Lemma 3.3.2
to G, + S with some ¢ € b/, 1[; we obtain U, C o(G, + S) and, for z € U,,

dist(z,0(Gy)) > lrP — l1rP > arP

and
1

)1 < (1 _5)_ _ N1 < €
G+ 7= T i@, s -7 < 1o

We set d(z) = det(I + K,.(G, + S — z)~1). Then, with Lemma 3.3.6,

jd(2)] < L+ [1EAN(Gr + 5 = 2) 7)™
< (1 Il &2_1> = <1 TGl i E)_1>

ar: «
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on U,. For z € o(T) N U, the identity T — z = (I + K. (G, + S — 2) ) (T — K, — 2)
yields

I=(I+K(G+S—2)"")I-K(T-2)7").
Applying Lemma 3.3.2 (now with « = 2b and ¢ = 2/3) to the operator T and
zr =1 +1-2brP € F,, we obtain

3
~1
o) and |(T-2)7' <o
and thus
i |det (I — K (T — 2,)7 )| < 12 :
d(z) " " - 2b)

Since U,, F}., z, are the images of Uy, F1, z1 under the affine linear transformation
z +— 1P(z — 1) +r and the mapping z — d(z) is analytic, Lemma 3.3.7 is applicable:
There is a constant C' > 0 depending only on b, ly, l; and 7 such that for every r > rg
there exists a union E, of discs with radii summing up to at most nr? and

I —m(14+-C) I(1— &)~} —mC
1d(2)| > (1 + Sb) <1 + (;)) for all z € F,\ E,.

Hence I + K, (G, + S — z)~! is invertible by Lemma 3.3.6. From
T—2= (I+KT(GT+S—2)_1)(GT+S—Z)
we see that z € F,. \ E, implies z € o(T) and
1T =27 < NG+ 5= 2) 7 |- [T+ Kn(Gr 5= 2)7) 7
_ -9 (1 . 3z><1+0>m (1 Ll —s)*)(lw)m . GoCy
a

arpP % rP

with appropriate constants Cy, C7 depending on b, lg, I1, 7 only. Accordingly we have
IS(T = 2)" | <SG+ S = 2) M| - [[(T + Ko (Gr + 5 —2)71) 7|

€ 31\ HFem I(1—g)~1\HOm
(1) (s )

Finally, we consider z = x + iy € Q(p) with |x —r| < lprP and |y| > 3brP. Using
14 lgrP~! — 1 as r — oo, we have

2bxP < 2b (r + lgr?)? < 3brP < |y|

for rg sufficiently large. Applying Lemma 3.3.2 (again with o = 2b and ¢ = 2/3),
we obtain z € o(T') and

T -2 < <0< , IS(T = 2)7Y <2 < GO

for Cy > max{2,b~!} and C; > 1. O
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Corollary 3.3.9 Let G be normal with compact resolvent, o(G) N 2(2¢) C R>p
with 0 < p < 71/2, S p-subordinate to G with bound b, 0 <p <1, and T =G+ S.

Let | > b. Then there are constants Cy, Cy,79 > 0 such that for every r > rg
there exists x € R with the following properties:

(i) |z —7r| < (I —0b)rP/2;

(ii) z € Q(p) with Re z = x implies
_ CoCT? _ m
ceom), I@-97 < P s o <o

and

-0

P
r
4dm

dist(z,0(G)) >
where m = Ny (r —IrP,r + 1rP, G).

Proof. We apply the previous proposition with lo = (I — b)/2 and n = lp/2. The
sum of the diameters of the discs in E,. is at most 2nr? = [yrP, and the interval

A, = [r—lor?, r + lorP]

is of length 2lyrP and contains at most m eigenvalues of G. If we remove from A,
the projection of E,. onto the real axis and an open interval

lo » lo »
])\_2mr ’)\+2mr

for each A € o(G) N KT, then a non-empty set remains. Consequently, we can find
x € A, such that the line Re z =  does not intersect F, and we have

lo
i > 0P,
dist(z,0(G)) > o .

Corollary 3.3.10 Let G be normal with compact resolvent, o(G) N Q(2¢) C Rx>o
with 0 < ¢ < /2, S p-subordinate to G with bound b, 0 <p <1, and T =G+ S.

Then for lg,q > 0 there are constants Cy,C1,r9 > 0 such that for every r > rg
the following holds: For every z = x + iy with |z —r| < lor?, |y| < 2bxP there exists
q1 €10, ¢q[ such that

CoC

w—zl=qr" = weol), |(T-w) <=3

i

where m = Ny (r —lrPr +1rP, G) with | = b+ 2(lop + q).
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Proof. We use Proposition 3.3.8 with | = b+ 2(ly + q), lop + ¢ replacing Iy, and
n = q/3. For |w — z| < grP we have |argw| < ¢ (for ry large enough) and

rP,

I —
|[Rew —r| <lorP 4+ qrP =

Now the sum of the diameters of the discs in F, is at most 2nrP < ¢qrP. Hence there
exists ¢ €]0, ¢[ such that w & E, for |w — z| = ¢17P and the claim is proved. O

Under certain assumptions on the distribution of the eigenvalues of G on the
positive real axis, we now derive estimates for the Riesz projections associated with
a sequence of regions that cover the interior of the parabola from Figure 3.4.

Proposition 3.3.11 Let G be normal with compact resolvent, o(G)NQ(2¢) C R>o
with 0 < ¢ < /2, S p-subordinate to G with bound b, 0 <p <1, and T =G+ S.

Assume that there is a sequence (r)r>1 of positive numbers tending monotoni-
cally to infinity and some l > b, m € N such that

Ny(ry = U, rp+0r),G) <m  forall k=>1. (3.18)

Then there are constants C,rg > 0, a > b, and a sequence (xy)r>1 in R>o tending
monotonically to infinity such that the following holds:

(i) z € Q(p) with Re z = xy, implies z € o(T), |[(T — 2)7 || < C.
(ii) The contours 'y, from (3.13) and (3.14) satisfy T'x, v C o(T).

(iii) If Py are the Riesz projections of T associated with the regions enclosed by
’karfv'y’c-i-lar%*: then

o
> (Prulv)| < Cllulllvll - for all u,v € H.
k=1

Proof. Applying Corollary 3.3.9, we see that for every k > kg, ko appropriate, there
exists x, with the following properties: We have

-9 -0

|xp —ri| < 5 TZ, dist(zg, 0(G)) > mri,

and z € Q(p) with Re z = zy, implies
CoCT?

p )
Tk

z€ o), [(T-2)7Y< IS(T — 2)7H| < CoCF

Then z/r, — 1 as k — oo and we obtain

dist(zg, 0(G)) > cox,  for k> ko



3.3. Estimates for Riesz projections 89

/ . ’Y];l— 1
+ V41 +
o - v
T Yk k o(T)
‘ ' T0 T [/ 3 x
\ O’(G)

[ry, — Bry, i + BrY)]

Figure 3.5: A large gap in o(G) yields a gap in o(T).

with co > 0 and kg appropriately chosen. Since xp — oo, for every ki there exists
ko > ki such that
:L‘llﬁ_p — as,lg_p > 1.
2 1

Passing to an appropriate subsequence, we can thus assume that

o~z P >1 forall keN,

which yields

ai P~z P >n—k for n>k

Now an application of Lemma 3.3.5 with o = 2b and the sequence (xy)k>k,, ko large
enough, completes the proof. ]

If the spectrum of G has sufficiently large gaps on R>q, then the spectrum of T’
has corresponding gaps (cf. Figure 3.5) and the associated Riesz projections P and
Qi of T and G, respectively, satisfy || P, — Qk|| < 1; their ranges thus have the same
dimension by Lemma 3.3.14.

Proposition 3.3.12 Let G be normal with compact resolvent, o(G)NQ(2¢) C R>o
with 0 < ¢ < /2, S p-subordinate to G with bound b, 0 <p <1, and T =G+ S.

Assume that there is a sequence (r)r>1 of nonnegative numbers tending mono-
tonically to infinity and a constant 6 > 0 such that

o(G)NR>o C U [ri, — Br, ri + Br)] (3.19)
k>1

and
e+ (B +0b)ry < g1 — (B4 b)Y (3.20)
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for almost all k with

dtr [25 jdim\2
6>~ +\/7rb+< - ) (3.21)

Then for a > b and B+ a <1 < B+ 0b there are constants C,rg > 0, kg > 1 such
that the following holds:

(i) The contours 'y from (3.13) and
VE = {o+iy|z=rp £}, ly| < azP} with k> ko

as well as the regions enclosed by 7;,7,;+1,F+,I‘_ belong to o(T), compare
Figure 3.5.

(ii) z € Q) with Rez = ry + I, k > ko, implies [|(T — z)7!|| < C.
(iii) If Pp and Qy are the Riesz projections of T and G, respectively, associated
with the region enclosed by ’yk_,’y,j, Iy, T'_, then
o0
S" 1(Pealv)| < Cllulloll for all w,v e H
k=ko

and
P —Qkll <1 for k= ko.

Proof. We set s,f = 1 & Ir},. Then assumption (3.20) implies
<sh<s.,.,<
T <80 < sy S Tk
Consider s € [s]7, s;, ;] with k > ko. Then
stas? <sp g dar) =11 — (—a)rp  <repr — B

Furthermore we have

s—as? > s —a(sh)P

for kg large enough, since the left-hand side is monotonically increasing in s for s
sufficiently large. In addition, the equivalent inequalities

s;: - oz(sz)p >+ ﬂrZ & lri:J —a(rg + lri)p > Br‘z s l-p>a(l+ lri_l)p

hold for kg sufficiently large since 1 + lrﬁfl — 1. Using the assumption on the
spectrum of G, we have thus proved that, for k > ko,

se[s;,s,;_l] = Js—asl, s+ as’[C o(G).
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With r¢ and kg appropriately chosen, Lemma 3.3.2 implies that the region enclosed
by ’y,j, Viet1s I'", and T~ as well as the contours itself belong to o(T) for k > k.

Moreover, ||(T — )Y and ||S(T — z)~!|| are uniformly bounded for z € Q(p) with
Rez =7y, +Ir?, k > ko. We also have dist(s;,G) > a(s{ )P and

Spr — S5 =Tkl — Tk H L0y — 1) = (B4 0b) (g + 1) + Uiy —rp) = 2007y
The mean value theorem then yields

21(1 — p)riJrl
(Tk+1 + lriﬂ)p,

(5 ) P = ()P = (L=p)(sfy) P(siy —s1) =

Le., (sf ) P—(s)P > 1(1—p) for k > ko, ko sufficiently large. We can thus apply
Lemma 3.3.5 with z; = sz to get the estimate for the sum of the Riesz projections.
To prove the final claim, we consider ¢ > 1, choose € €]0, 1] such that

447 \/w 447m\2 1
- —<$ 3.22
o + 7rb+< 2 ) <5< ’ (3.22)

and set

b
a:cg and [ =3+ ca.

Then 4+ a < I < B+ b for ¢ sufficiently near to 1. Let I'y be the positively
oriented boundary contour of the region enclosed by v, , y,j, 'y and T'_. By the
above calculations and Lemma 3.3.2 we have

1-¢"

TeCo(@na(®), ISG -2 < IT=27< gomas

for z € I'y, k > ko, and thus
_ 1 N S
1P = Qell = | [ (=7t =@ =2

1 _ _ £ |dz|
< g [ NT =27 SC =) el < 5 | G

For the integral over ’y,:{t we find

/ |dz| 204(5%)” B
vt dist(z,0(G)) — a(sg)P
For rq sufficiently large, the differential form dz can be estimated on ' by

|dz| < \/1+ (apzP~1)2dx < cdx;
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92
hence
st + —
/ |dz] < / k cdx - c(sy — ;)
ronr, dist(z,0(G)) ~ - aar T as”
p
_ 2clry, - 2cl < 202£
alry —1r}) a(l =1y ) a

for kg sufficiently large. Putting it all together, we obtain

z 2
1P — Qull € = (4+4c2> - (1 +ng+ca>
! (1l —¢) !

~2m(l—¢)
2 B+cbe ) 2 3 B
(1l —¢) <1+C be~1 >_7T(1—6)<1+C +C€E)'

Now (3.22) yields

447 \/25 Ad+m\2\ b  A+7 \/ T 4472
e< |- + +( 27r> %__455—1+ 25b—1+<4ﬂb—1)

2T b
N <€+4—|—7r)2< T +<4+7r>2
48b1 23b1 43b1
4 2
2 Rkl i = —5€2+(4+7r)€<7r

b

= %62+4e<7r(1—5) = 7T<12:€)<2+5§)<1.

=
"+ 2ﬂb_16 < 28b 1

b
With ¢ sufficiently near to 1 this implies
2
76(1+c3+csé) <1
(1l —¢) b

and thus || P, — Qx| < 1. O

Remark 3.3.13 The constant in (3.21) is not optimal. Better estimates for the
resolvent integrals along ’yff and 'y should yield a smaller constant.

If instead of (3.20) we only assume that

Ty 1) < — I, for some 1> B+ a,

then all assertions with the exception of || P, — Q| < 1 still hold. 4

The next lemma is well known, see for example [21, Lemma 11.4.3], [3, §34] and

[15, Lemma 1.5.5].
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Lemma 3.3.14 Suppose that P and Q are two projections in a Banach space V
with ||P — Q|| < 1. Then V =ker Q@ ® R(P), and Q induces an isomorphism

Qlr(p) : R(P) = R(Q).

Proof. Let u € ker QN R(P). Then |Ju]| = ||(P — Q)ull; as ||P — Q| < 1, this is only
possible for u = 0. Hence ker @ N R(P) = {0} and Q|r(p) is injective. A Neumann
series argument shows that I — @ + P is an isomorphism in V. Consequently, for
every v € V there exists u € V' such that

v=I1-Q+ Plu=({I-Q)u+ Pu.

This implies V = R(I — Q) + R(P) = ker Q + R(P). Moreover, if v € R(Q) then
v = Qv = QPu. Hence Q|r(py maps onto R(Q) and the proof is complete. O

3.4 Perturbations of spectral [>~-decompositions

In this section we proof two general perturbation theorems for the non-normal oper-
ator T'= G+ .S where G is normal with compact resolvent and S is p-subordinate to
G with p < 1. In Theorem 3.4.4 (and Proposition 3.4.1), which is a reformulation of
a result of Markus and Matsaev [37], [36, Theorem 6.12], we assume that the eigen-
values of G lie on a finite number of rays from the origin and that the density of the
eigenvalues has an appropriate asymptotic behaviour depending on p. Then T has a
compact resolvent, almost all of its eigenvalues lie inside parabolas surrounding the
rays, and T admits a finitely spectral [2-decomposition.

In Theorem 3.4.7 we strengthen the assumptions on G by requiring that there
are sequences of sufficiently large gaps in the spectrum on the rays. This allows
us to control the multiplicities of the eigenvalues of T' and, under an additional
assumption, to obtain an {?>-decomposition of root subspaces; T is thus a spectral
operator (cf. Theorem 2.3.17). This additional assumption is satisfied for example if
almost all eigenvalues of G are simple, which reestablishes results due to Kato [24,
Theorem V.4.15a], Dunford and Schwartz [20, Theorem XIX.2.7], and Clark [11].
Moreover, the additional assumption also holds in cases where the eigenvalues of G
have multiplicity greater than one, provided we have a priori knowledge about the
separation of the eigenvalues of T'; see Theorem 4.4.5 for an application.

Both theorems also hold under weaker assumptions: It suffices for G to be an
operator with compact resolvent and a Riesz basis of Jordan chains whose eigen-
values lie inside certain parabolas around rays from the origin, see Remark 3.4.14.
With Proposition 3.4.5 we apply the theory to diagonally dominant block operator
matrices.

We start by investigating how the shape of the spectrum changes under a p-

subordinate perturbation. Note that we do not need the compactness of the resolvent
of G here.
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e (x 4 iaaP)

ezajx

e (x — iaP)

Figure 3.6: The spectrum after a p-subordinate perturbation

Proposition 3.4.1 Let G be a normal operator on a Hilbert space whose spectrum
lies on finitely many rays e%iR>q with 0 < 0;j <2m,j=1,....,n. Let T =G+ S
where S is p-subordinate to G with bound b and 0 < p < 1. Then for every a > b
there exists rog > 0 such that

o(T) C By, (0) U | J{e" (z +iy) |z > 0, |y| < aaP}, (3.23)
j=1

cf. Figure 3.6. If G has compact resolvent, then so has T'.

Proof. Without loss of generality, we assume 61 < 0o < ... < 0, and set 6y = 0, — 2,
On+1 = 0o + 2m. Then we may, after a rotation by ¢;, apply Lemma 3.3.2 to each
sector ©(0;_1,6;41). More precisely, we apply the lemma to the operators e i q,
e S, e T with o = (0;11 — 0;)/2, o— = (0;—1 — 0;)/2, and some suitable &.
For z € o(T) this yields the implication

0;

#Sargzgm

2 )
= ze{(z+iy)|z>0, |yl < azP}

|2 = 7o

with some rog > 0 for each j = 1,...,n. If G has compact resolvent, the identity
(T—2)"'=(G -2 (I+S(G—2)"")"" for zeo@)no(T)

implies that T" has compact resolvent too. ]
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The statement about the asymptotic shape of the spectrum of T can be refined
as follows:

Remark 3.4.2 To obtain a condition for z € p(T"), we consider without loss of
generality the case o(G)NQ(2¢) C R>p, 0 < ¢ < 7/2, and z = x +iy € Q(p). Then
dist(z,0(G)) > |y| and, in view of Lemma 3.3.1, b(1+ |2|/|y|)P|y|P~! < 1 is sufficient

to get z € o(T'). For p > 0 this leads to the condition

1/p
z < <|'Z|> VL= 261p]y -1,

which is asymptotically better than z < (|y|/a)'/? since 1 — 2bY/?|y[*=1/P — 1 as
|y| = oo. For p = 0 we obtain the optimal condition b < |y|.

For p > 0, the estimates of Markus [36, Lemma 5.2] lead to asymptotics which
are even slightly better. Also note that simply taking the limit @ — b in Proposi-
tion 3.4.1 is not possible since then also 1o — oc. a

Recall that we denote by N4 (71,72, G) the sum of the multiplicities of the eigen-
values of G in the interval |rqy, o[, see (3.16). Similarly, we write

N(r,G)= > dimL()) (3.24)

AEap(G)NB,(0)

for the sum of the multiplicities of all the eigenvalues A with |A| <r and

N(K,G)= > dimL(\) forevery set K C C. (3.25)
Aeop(G)NK

Lemma 3.4.3 If n: R>0 — R>0 s a monotonically increasing function with

liminf n(r)rP~t < 0o for some 0<p <1,
then
liminf (n(r + rP) — n(r —Ir?)) < oo for every 1> 0.

r—00
Proof. Consider the case p = 0 first. If

liminf (n(r +1) —n(r —1)) =oco for some >0,

r—00

then for every a > 0 there exists rg > 0 such that n(r+2l) —n(r) > a for all > ry.
This implies n(ro + 2kl) — n(rg) > ka for k € N. Since for r > ry there exists k € N
such that r — rg € [2kl, 2(k + 1)I], we deduce

n(r)> n(ro + 2k) > ka —>ﬁ as k— oo, le. r— o
r T ro+2k+1) T ro+2(k+ 1)1 21 L ’
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Consequently lim inf, . n(r)r~! = oo since a was arbitrary.

For the case p > 0, we set m(r) = n(r'/(1=?)) so that the assumption now reads
lim inf, oo m(r)r~! < oo; therefore liminf, o (m(r 4+ 21) — m(r)) < oo for every
[ > 0. Going back to n, this yields

liminf<n((r1_p + l)ﬁ) — n(r)) < oo forevery 1> 0.

T—00

Since 1/(1 —p) > 1, we have
(1“1_” + l)ﬁ = r(l + lrp_l)ﬁ > r(l + lrp_l) =7r+IrP

and hence
liminf (n(r + ir?) — n(r)) < oo for every 1> 0.

r—00

Now we set s = r — IrP. Then r + IrP = s + 2lrP < s+ 3lsP for r sufficiently large
and thus
n(r +1rP) —n(r — ir?) < n(s + 3ls”) — n(s),

which proves the claim. O

We can now state the first perturbation theorem due to Markus and Matsaev [37],
[36, Theorem 6.12].

Theorem 3.4.4 (Markus-Matsaev) Let G be a normal operator with compact
resolvent whose spectrum lies on a finite number of rays from the origin. Let S be
p-subordinate to G with 0 < p < 1. If

N
lim inf (r, &) < 00

r—00 rl-p ’

(3.26)

then T = G + S admits a finitely spectral 1>-decomposition.

Proof. Let % R>o with 0 <60y < ... <6, <27 be the rays containing the eigenval-
ues of G and let S be p-subordinate to G with bound b. From Proposition 3.4.1 we
know that T" has compact resolvent and that almost all of its eigenvalues lie inside
sectors of the form

Q;={ze€C||argz—6;| <t;} with 0<1/;j§%,

where the 1); can be chosen such that these sectors are disjoint. Lemma 3.3.2 shows
that ||(T — 2)~!| is uniformly bounded for z ¢ Q1 U... U Q,, |2| > r9. Moreover,
using the assumption on N(r, G) and the previous lemma, for each sector €2; there is
a sequence (7;)>1 of positive numbers tending monotonically to infinity such that

sup N4 (rji — 2br§k, ik + 2br§k, e_iejG) < 0.
k
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From Proposition 3.3.11 we thus obtain a corresponding sequence (zj)x>1 such that
(T — 2)~1|| is uniformly bounded for z € ;, Re(e™%i2) = 2. Let P be the Riesz
projection associated with the set of those finitely many eigenvalues of T" which are
not contained in the sectors €2;. We can then apply Proposition 3.1.3 to the operator
T'|gr(1—py and conclude that the system of root subspaces of 7" is dense in H.

Furthermore, if (Pji)r>1 are the Riesz projections from Proposition 3.3.11 cor-
responding to the eigenvalues A € ; of T with Re(e =% \) > x;1 and P, is the Riesz
projection for the (finitely many) remaining ones, then

|(Poulv)| + > 1(Piwulv)] < Cfull|lv]

j=1 k=1

with some constant C' > 0. Now Proposition 2.2.7 shows that the family of projec-
tions Py, (Pji)jk generates an [2-decomposition and the proof is complete in view
of Proposition 2.3.8 and Definition 2.3.13. U

We apply Theorem 3.4.4 to a class of diagonally dominant block operator matri-
ces. Let Vi, V5 be Banach spaces and consider operators A(Vy — Vi), B(Va — V1),
C(Vi — Vp) and D(V, — Vi), Then the matrix

T = (é g) (3.27)

is called a block operator matriz on Vi X V. It induces an operator on V; x V5 which
is also denoted by T

D(T) = (D(A) nD(C)) x (D(B) N D(D)),

T (Z‘) . <351gz> for (Z) e D(T).
An arbitrary operator T'(V} x Vo — Vj x V3) can be represented by a block operator
matrix if and only if its domain of definition is a Cartesian product D(T") = Wy x Wy
with W; C V;. The representing matrix is in general not unique. For example, the
operator A can be replaced by any extension of A|p(4)np(c) without altering the
operator induced by the matrix. Also note that if A, B, C' and D are densely
defined, this does not imply that T is densely defined too. For many results about
the spectral theory of block operator matrices we refer the reader to the monograph
of Tretter [49].

The concept of a diagonally dominant block operator matrix was introduced by

Tretter [48]: The matrix from (3.27) with closable operators A, B, C, D is called

diagonally dominant if C' is relatively bounded with respect to A and B is relatively
bounded with respect to D.
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Proposition 3.4.5 Let A(Hy — H;) and D(Hs — Hj) be normal operators with
compact resolvent on Hilbert spaces such that the spectra of A and D lie on finitely
many rays from the origin and

lim inf N(r,4) 0o, liminf N(r, D) <

r—00 ’[“17 7—00 ’I“lfp

with 0 < p < 1. Suppose that the operators C(H; — Ha) and B(Hy — Hp) are
p-subordinate! to A and D, respectively,

ICull < bllull'"P|AulP for e D(A) C D(C),
|Bo|| < bllol|*~P|[DollP for v e D(D)C D(B).
Then the block operator matriz T from (3.27) has a compact resolvent, admits a

finitely spectral 1?-decomposition, and for every o > b there is a constant ry > 0
such that

n
o(T) C By, (0)U U {ewi (z+iy) |z >0,ly| < az}.
j=1
Here 01,...,0, with 0 < 0; < 2w are the angles of the rays on which the spectra of
A and D lie.

Proof. We decompose T' as

. A 0 0 B
R ) I ()

and want to apply Theorem 3.4.4 to this decomposition. First, it is clear from the
assumptions on A and D that G is normal with compact resolvent. For its spectrum
we have

0(G)=0(A)Uo(D) and N(r,G)= N(r,A)+ N(r,D).

In particular, the spectrum of G lies on finitely many rays from the origin.
As a second step, we show that S is p-subordinate to G. Using Hélder’s inequality
and the p-subordination of C' to A and B to D, we find

w\ ||2 B ~
s (4) [ = 1P + heul? < 22102 Do + 20wl

1—
<O ([lul® + 1ol*) " (Il Aull* + [ Dv]|*)”
for u € D(A), v € D(D). Consequently
|Sw| < bllw||*"P||Gw|[P  for w € D(G) = D(A) x D(D).

! This notion of p-subordination is more general than the one from Definition 3.2.1, since the
operators B and C map from one Hilbert space into a (possibly) different one.
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So all the conditions of Theorem 3.4.4 are fulfilled and the existence of the finitely
spectral [?-decomposition follows. Proposition 3.4.1 yields the compactness of the
resolvent of T" and the assertion about the shape of its spectrum. O

Lemma 3.4.6 Consider a sequence (1;)ken of positive numbers satisfying
Tkl — Tk > 2ar£
with a >0 and 0 < p < 1. Then forl > 0 there exists ro > 0 such that r > ro with
r=1UrP <rp <rpgp <o < Tpap <r 4P
implies n < 2l/a.

Proof. By assumption on the sequence we have

, Thin — T
Thin — Tk > 2nart, ie. < %
Hence for r as in the assertion,
T4 IrP — (r—1rP) l 2l
2a(r — Irp)” B a(l—1lrp=1)? = a’
provided rg is large enough. O

Strengthening the assumptions on the spectrum of GG, we obtain our second per-
turbation theorem. It extends results due to Kato [24, Theorem V.4.15a], Dunford
and Schwartz [20, Theorem XIX.2.7], and Clark [11] since the case of multiple eigen-
values of G and clusters of eigenvalues is handled here too. Note that in [20] and [11],
instead of the p-subordination of S to G the stronger assumption of the boundedness
of SG~P is made, compare Remark 3.2.5.

Theorem 3.4.7 Let G(H — H) be a normal operator with compact resolvent and
S(H — H) p-subordinate to G with bound b and 0 < p < 1. Suppose that the
spectrum of G lies on certain sequences of line segments on rays from the origin,

n
j=1k>1
where 3> 0,0 < 01 < ... <0, <2m, and (rj1)k>1 are monotonically increasing

sequences of nonnegative numbers such that
ik + (8 + 5b)r§k <7Tik+1 — (B+ (5b)rik+1 (3.29)

for almost all k, and 0 is such that
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Figure 3.7: The situation of Theorem 3.4.7

447 20 44 m\2
6>~ +\/7rb+< - ) (3.30)

Then T = G+S has compact resolvent; for every a € b, §b] almost all eigenvalues
of T lie inside the regions

Kjp = {e% (z+iy) |z 20, |z —rjx| < (B+a)rfy, [y| < aa®},

j=1,...,n, k>1 (cf. Figure 3.7); the spectral subspaces corresponding to the Kjj
together with the subspace corresponding to o(T') \ Uj,k K, form a finitely spectral
12-decomposition for T; and we have

N(Lji, G) = N(Kji,T) for almost all pairs (j, k).

Moreover, if there are constants m,q > 0 such that for almost all pairs (j, k) the
assertions

(i) N(Ljr,G) <m and
(ZZ) Al,)\QEU(T)ﬂKjk, )\1#)\2 = ‘)\1—)\2| >q7”]pk
hold, then the root subspaces of T form an 1?-decomposition of H.

Proof. We apply Propositions 3.4.1 and, for each ray, 3.3.12 with « replaced by
a = (a+b)/2 and | = 8+ «. This shows that T has compact resolvent and that
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almost all eigenvalues of T lie inside regions
{eiaj (x + 1y) ‘a: >0, |z —rj| < lr?k, ly| < &a:p} C Kjj.

As in the proof of Theorem 3.4.4 we have that ||(T — 2)~}!| is uniformly bounded
outside certain disjoint sectors §2; around the rays for |z| large enough. For each
ray, Proposition 3.3.12 yields a sequence (z;;)ren tending monotonically to infinity
such that ||(T' — 2)7!| is bounded for z € Q;, Re(e™"z) = z;;. Consequently,
Proposition 3.1.3 implies that the system of root subspaces of T is dense in H.
Moreover, we have

|(Poulv) + > |(Piwulv)] < Clull|lv]

j=1k=1

for some C' > 0 where Pj; is the Riesz projection associated with Kj; and Py the
one associated with o(T") \ U, Kjx; Propositions 2.2.7 and 2.3.8 yield the finitely
spectral [2-decomposition. Finally, if Qjx is the spectral projection of G associated
with Lj, then || Pj, — Qjk|| < 1 and Lemma 3.3.14 implies the statement about the
equality of the sums of the eigenvalue multiplicities.

Now suppose that with m,q > 0 the additional assumptions (i) and (ii) hold
for almost all pairs (j, k). We aim to show that the root subspaces corresponding
to the eigenvalues of T in K form an [>-decomposition of R(Pj;) with constant c
independent of (7, k). Without loss of generality we may assume

0; =0, ¢<b, and o <min{2,0—1}b.

We want to apply Corollary 3.3.10 with lg = 8 + « and set [ accordingly. Due to
the previous lemma, the number of elements rj; in the interval [r — IrP,r + I7P] is
at most 2{/(5 + db) for r sufficiently large. Hence there is a constant mg such that

Ni(r—=1UrP r+1rP,G) <mg for r sufficiently large.

Let A be an eigenvalue of 7" in K. By Corollary 3.3.10 there exists ¢ €0, g such
that the points w on the circle around A with radius qlré.)k satisfy ||(T —w)7!| <
CoCy"r . In addition, the circle lies inside the strip |Re z — ;x| < (3 +6b)r%, and
assumption (ii) thus implies that A is the only possible eigenvalue of T inside that
circle. Therefore, the Riesz projection Py for A\ satisfies

mo

CoC
IPAll < 2mqur?, rf?,: < 2mqCoCy™.
J

If A1,...,Am, are the eigenvalues of T in Kj;, we have m; < N(Kj,T) < m and

conclude
mi

D (P ufv)] < 27mgCoCT|[ull o]
s=1
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According to Proposition 2.2.7, the subspaces R(Py,), s = 1,...,my, form an [%-
decomposition of R(Pj;,) with constant ¢ independent of k. This is true for each ray,
and hence an application of Lemma 2.1.10 shows that the root subspaces of T" form
an [2-decomposition. O

Remark 3.4.8 If almost all eigenvalues of G are simple and almost all line segments
Ljj, contain one eigenvalue only, then Theorem 3.4.7 yields a Riesz basis of eigen-
vectors and finitely many Jordan chains for 7. Indeed in this case N(Kj;,T) =1
for almost pairs (j, k). Hence, almost all subspaces of the finitely spectral [?>-decom-
position for T' are one-dimensional and Lemma 2.3.15 implies that T has a Riesz
basis of eigenvectors and finitely many Jordan chains. J

The next lemma implies that the spectral conditions in Theorem 3.4.7 are stronger
than those of Theorem 3.4.4 if N(Lj;, G) is bounded. Note that, in contrast to The-
orem 3.4.7, the case of 0;, = 0;, for j1 # jo is allowed here.

Lemma 3.4.9 Consider an operator G whose spectrum satisfies

n
o(G) C U U Lk, Lji= {eieja: | x>0, |z —rj < ajrg-;k}a
j=1k>1

p P
ikt agrh < ik —agrh ey, N(Ljg, G) <m,

with0<p<1l,m>0,a; >0,0<0; <27, j=1,...,n, and sequences of positive
numbers (1i)k>1. Then we have

N(r,G)
supli_p < 0.
>1 T

Proof. It suffices to consider the case n = 1, 1 = 0. We write 7, L, a instead of
Tk, L1k, a1, choose b €10,2(1 — p)al, and introduce the auxiliary sequence

sp(r) = (P + kb)T7, keN,r>0.
Then we have the chain of equivalences

r+ar? > s1(r) —asy(r)?
1
s r4a?> (P4 0T —a(r TP+ b)%

ar?((1+ brp_l)ﬁ +1) >r((1+ brp_l)ﬁ -1)

3

& ar’(1+(1 —i—brp_l)%) >r(l+brP — (14 brp_l)%)

(1+ brp=1)Ts
rp—1 '

- 1-
& a(l+1+bP ) > b+ (3.31)
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L’Hospital’s theorem implies

1— (14 b7~ )T b )b - 2,
lim = lim —2 = b.
r—00 rp—1 r—00 (p — 1)1-?*2 1— P

Hence, the right-hand side of (3.31) converges to b/(1 — p) while the left-hand side
tends to 2a. Consequently (3.31) holds for r sufficiently large and we obtain

s1(rn) —asi(rp)? <rp+arf <rpiq — arﬁJrl

for large n. Since r — r — ar? is strictly increasing for large r, we conclude that
s1(rn) < rp4a for large n. Now we use induction with respect to k to show

Sk(rn) < rpyp for all k€N, n sufficiently large.
Indeed sk (ry) < rpik implies
1 1
Ska1(rn) = (qul—p + (k+ 1)b) Tp — (sk(rn)l_p + b) T-p
_1
< (7’71;’,'; +0) 77 = 51(rptk) < Tntkt-

Therefore the interval [0, s (ry,)] intersects at most with the line segments up to
L, +. Now for every r > s1(ry,) there exists k € N such that si(r,) <7 < sg41(7n)
and we get the estimate

N(.G) _ N(skar(ra).G) _ (n+k+Dm
riP T st T P kb
where the right-hand side is bounded in k. O

The following lemma yields a connection between the asymptotic behaviour of a
sequence of eigenvalues and the maximal possible value of p in Theorem 3.4.7.

Lemma 3.4.10 Consider the sequence of nonnegative numbers given by
re = ck? + dj k™!
with ¢ > 0, ¢ > 1 and a converging sequence (dg)ren. Then for a,p > 0 the relation
T A ary < rpg—arg
holds for almost all k € N if

(i) p<1—1/q, or

(ii)) p=1—1/q and a < qc'/1/2.
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Proof. Using Taylor series expansion, we have
(k4+ 1)1 =k?+ gk + f()ET! and (k+1)7! = k971 4 g(k)kI1
with limg_,o f(k) = limg_,o0 g(k) = 0. This yields the equivalences

rE + arz < Tgy1 — arz_i_l
& a(ry +7rp 1) < Ther — Tk
= a((ck:q + dek®Y)? 4 (el + 1) + dyy (k + 1)q—1)”)
<c((k+ 17— k%) + dpyr(k+ 1)1 — dpk?!
= (cq + cf(k) + dyt1 + d19(k) — dj) K7

o oo O 0

< (eq + dyy1 — di + cf (k) + di19(k)) kT 172,
Now the left-hand side converges to 2acP while the right-hand side tends to

0 for ¢(1-p) <1,
cq for g(l—-p)=1, as k— oo.
oo for ¢(1—p)>1

Therefore the above inequality holds for k sufficiently large if ¢(1 — p) > 1, i.e.
p<1—1/q, orif q(1—-p)=1and 2acP < cq, i.e. a < c!"Pq/2. O

Next we establish sufficient conditions for the spectrum of an operator with com-
pact resolvent and a Riesz basis of Jordan chains to be a p-subordinate perturbation
of a normal operator. As a consequence, the assumptions on G in the previous
theorems can be relaxed.

Lemma 3.4.11 Consider A € C with |A\| > 2 and the n x n Jordan block

A

Then we have ||Ax|| > |A|||x]|/2 for all = € C™ where || - || denotes the Fuclidean
norm.
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Proof. We have ||Az|? = (Az|Az) = (A* Az|r) and

_ A2 A
A
. A P+
A* = 1 .' ' ,le. A"A= A
1 A A

A AP+

Consider z = (aq,...,a,) € C". Then
n n n—1 -
1Az]? = AP oy * + D logl? +2)  Re(@jAeji1)
j=1 j=2 j=1

n n n—1
> AP oyl + )l = 20D Loyl - eyl
7=1 7j=2 j=1

Without loss of generality, we may assume that \,«; € R>o. Using A2 > 4, we
further estimate

n n n—1
2 2 2
A g aj + E aj —2A E o4

Bl TN (e T 1
=of[ | -5 ¢ || et

N 1) @3+ +al )+ (W - Da

Qp Qp—1
1 1
> (5/\2— 1)(a%+---+ai) > Z/\2(oﬁ+---+oﬂ),

n

which completes the proof. ]

Lemma 3.4.12 Let G(H — H) be an operator with compact resolvent and a Riesz
basis of Jordan chains. Let A, k € N, be the eigenvalues of G, ¢ >0, 0 < p < 1,
and ui € C\ {0}, k € N, such that

| — Akl < e|AglP for almost all k.

Then there is an isomorphism J : H — H, a normal operator Go(H — H) with
compact resolvent, and an operator So(H — H) p-subordinate to Gy such that

JD(G) =D(Gy), JGJ t=Go+ Sy, o(Go)={u|keN}.

In addition, J maps the Riesz basis of Jordan chains of G onto an orthonormal
basis of eigenvectors of Gy such that x € L(A, G) implies Jx € L(ug, Go).
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Proof. Since G has compact resolvent, we have |A\z| — oco. From

Mel < pw] + e — Akl < pe| + e AP

C
(1 - W) Ak < |

for almost all k. Therefore |A\g|/2 < |ug| for almost all k and |u;| — oo. We also
have

we obtain

C
el < Al + el = (1 + w) Al

which implies |p| < 2|Ag| for almost all k.

Now suppose that (z;)jen is a Riesz basis of Jordan chains of G and let J be
an isomorphism such that (Jz;)jen is an orthonormal basis. Then (Jx;); consists
of Jordan chains of JGJ~!, and we may thus assume that J = I and

[ee]
G = ZAk+Nk
k=0

where P} are orthogonal projections onto L(Ax, G), Ny : R(FP;) — R(Px) are nilpo-
tent operators, and for every k there is an orthonormal basis of R(Py) such that
the matrix representing Ng in this basis is block diagonal with blocks of the form

(0 1 0 ) We decompose G as

G=Go+51+8 with Go=) P, S1=) (A~ m)Pr, 82 = ZNkPk
k=0 k=0

Then G is a normal operator with compact resolvent, spectrum {uy |k € N}, and
LAk, G) = R(Px) C L(ux, Go). According to Proposition 2.3.3, we have

weD(G) = > [+ Ne)Prul® < o0
k=0

and analogous characterisations hold for the domains of Gy and S7. We have

Ak + Nie) Brull < ([Ak] + D[ Preull < (k] + el Ael” + D Peul
< (lu] + 27¢|pr]” + 1) Peull < (2 + 27¢) | ||| Pl

for almost all k, hence D(Go) C D(G). Using Lemma 3.4.11, we also have

1 1
1 + Ni) Bul| = 5wl Prull = 7 [l || P
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for almost all k. This implies D(G) C D(Gy) and hence D(G) = D(Gp). Since
pr # 0, we have |\ — pg| < Clug|P for all & € N with some appropriate constant
C. The estimate

o0 9 o0 (o)
[ S 0w = P = 5 e = PPl < 3 02y P
k=0 k=0 k=0

2 (o 2 2\P (o 2\ 177
< (S lmPIpel?)” (3 1Peul?)
k=0 k=0

implies that D(Go) C D(S1) and that S; is p-subordinate to Gy. Since S is bounded
and 0 € o(Gy), S is also p-subordinate to Gy and the proof is complete. O

Proposition 3.4.13 Let G(H — H) be an operator with compact resolvent and
a Riesz basis of Jordan chains. Suppose that 0 < p <1, a > 0, 0 < 0; < 27,
j=1,...,n, such that either

(i) there exists 1o > 0 with

o(G) C By, (0) U U S;, Sj= {ewﬂ' (z+iy) |z >0, |yl <azP}, or
j=1

(ii) almost all eigenvalues of G lie inside regions
0. . _
Kj, = {% (@ +iy) | rj, <z <rl, ly| < aa?},
j=1,....n,k>1, where (T‘ﬁ)kzl are sequences of positive numbers satisfying

— + —
Tk < Tk < T k1

Then there is an isomorphism J : H — H, a normal operator Go(H — H) with
compact resolvent, and an operator So(H — H) p-subordinate to Gy such that

JD(G) = D(Gy), JGJ'=Gy+ So.
In case (i), all eigenvalues of Gy lie on the rays ewﬂ'RZO and we have
N(r,Go) = N(r,G) for r>1.
In case (ii), all eigenvalues of Gy lie on the line segments
Lj, = {ewﬂ'az ’ r;k <z< Tjk},

and N (L, Go) = N(Kj, G) holds for almost all pairs (j, k).
Moreover, if S(H — H) is p-subordinate to G, then JSJ~! is p-subordinate to
Go.
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Proof. In order to apply the previous lemma, we need to properly choose the new
eigenvalues (u;)ien of Go given the eigenvalues A; of G. For case (i), almost all \;
lie inside S1U...US,. For \; € S; we set p; = e \|. With \; = %% (x + iy), this
implies

IN

Vet — ] =

I — M|

2

Y
——— t
Vet y-+x

2 2.2p 2
v ax p_ [ @ P P
< op tlyl s — —+aa”= <2$1p +a> P < 2al )|

for |\;| large enough. If \; ¢ S; for every j and X, # 0, we set p; = e¥1|)\|. If finally
A\ = 0, we take j; = €. In particular, our choice implies || = || (if A; # 0) and
N(r,Go) = N(r,G) for r > 1.

For case (ii), if \; = €% (z +1iy) is an eigenvalue in K}y, we set j = ¢%iz. Then

I — M| = ly| < ax? < al)P.

If \y & Kjy, for every (j, k), we set j; = e1ry,. We thus get N(Ljk,Go) = N(Kji, G)
whenever (j, k) # (1,1).

Finally suppose that S is p-subordinate to G with bound b. For u € D(Gy) we
have

1TGT ull < [|Goull + [1Soull < [[Goull + bollull" || Goul/”
< (L+bollGo ') [ Goul

since 0 € p(Gy). Therefore

18Tl < TNIST ull < bl PN GT ™ P
< BT Null PTG I ul P

< BTN HIL + bollGGH I P) llul Pl Goul P
O

Remark 3.4.14 Let G and S satisfy the assumptions of the previous proposition
and let T'= G + S. Then we have

JTJ ' =JGJ '+ JST ' =Go+ Sy + JSJT L.

If G satisfies the condition 3.4.13(i), then Proposition 3.4.1 and Theorem 3.4.4
may be applied to JTJ!; if G satisfies 3.4.13(ii), Theorem 3.4.7 may be applied.
Therefore, these theorems also hold if G is as in Proposition 3.4.13 and b is the
p-subordination bound of Sy + JSJ ! to Gy. J
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3.5 Examples

We apply Theorems 3.4.4 and 3.4.7 to ordinary differential operators on a compact
interval and to the Laplace operator on the unit disc.

For ordinary differential operators with possibly unbounded coefficient functions
and appropriate boundary conditions we obtain finitely spectral {?>-decompositions;
for certain boundary conditions we even show the existence of a Riesz basis of root
vectors. For the case of bounded coefficients and regular boundary conditions, the
existence of a Riesz basis (possibly with parentheses, depending on the boundary
conditions) of root vectors is well known [11], [20, Theorem XIX.4.16], [43]. The
case of unbounded coefficients is treated in [44].

In the first example we obtain a finitely spectral [?>-decomposition for a differen-
tial operator with possibly unbounded coefficient functions.

Example 3.5.1 Let go,...,9n2 € L?([a1,a2]), gn_1 € L*(]a1,az]), and consider
the differential operator T' on L?([a1, az]) given by

n—1

Tu = i"ul™ + Zglu(l), D(T) = {u € W"([a1,a2]) | Vi(u) = - = Viu(u) = 0},
1=0

where the boundary condition Vj(u) = -+ = V,(u) = 0 is regular in the sense of

Naimark [40, §4.8] and such that the operator Gu = i"u(™, D(G) = D(T') becomes
selfadjoint. We also write
n—1
T=G+S with Su=)Y gu", D(S)=D(T).
1=0
Then the resolvent of G is compact [19, Theorem XIII.4.1], and the spectrum of
G consists of at most two sequences of eigenvalues of the form

Nk = k™ + dik™ 1, k> kjo, §=1,2,

with ¢; # 0 and converging sequences (djx)r>k,,, see [40, §4.9]. In fact ¢j,djr € R
since G is selfadjoint. Lemma 3.4.10 thus implies that each sequence ()xjk)kzkjo
satisfies

INjk| + alXjkl? < IAjer1] — alAj e P

for almost all kif p=(n—1)/nand 0 <a < ncjl-/n/Q. As the multiplicity of every
eigenvalue of GG is at most n, Lemma 3.4.9 yields
N(r,G) n—1

sup —3 < 00 with p=
r>1 TP n

Consider now the case 0 € o(G). Then S is (n — 1)/n-subordinate to G due to
Propositions 3.2.15 and 3.2.16. Consequently, Proposition 3.4.1 and Theorem 3.4.4
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apply to the decomposition T' = G + S: The resolvent of T' is compact, almost all
eigenvalues of T lie inside regions of the form

{signe; - (z +iy) |z >0, |y| < azP}

with some a > 0, and T admits a finitely spectral I2-decomposition.

Otherwise, if 0 € 0(G), we choose any 7 € o(G) NR. Then G — 7 is selfadjoint
with compact resolvent and has the same eigenvalue asymptotics as G. Moreover
S + 7 is (n — 1)/n-subordinate to G — 7 by Propositions 3.2.15 and 3.2.16. We can
thus apply Proposition 3.4.1 and Theorem 3.4.4 to T'= G — 7 + S 4+ 7 and obtain
the same results as before. a

A Riesz basis of root vectors may be obtained under additional assumptions:

Remark 3.5.2 Theorem 3.4.7 with p = (n — 1)/n may be applied to the operator
T from the previous example if two additional conditions are met: First, if o(G)
consists of two sequences (\j;)x lying on the same half-axis, i.e. cico > 0, then it
must be possible to cover both sequences (i), by one sequence of line segments

L, = {signcl :c‘ |z —rg| < ﬁri}

with 74, 8 > 0 appropriate; if cico < 0 or if there is only one sequence (\jj), then
the line segments may be chosen as Lji = {\ji}, i.e. 7jp = Ajp, B =0.

Second, (3.29) must hold. In view of Lemma 3.4.10 this means that 3+ 6b must
be small enough; in particular the p-subordination bound b of S to G must be small
enough which in turn is satisfied if the norms ||gol|z,,-- -, [|gn—2llLss [[gn—1llcc are
sufficiently small.

If now the boundary conditions are such that almost all eigenvalues of G are
simple and the line segments Lj; can be chosen such that almost all Lj; contain
only one eigenvalue of G, then T has a Riesz basis of eigenvectors and finitely many
Jordan chains, see Remark 3.4.8. J

A concrete choice of boundary conditions allows us to specify precise conditions
under which Theorem 3.4.7 is applicable.

Example 3.5.3 Consider the operator T on L*([0,1]) defined by
Tu=—u"+ g+ gou, D(T)={ue W?*([0,1])|u(0) = u(l) =0}

where go € L?([0,1]), g1 € L*>(]0,1]). Analogously to the previous example we
consider the operators Gu = —u”, Su = g1u’ + gou with D(G) = D(S) = D(T).
Direct calculations show that G is selfadjoint with compact resolvent and eigenvalues
n%k?, k =1,2,..., which are all simple. We have

|2 < llul}27|Gull 2 for ue D(G)
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by Example 3.2.6. Moreover, for u € D(G) the identity

yields

) < [ (o)t < (/ 1 ) v (/ 1 ) ar) Y il

and thus |lul|e < ||t/||z2. We obtain the estimate

1Sl 22 < [lg1llsolltt' [l 22 + llgoll 22 |t o
1/2 1/2
< (lg1lloo + lgollz2) /1l 22 < (lgnlloe + llgollz2) 1l 1| Gul| ¥

for u € D(G); S is 1/2-subordinate to G with bound b < ||g1]lcc + |90l 12-
We want to apply Theorem 3.4.7 with p = 1/2, 6; = 0, rix = r, = m2k? and
B = 0. The condition (3.29) then reads
447

L+ (5b7“,1€/2 < regq — (567’,11_21 with some ¢ > — (3.32)

By Lemma 3.4.10, (3.32) holds for almost all & if §b < 7. So if

+ 7 1.€. =+
91||co goll L2 ) 91| goll 2 4 3

then we can find 6 > (4 + 7)/m such that 6b < m. Consequently (3.29) is satisfied
and Theorem 3.4.7 yields that for every a > ||g1]lco + ||g0||z2 almost all eigenvalues
of T lie inside regions

Ky = {2 +iy| |z — 7°k?*| < ark, |y| < az'/?}

and in fact N(K,T) = 1 for almost all k. In view of Remark 3.4.8, T" has a Riesz
basis of eigenvectors and finitely many Jordan chains.

If g1 = 0 and gy € L*°([0, 1]), no condition on the norm of go is necessary: For
in this case, S is bounded with ||S|| = ||go]|cc and we have

ri + 0||S]| < 71 —6]|S||  for almost all k&

by Lemma 3.4.10. We can thus apply Theorem 3.4.7 with p = 0 and obtain a Riesz
basis of eigenvectors and finitely many Jordan chains of T" and, for every a > ||go |00,
the localisation of almost all eigenvalues of 1" inside the rectangles

Ky = {x—l—iy’|a:—772k2] <a,lyl <a}.
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For an elliptic differential operator of even order on a domain @ C R™, the
existence of a Riesz basis with parentheses of root vectors was shown by Markus
in [36, §10]. We consider the Laplacian on the unit disc.

Example 3.5.4 Consider the Laplace operator on the unit disc B1(0) C R? with
Dirichlet boundary condition,

G(L*(B1(0)) — L*(B1(0))), D(G) = W2*(B1(0)) N Wy *(B1(0)),
Gu = —Au = —0%u — au.

Then G is positive selfadjoint with compact resolvent [19, Theorem XIV.6.25], and
the asymptotic behaviour of its spectrum is such that

lim 7N(T’ ¢) = 1’

r—00 r 4
see [12, Theorem VI.16]. If S is a bounded operator on L?(B1(0)) and T = G + S,
then Proposition 3.4.1 and Theorem 3.4.4 apply with p = 0: The operator T has a
compact resolvent,

o(G) C Byg(0) U{z +iy|z >0, [y <|S]]}

(cf. Remark 3.4.2 and Lemma 3.3.1), and 7' admits a finitely spectral /2-decompo-
sition. J



Chapter 4

Hamiltonian operators and
Riccati equations

We apply the results from the previous chapters to Hamiltonian operator matrices
and the associated Riccati equation

A*X + XA+ XQ1X — Qs = 0.

Riccati equations are generally hard to solve because they are quadratic operator
equations and the involved operators need not commute. The known existence
results yield a nonnegative and a nonpositive solution for the case that ()1 and Q9
are bounded, cf. Curtain and Zwart [14], Langer, Ran and van de Rotten [31], and
Bubak, van der Mee and Ran [10].

In Theorem 4.4.1 we prove the existence of infinitely many selfadjoint solutions of
the Riccati equation for unbounded @1, Q3. In particular, we obtain a nonnegative
solution X, and a nonpositive solution X_. Under stronger assumptions we show
the existence of bounded, boundedly invertible solutions and that every bounded
solution can be represented as X = X, P + X_(I — P) with some projection P,
see Theorem 4.4.5. A similar representation was obtained by Curtain, Iftime and
Zwart [13] under the assumption that X_ exists and is bounded and boundedly
invertible.

In the first section we study basic properties of Hamiltonian operators and their
relation to two Krein space inner products given by fundamental symmetries Jy, Js.
The existence of invariant graph subspaces and their relation to the symmetries Ji,
Ja is investigated in Section 4.2. Different notions of solutions of the Riccati equation
and its connection to invariant graph subspaces are the topic of Section 4.3. In the
last section, the existence of finitely spectral I>-decompositions for Hamiltonians is
shown, and the resulting invariant graph subspaces are used to obtain the existence
and characterisations of solutions of the Riccati equation.

113
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4.1 Hamiltonian operators and associated
Krein spaces

We investigate properties of Hamiltonian operators with the help of the fundamental
symmetries J; and Jo from the introduction. We obtain results about the symmetry
and separation of the spectrum with respect to the imaginary axis. The connection
of Ji to the Hamiltonian has been known for a long time; it was used for example by
Potter [41] in 1966 and Martensson [38] in 1971. By contrast, the relation of J; to the
Hamiltonian was first exploited by Langer, Ran and Temme [32] in 1997, followed
by Langer, Ran and van de Rotten [31] in 2001, Azizov, Dijksma and Gridneva [4]
in 2003, and Bubdk, van der Mee and Ran [10] in 2005.

Our notion of a nonnegative Hamiltonian operator matrix is taken from [4]. For
some remarks about the concept of block operator matrices see page 97.

Definition 4.1.1 Let H be a Hilbert space. A Hamiltonian operator matriz is a
block operator matrix
A O >
T= 4.1
<Q2 —A* (4.1)

acting on H x H with densely defined linear operators A, Q1,Q2(H — H) such that
()1 and Q2 are symmetric and T is densely defined.

If @ and Q3 are both nonnegative (positive, uniformly positive), then T is called
a nonnegative (positive, uniformly positive, respectively) Hamiltonian operator ma-
trix; accordingly for nonpositive, negative, and uniformly negative. J

The condition that T is densely defined implies that A* is densely defined; hence A
is closable.

Connected to Hamiltonian operator matrices are two Krein space inner products
on the Hilbert space H x H,

(flg) = (Jiflg) and [flg] = (J2flg), (4.2)

where (+|-) is the natural scalar product on H x H, and the fundamental symmetries

J1, Jo are given by
0 —il 0 I
e (8 w0 1) us

In other words,
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The next proposition shows that a (nonnegative) Hamiltonian operator matrix
is Ji-skew-symmetric (and Jo-accretive). Azizov, Dijksma and Gridneva [4] called
an operator T(H x H — H x H), which is not necessarily represented by a block
operator matrix, a (nonnegative) Hamiltonian operator if it is J;-skew-adjoint (and
Jo-accretive).

Proposition 4.1.2
(i) A Hamiltonian operator matriz is Jp-skew-symmetric.
(ii) If a Jy-skew-symmetric operator T(H x H — H x H) satisfies D(T) = S1 X Sa,
then it can be represented by a Hamiltonian operator matriz.

(iii) A Hamiltonian operator matriz is nonnegative (positive, uniformly positive)
if and only if it is Jo-accretive (strictly accretive, uniformly accretive, respec-
tively). In fact we have

Re[(éi _Qi*) () | (Z)} — (Qiolv) + (Qzulu) (1.4)

for u e D(A) ND(Q2), v € D(Q1) ND(A").
Proof. (i): Direct computation yields

<<5242 —in*> (Z) ‘ <§>> = i(Au+ Quvly) — i(Qau — A™v|z)
= i(u|A*y — Qax) — i(v| — Quy — Ax)

v)I\-Q2 A" ) \y
for u,z € D(A) ND(Q2), v,y € D(Q1) ND(A¥).
(ii): The assumption D(T") = S; x So implies that T can be written as a block

operator matrix
A Q1>
T —
(Qz D
with operators A, Q1,Q2, D(H — H). Without loss of generality, we may assume

D(A) = D(Q2), D(Q1) =D(D).
Since T is densely defined, D(A) and D(Q1) are dense in H. The J;-skew-symmetry
yields

o=((5, B)IED G S)6)
= i(Au+ Q1v|y) — i(Qou + Dvlz) + i(u|Qez + Dy) — i(v|Az + Q1y)

= —i(Qaulz) + i(u|Qaz) + i(Auly) + i(u|Dy)
—i(Dovlz) — i(v|Az) + i(Qvly) — i(v|Q1y)
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for all u,z € D(A) and v,y € D(Q1). Using this result for v =y =0, z = u = 0,
and v = x = 0, respectively, we find

(Qoulz) = (u|@Q2z)  forall u,z € D(Q2),
(Qivly) = (v|Qry) for all v,y € D(Q1),
(Auly) = —(u|Dy) for all uwe D(A),y € D(D);

hence @)1 and @2 are symmetric and D C —A*. Consequently, T is represented by
a Hamiltonian operator matrix.
(iii): The claim follows from the relation

(2 ) ()](2)] = Cn @uio) + @ vl
= (Q1o|v) + (Qaulu) + (Aulv) — (v]Au)

-~

€R ciR

for u € D(A) ND(Q2), v € D(Q1) N D(A*). O

As a consequence of the skew-symmetry, a Hamiltonian operator matrix is always
closable. However we will not compute the closure in the general case since all
Hamiltonian operators from the perturbation theorems in Section 4.4 will be closed
automatically.

Another consequence of the Ji-skew-symmetry is the symmetry of the spectrum
of T' with respect to the imaginary axis:

Corollary 4.1.3 Let T be a Hamiltonian operator matrix.

(i) If T has a dense system of root subspaces, then the point spectrum op(T) is
symmetric with respect to the imaginary axis.

(i) If \,—X € o(T) for some X\ € C, then T is J;-skew-adjoint and the spectrum
o(T) is symmetric with respect to the imaginary axis.

Proof.  Since iT is Jij-symmetric, the claims are a direct consequence of Theo-
rem 2.5.12, Remark 2.5.8 and Proposition 2.5.9. U

The Jso-accretivity of a nonnegative Hamiltonian operator leads to a characteri-
sation of the point spectrum on the imaginary axis. First, we prove a lemma about
nonnegative operators in Hilbert spaces.

Lemma 4.1.4 Let Q(H — H) be a nonnegative symmetric operator on a Hilbert
space and u € D(Q). Then (Qulu) =0 implies Qu = 0.
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Proof. Since @) is symmetric and nonnegative, it has a nonnegative selfadjoint exten-
sion which in turn has a square root. That is, there exists a nonnegative selfadjoint
operator B such that Q C B2. Then

0 = (Qulu) = (Bu|Bu) = || Bu|®
implies Bu = 0 and thus Qu = 0. O

Lemma 4.1.5 For a nonnegative Hamiltonian operator matriz T, (u,v) € D(T)
and t € R we have

T <u> i <u) PN u € ker(A — zt) Nker@2 and (4.5)
v v v € ker(A* 4 it) Nker Q.

Proof. Suppose we have z = (u,v) € D(T) with (T —it)z = 0. Then
(A—it)hu+ Qv =0, Qou— (A" +it)v=0

and
0 = Re(it[z|z]) = Re[Tz|x] = (Q1v|v) + (Qaulu).

Then (Q1v]v) = (Q2u|u) = 0 since @1 and Q2 are nonnegative. Using Lemma 4.1.4,
we obtain Qv = Qau = 0, which in turn implies (A — it)u = (A* + it)v = 0. The
other implication is immediate. O

We can now give some conditions which yield a separation of the spectrum at
the imaginary axis.

Proposition 4.1.6 Let T be a nonnegative Hamiltonian operator matriz.
(1) We have o,(T) NiR = @ if and only if
ker(A —it) Nker Q2 = ker(A* +it) NkerQ; = {0} forall teR. (4.6)
In particular, op,(T) NiR = @ for positive Hamiltonians.

(ii) If T is uniformly positive, then a strip around the imaginary azxis belongs to
the set of points of regular type for T'. More precisely, Q1,Q2 > v with v > 0
implies that

{Ae C||ReA| <~} Cr(T).

If T is also closed with a dense system of root subspaces, then

{Ae C||ReA| <~} Co(T).
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Proof. (i) is an immediate consequence of the previous lemma. (ii) follows from
Proposition 2.6.2 with the Krein inner product [-|-] and because

Re[T'z|z] = (Quo]v) + (Qaulu) > y(Jlul® + [[v]*) for @ = (u,v) € D(T). -

If T' is a nonnegative Hamiltonian operator which satisfies (4.6), Proposition 2.6.6
implies that the root subspaces corresponding to eigenvalues in the right and left half-
plane are Jy-nonnegative and Je-nonpositive, respectively. Sharpening the condition
(4.6), we can even show that they are Jy-positive/-negative:

Proposition 4.1.7 Let T be a nonnegative Hamiltonian operator matriz with
Q2>0 and ker(A* —X)Nker@; ={0} forall XeC, (4.7)

or
Q1 >0 and ker(A—X) NkerQ2 = {0} forall XeC. (4.8)

Then the root subspaces L(X) of T are Jo-positive if ReX > 0 and Jy-negative if
Re X < 0.

Proof. Suppose that (4.7) holds and that Re A > 0; the proofs for the other cases
are analogous. From the previous proposition we know that 7" has no purely imagi-
nary eigenvalues. Proposition 2.6.6 thus implies that £(\) is Jo-nonnegative. Take
(x,y) € L(A)\{0} and let n be the first natural number such that (T'—\)"(z,y) = 0.
We use induction on n to show that (z,y) can not be Jy-neutral and is thus Jo-
positive.

For n =1 we have

ren- ()] (2)] = relr (2) | (2)] = @uw) + @aste)

If (z,y) was Jo-neutral, then (Q1y|y) + (Q2x|z) = 0. Since @) is nonnegative and
Q2 positive, it follows that x = 0. Hence

0 Q1y ) <0>
T — I) = 7
(y> (—A y y
ie., y € ker@y and A*y = —\y. Assumption (4.7) yields y = 0, a contradiction.

For n > 1 we set
()--5()

Then (u,v) is Jo-positive by the induction hypothesis. If (z,y) was Jy-neutral, we
would have

o=nex [N =melr G EN ()1 O
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re[(2)] (5] = @uln) + (@aslo) 2 0
For r € R let . N

w= ()4 (2):
Then

wien =20 (7 ()] +[(7) (7))

Therefore, if Re[(u,v)|(x,y)] > 0, then [w|w] < 0 for r sufficiently small, which is a
contradiction to w € L(\) Ja-nonnegative. Consequently we have

U x
Re[<v> | (yﬂ = (Quly) + (Quzlz) = 0
and hence z = 0 and Q1y = 0 (Lemma 4.1.4). But this implies that © = 0 and hence
(u,v) is Jo-neutral, again a contradiction. O

4.2 Invariant graph subspaces in Krein spaces

In this section we derive conditions for a subspace invariant under the Hamiltonian
to be the graph of an operator X. We will also see that certain properties of X
such as its selfadjointness are equivalent to properties of the graph subspace with
respect to the fundamental symmetries J; and Jo. These equivalences have also
been studied by Dijksma and de Snoo [16] and Langer, Ran and van de Rotten [31].

Finally, for a Hamiltonian operator T with a finitely spectral [2-decomposition
we show that the compatible subspaces associated with a partition of o, (7") which
separates skew-conjugate points are the graphs of selfadjoint operators. The corre-
sponding result for dichotomous Hamiltonian operators and the spectral subspaces
associated with the right and left half-plane was obtained in [31].

To an operator X(H — H), two kinds of graph subspaces in H x H may be
associated. We use the notation

F(X):{<;u) ‘ueD(X)}, L(X) = {(f}”) ’veD(X)}. (4.9)

Observe that if X is injective, then T'(X) = L(X~!). Furthermore, an arbitrary
subspace U C H x H is of the form U = I'(X) if and only if (0,v) € U implies v = 0;
in this case

D(X):{ueH‘HveH:(Z)eU} and Xu=0 & <Z>GU.

Analogously we have U = L(X) if and only if (u,0) € U implies u = 0.
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Proposition 4.2.1 Consider an operator X(H — H) on a Hilbert space and let
U =T(X) or L(X) be one of its graph subspaces. Then

(i) U Jy-neutral (i.e. U C UY ) <= X Hermitian;

(ii) U = U «— X selfadjoint.
If U is Ji-neutral, then also

(iii) U Ja-nonnegative (-positive) <= X nonnegative (-positive);
(iv) U Ja-positive (-negative) <= X positive (negative);

(v) U Ja-uniformly positive (negative) <= X bounded and uniformly positive
(negative).

Proof. We consider U = I'(X); the case U = L(X) is analogous.
(i): U is Ji-neutral if and only if

0= <<;u> ‘ (;U>> — i(u|Xv) —i(Xulv) forall u,veD(X),

that is, X is Hermitian.
(ii): Using (i), we may assume U C U" and that X is Hermitian. Therefore

U=U" — v cu
= <VgeU:<f]g):O = er)

x u x
= (VuED(X) : <<y> ‘ (Xu)> =0 = (y) € U)
— (vu € D(X) : (z|Xu) = (ylu) = z€DX),y= Xx). (4.10)
On the other hand, since X is Hermitian, it is selfadjoint if and only if
D(X) C H dense and D(X*) C D(X). (4.11)

To prove that (4.10) and (4.11) are equivalent, let us first assume that (4.10) holds.
Then, if y € D(X)*, we find (y|u) = 0 = (0| Xw) for all u € D(X) and (4.10) implies
y=X0=0; D(X) is dense. If x € D(X™*), we have (z|Xu) = (X*z|u) for all u and
(4.10) yields € D(X). Now suppose (4.11) holds and let (z|Xu) = (y|u) for all
u € D(X). This implies x € D(X™*); so x € D(X) and thus (Xz|u) = (y|u) for all u
by the Hermiticity of X. Therefore Xz = y.

(iii) and (iv): For Hermitian X we have

[()?u) ‘ <;u>} = (u[Xu) + (Xulu) = 2(Xulu)
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and the assertions follow immediately.
(v): First suppose that U is Jy-uniformly positive, i.e.,

e L Gel = all () = et +aixur

for all u € D(X). Therefore
2| Xullllull > 2(Xulu) > of|ull* + o Xul]?,

which implies
o 2
(Xulu) > §IIUH2 and  —|lul] > [ Xu]

for all w € D(X); X is bounded and uniformly positive. If on the other hand X is
bounded and uniformly positive, we can estimate

() | (s )] = 206000 > 280l > l? + g P

and consequently U is uniformly positive. The negative case is analogous. O

The next lemma in conjunction with Proposition 4.2.1(v) is crucial to prove the
boundedness of solutions of Riccati equations.

Lemma 4.2.2 Let X, X_ be bounded selfadjoint operators on a Hilbert space H
with Xy uniformly positive and X_ nonpositive. If X(H — H) is a Hermitian
operator satisfying

X+U ’Lf u € D+,

D(X)=D,+D_, Xu=
(0 * {X_u if ue D_,

then X is bounded.

Proof. First consider w € Dy, v € D_ with ||lul]| = ||v]| = 1. Then

(u—v|Xiu+ X_v) = (u|Xiu) — (v|X1u) + (u|X_v) — (v|X_v)
= (u|Xyu) — (v|Xu) + (u| Xv) — (v| X_v).

Using the Hermiticity of X and the assumptions on Xy, we find that
Re(u —v|Xiu+ X_v) = (u|Xyu) — (v|X_v) > v
with some constant v > 0 and hence

v < = v Xpu+ X _0) < Jlu—of - (| X4+ [1X-]).
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This implies

2
2 2
< ||lu—v||* =2 — 2Re(u|v)
<HX+H + HX—H>

and
Re(uv) <16 with &= 1( g >2>o
e(ulv -6 wi —_—— .
[ X[+ ([ X
Consequently
|(ulv)] <1—46 forall we Di,ve D_ with ||u|| = |jv]| = 1.
Now for arbitrary u € D, v € D_ we have the estimates

1X (u+ )| = | X+ X_v|| < max{ | X ||, [ X} (lull + [lv]),
(el + 1ol1)* < 2(1ful® + 1v]12),
lu+ ol 2 [ul® + [[v]]* = 2[(ulv)] = [ull® + [Jo]|* = 2(1 = &)l [[v]]
> [full? + [lol* = (1 = &) (lull® + [v]1%) = 6 (llull® + [[v]*).
Therefore
X (ut v)]| < ﬁ mac{ | Xy [, 11X ||}l + o]
and X is bounded. 0

The first component of an [>-decomposition of the graph subspace of a bounded
operator is again an [?>-decomposition:

Lemma 4.2.3 Consider a bounded operator X : H — H whose graph admits an

12-decomposition
u 2
I(X) = {(Xu> ‘UEH} - P U
keN

If Dy are the subspaces obtained by projection of Uy onto the first component, i.e.

= {(3) o)

then (Dy)ren forms an 1?-decomposition for H.

Proof. With ¢ the constant corresponding to the decomposition @Z Uk, up € Dy,
and n € N, we have the estimates

1ZrUk|r2<clz\((XUk>\\<HZ( )H (1+ x| quk\
DRI SR IED »I[ SR ERITETE) o P

)
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For arbitrary v € H we can expand (u, Xu) € U according to the [2-decomposition

D; Uy, as
u [ u
<Xu> => <X5 ) with uy € Dy.
k=0 b
Consequently u = >"7" juy and Y, . D, C H is dense. O

In some cases, the boundedness of X can be characterised via Riesz bases as
follows, cf. Kuiper and Zwart [29, Theorem 5.6]:

Remark 4.2.4 If the graph I'(X) of a closed densely defined operator X (H — H)
has a Riesz basis of the form (ej, Xeg)ren, then X is bounded if and only if (ex)ren
is a Riesz basis for H. The proof of the implication from left to right is completely
analogous to the previous lemma. For the other direction, the estimate

xS e < [ (8 )< a2 el < 2 S e
k=0 k=0 k k=0 1=

shows the boundedness of X.

Note however, if the graph of X has an I?-decomposition I'(X) = @26N Uy, and,
with the notation from the lemma, (Dy)x forms an [?-decomposition of H, then X
need not be bounded in general. As a counter example, consider a selfadjoint X with
an orthonormal basis (ex)x of eigenvectors such that Xey, = key, and Dy = Cey.

The next two propositions show that under appropriate assumptions on the
Hamiltonian all neutral invariant subspaces are graph subspaces.

Proposition 4.2.5 Consider a nonnegative Hamiltonian operator matrix T with
it € o(T) for some t € R and a Jy-neutral subspace U that is (T — it)~'-invariant.

(1) If Q1 is positive and it & op(A), then U = I'(X) for a Hermitian operator

(i1) If Q2 is positive and —it & op(A*), then U = L(Y') for a Hermitian operator
Y(H — H).

(iii) If Q1 and Q2 are positive (i.e., T is positive), then U = I'(X) with X (H — H)
Hermitian and injective.

Proof. (i): It suffices to show that (0,v) € U implies v = 0. The Hermiticity of X
is then immediate from Proposition 4.2.1. For (0,v) € U we set

() =0 ();
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ie.,

(A—it)x+ Qiy =0, Qx— (A" +it)y =v.

Using the neutrality and (T — it)~-invariance of U, we have
0 x .
(1)

0 = (v]z) = (Qaz|x) — (yl(A —it)z) = (Qoz|z) + (y|Q1Y)-

As @1 and ()2 are nonnegative, this implies (Q2z|z) = (Q1yly) = 0. The positivity
of @1 yields y = 0 and consequently (A — it)z = 0. Since it ¢ o,(A), we obtain
x=0and v=0.

(ii): It suffices to show that (u,0) € U implies u = 0. The proof is then com-
pletely analogous to (i).

(iii): Let (0,v) € U and choose (x,y) as above. Thus (Qax|z) = (Qiyly) =0
and from the positivity of )1 and @2 we conclude that z = y = 0 and hence v = 0.
The proof that (u,0) € U implies u = 0 is analogous. O

and thus

The following proposition uses a method due to Langer, Ran and van de Rot-
ten [31, Theorem 5.1]. There, @; and @2 are assumed to be bounded and the
conditions analogous to (4.12) and (4.13) are referred to as approximate controlla-
bility and observability, respectively.

Proposition 4.2.6 Consider a nonnegative Hamiltonian operator matrixz and a do-
main M C o(A) such that iR N o(T) N M has an accumulation point in M and

span{ (4 — z) ' Qfu |z€ M,ueD(Q})} CH is dense. (4.12)

If U is a Jy-neutral subspace that is (T — it)~L-invariant for all it € iRNo(T)N M,
then U = T'(X) is the graph of a Hermitian operator X (H — H).
If instead of (4.12) we have

span{ (A* — 2) 7 Q5w |z€ M, veD(Q5)} C H dense, (4.13)
then U = L(Y) for a Hermitian operator Y (H — H).

Proof. As in the proof of Proposition 4.2.5 we consider an element (0,v) € U and
set (z,y) = (T —it)~1(0,v) for it € iR N o(T) N M. We thus have

0= (v|z) = (Qez|z) + (Q1yly).

Since @)1 and @2 are nonnegative, Lemma 4.1.4 implies Qox = 1y = 0 and hence
—(A* +it)y = v. From it € o(A) we get —it € p(A*) and

0=0Q1y= —Ql(A* + Z‘t)ilv.



4.2. Invariant graph subspaces in Krein spaces 125

For u € D(Q7) this implies
0= (Ql(A* + it)_lv‘u) = ((A* + it)_lv‘Qiku).

Consequently, the function f(¢) = ((A* — ¢)~'v|Q%u), which is holomorphic on the
complex conjugate of M, satisfies f(—it) = 0 for all it € iR N o(T) N M. From the
identity theorem we obtain

0= ((A*— 2)_1U‘Q’{u) =(v](A- 2)'Qiu) for all z € M.
Since u € D(Q7) was arbitrary, the density assumption (4.12) now implies v = 0.
The proof for the case of (4.13) is analogous. O
The density conditions (4.12) and (4.13) are closely related to the spectral con-
ditions (4.6), (4.7) and (4.8).

Lemma 4.2.7 Let A(H — H) be a normal operator with compact resolvent and
M C o(A) a set with accumulation point in o(A). If the closed densely defined
operator Q(H — H) is such that ker Q contains no eigenvectors of A, then

span{ (A — 2)7'Q*v |ze M, veD(Q")} CH dense.

Proof. Let (A¢)ken be an enumeration of the eigenvalues of A and Py the corre-
sponding orthogonal projections onto the eigenspaces. Let u € H be such that

u L span{(A—2)"'Q*v |z € M, v e D(Q")},

ie, (A —2)71Q*v|u) = 0 for all z € M, v € D(Q*). Due to the estimate
2k [(Pe@vlu)| < [[Q7vll[|ull, the series

f(z) = ((A — z)*lQ*v‘u) = Z /\kl_Z(PkQ*v]u)
keEN

converges absolutely and uniformly on every compact subset of o(A) and is a holo-
morphic function on g(A). We have f(z) = 0 for z € M and hence f = 0 by the
identity theorem. If we integrate the series along a circle in g(A) enclosing exactly
one A\, we obtain

0 = —2mi(P.Qv|u).

Consequently (Q*v|Pgu) =0 for all k € N, v € D(Q*), i.e.
Pou € R(Q*)T = ker Q** = ker Q.

The assumption now implies Ppu = 0 for all £ € N and thus u = 0. ]
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Proposition 4.2.8 Consider densely defined operators A,Q(H — H) and a set
M C o(A) with accumulation point in o(A). For the assertions

(i) ker(A* —it)Nker@ = {0} forall teR,
(ii) ker(A* —A)Nker@ = {0} forall NeC,
(iii) span{(A — 2)7'Q*v |z € M,v € D(Q*)} C H dense,

we have the implications (i1i) = (ii) = (i). If A is normal with compact resolvent
and furthermore Q is closed or D(A) C D(Q), then (ii) < (iii).

Proof. (ii)=-(i) is trivial. For (iii)=-(ii) consider A*u = Au, Qu = 0. Then for every
z €M, veDQ") we have

(A- z)_lQ*v‘u) = (v|Q(A* — 2) ') = (v|QA—2)"'u) =0

and the density assumption implies © = 0. Under the additional conditions the
eigenvectors of A and A* coincide, and we have D(A) N ker@ = D(A) N ker ().
Hence, (ii)=-(iii) is a consequence of the previous lemma. O

For Hamiltonian operator matrices with a finitely spectral [2-decomposition, we
now prove the existence of invariant subspaces which are the graph of selfadjoint
operators. Note that by Corollary 4.1.3 the point spectrum of a Hamiltonian with
a finitely determining [?-decomposition is symmetric with respect to the imaginary
axis.

Definition 4.2.9 For an operator 1" whose point spectrum is symmetric with re-
spect to the imaginary axis and satisfies 0,(T") N iR = @, we say that a partition
op(T) = 0 UT separates skew-conjugate points if

ANeEo < —)\eT.
_

Lemma 4.2.10 Let T be a Hamiltonian operator matric with op(T)NiR = & and a
finitely spectral I1?-decomposition H x H = @ieN Vie. If 0p,(T) = o UT is a partition
which separates skew-conjugate points and the compatible subspace associated with o
is the graph T'(X) or L(X) of an operator X (H — H), then X is selfadjoint.

If T is nonnegative and I'(X) or L(X) is the compatible subspace associated with

al‘f(T) and o, (T), then X is nonnegative and nonpositive, respectively.

Proof. If I'(X) is the compatible subspace associated with ¢, then I'(X) = I'(X)
by Theorem 2.5.16; Proposition 4.2.1 yields the selfadjointness of X. If T' is nonnega-
tiveand o = a;,t(T ), then T'is Ja-accretive and I'(X') Ja-nonnegative/-nonpositive by
Proposition 2.6.6. Proposition 4.2.1 now implies that X is nonnegative/nonpositive.

O
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Proposition 4.2.11 Consider a nonnegative Hamiltonian operator matriz T with
op(T)NiR = @ and a finitely spectral 1?-decomposition @zeN Vi. Let op(T) =0 UT
be a partition which separates skew-conjugate points and U the compatible subspace
associated with o. If

(a1) Q1 is positive and it € o(T') \ op(A) for somet € R, or

(a2) there is a domain M C p(A) such that iR N o(T) N M has an accumulation
point in M and

span{(A — 2)7'Qju|z € M, u e D(Q})} CH dense,

then U is the graph U = T'(X) of a selfadjoint operator X(H — H). If
(b1) Q2 is positive and it € o(T) \ o,(—A*) for somet € R, or

(b2) there is a domain M C o(A) such that iR N o(T) N M has an accumulation
point in M and

span{(A* —2)7'Qsv |2 € M, v € D(Q3)} CH dense,

then U is the graph U = L(Y) of a selfadjoint operator Y (H — H).
If the conditions (al) or (a2) as well as (b1) or (b2) are satisfied, or if T is
positive with o(T) NiR # &, then U = T'(X) with X selfadjoint and injective.

Proof. The subspace U is Jj-neutral and (T — \)~!-invariant for all A € o(T), see
Theorem 2.5.16. The representation as a graph subspace is thus a direct conse-
quence of Propositions 4.2.5 and 4.2.6. The selfadjointness of X and Y follows from
Lemma 4.2.10. ]

Strengthening the assumptions on 7', we obtain the boundedness and bounded
invertibility of the operator X:

Proposition 4.2.12 Consider a closed, uniformly positive Hamiltonian operator T’

with Q1,Q2 > v, dim L(A) < oo for all XA € 0,(T), and
op(T) C {z € C||Rez| < a}
for some a > 0. Suppose that T has a Riesz basis of Jordan chains. Then
{z € C||Rez| <~} C o(T)
and for every partition o,(T) = o UT which separates skew-conjugate points the

compatible subspace associated with o is the graph I'(X) of a selfadjoint isomorphism

X : H — H. The operators X+ corresponding to o = o.r (T) are uniformly positive

2
and negative, respectively.
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Proof. By Proposition 4.1.6 we have z € o(T') for | Re z| < . From Lemma 2.3.15(i)
it follows that the root subspaces form a finitely spectral [?-decomposition. Proposi-
tion 4.2.11 implies that the compatible subspace associated with o is the graph I'(X)
of a selfadjoint injective operator. By Proposition 2.6.6, the compatible subspaces
['(X 1) associated with O';,t (T') are uniformly Jo-positive and -negative, respectively;
Xy are then bounded and uniformly positive/negative due to Proposition 4.2.1.

Since the root subspaces form an [2-decomposition, we have

D(X)=W,aW_ with W, = @2 L), W_= @2 L(N).

AEo A€o
Re A>0 Re A<0

If we denote by D4 the subspaces obtained by projecting WL onto the first com-
ponent, then D(X) = Dy + D_ and X|p, = X4|p.. Therefore X is bounded by
Lemma 4.2.2. With I'(X) = L(X ') and I'(X4) = L(X1'), an analogous argument
yields that X! is also bounded. O

4.3 Invariant graph subspaces and the Riccati equation

We study the correspondence between graph subspaces I'(X) invariant under the
Hamiltonian and solutions X of the associated Riccati equation. There are sev-
eral notions of strong and weak solutions of the Riccati equation depending on the
boundedness of A, 1, )2 and X. For the case that all these operators are un-
bounded, we introduce the concept of a core solution which ensures that the Riccati
equation holds on a core of X.

In control theory, the case of bounded @1, Q2 and X typically occurs and the
weak form of the Riccati equation is widely used, see e.g. [14, 29]. Langer, Ran
and van de Rotten [31] considered bounded as well as unbounded solutions of the
strong and weak Riccati equation for bounded (1, Q2. For a bounded selfadjoint
block operator matrix, Kostrykin, Makarov and Motovilov [26] explicitly defined the
notion of unbounded strong and weak solutions of the associated Riccati equation.
They showed the equivalence of strong solutions, weak solutions and invariant graph
subspaces in their setting. The corresponding result for bounded Hamiltonians is
contained in Proposition 4.3.1.

In this section we consider Hamiltonian operators that are diagonally dominant
(cf. page 97) and not necessarily nonnegative. In fact, analogous results hold for
general densely defined block operator matrices

(@ »)

with D(A) C D(C) and D(D) C D(B).
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Proposition 4.3.1 Let T be a diagonally dominant Hamiltonian operator matriz.
Then for the operator X (H — H) the following two statements are equivalent:

(i) The graph T'(X) of X is a T-invariant subspace.
(i) X is a solution of the Riccati equation
XA+Q1X)=Qos—A*X on DA NX DA, (4.14)
In particular, u € D(A) N X 1D(A*) implies Au+ Q1Xu € D(X).
For densely defined X, (i) or (i) imply
(iii) X is a solution of the weak Riccati equation

(XulAv) + (Au|X™v) + (@1 Xu[X™v) — (Qaulv) = 0, (4.15)
ueD(A)NXID(AY), veDA)NDX").

If moreover X is closed, densely defined, and D(A) N D(X™) is a core for X*, then
both (i) and (i) are equivalent to (iii).

Proof. The graph of X is T-invariant if and only if for all w € D(A) N D(X) with
Xu € D(A*) there exists v € D(X) such that

Au+ 1 Xu\ [ v
Qou— A*Xu) \Xv)’
This is obviously equivalent to (ii). For densely defined X, (4.15) is easily obtained

from (4.14) by taking the scalar product with v € D(A) N D(X*). If we finally
assume (4.15), we can rewrite it as

(Au+ Q1 Xu| X v) = (Qou — A* Xulv).

If D(A)ND(X™) is a core for X*, this equation holds for all v € D(X*). Furthermore,
the right-hand side is continuous in v, and we have X** = X if X is closed. This
implies Au + @1 Xu € D(X**) =D(X) and

X(Au+ Q1 Xu) = Qau — A* Xu.
U

Note that (4.14) always has the trivial solution X (H — H) with D(X) = {0}.
And even if X is densely defined, D(A)NX ~1D(A*) = {0} is still possible in general.
With the following definition we exclude such trivial solutions.
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Definition 4.3.2 Let T be a diagonally dominant Hamiltonian operator matrix.
The operator X (H — H) is called a core solution of the Riccati equation

X(A+Q1X)=Q2— A"X (4.16)
if X is densely defined, D(A) N X ~ID(A*) is a core for X, and X satisfies (4.16) on
D(A)N X~ ID(A%). J

Corollary 4.3.3 The selfadjoint operator X is a core solution of (4.16) if and only
if D(A)N X~'D(A*) is a core for X and X solves the weak Riccati equation

(Xu|Av)+(Au| Xv)+(Q1 Xu| Xv) — (Qoulv) =0, u,v € D(ANXD(A*). (4.17)
Proof. If D(A) N X 1D(A*) is a core for X, (4.17) implies that
(A" Xulv) + (Au|Xv) + (@1 Xu[Xv) — (Qaulv) =0
for all u € D(A) N X~ 'D(A*), v € D(X); in particular, X is a solution of (4.15).

The claim is thus a direct consequence of Proposition 4.3.1. 0

Proposition 4.3.4 Consider a diagonally dominant Hamiltonian operator matrix
T with a finitely determining 1%-decomposition @iew Vie. If X(H — H) is a densely
defined operator whose graph T'(X) is a T-invariant subspace compatible with @i Vi,
then X is a core solution of (4.16).

Proof. From T'(X) = @7 Uy with Uy, C V; T-invariant, it follows that 3, Uy is
dense in I'(X') and hence the subspace obtained by projection of ), U}, onto the first
component is a core for X. This subspace is also a subset of D(A4)NX ~1D(A*) since
3w Ux C D(T); hence D(A) N X ~'D(A*) is a core for X. Finally, Proposition 4.3.1
shows that X solves the Riccati equation. [l

If @1 and X are bounded, we obtain Riccati equations on larger domains. For
the case that ()2 is bounded too, this result is well known in control theory, compare
[14, Exercise 6.25] and [29, Lemma 5.1].

Proposition 4.3.5 Let T be a diagonally dominant Hamiltonian operator matrix
with Q1 : H — H bounded. Then for the bounded operator X : H — H the following
statements are equivalent:

(i) The graph T'(X) is T-invariant and D(A) N X 1D(A*) is a core for A.
(ii) X is a solution of the Riccati equation
A'X+ XA+ XQ1 X —Q2=0 on D(A); (4.18)

in particular XD(A) C D(A*).
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(iii) X is a solution of the weak Riccati equation

(Xu|Av) + (Au| X ) + (@1 Xu| X v) — (Qaulv) =0, wu,ve D(A). (4.19)

Proof. The implication (ii)=-(i) follows from Proposition 4.3.1 and the fact that
XD(A) C D(A*) & DA NX DAY =D(A).
For (iii)=-(ii), we rewrite (4.19) as
(Xu|Av) = (- X Au — X Q1 Xu + Qaulv), u,v € D(A).

Since the right-hand side is continuous in v, we obtain Xu € D(A*) and (4.18). If
we finally assume (i), Proposition 4.3.1 yields that for u € D(A4) N X ~'D(A4*) and
v e D(A)

(XulAv) + (Au| X v) + (Q1 Xu| X v) — (u|Q2v) = 0.

Since this equation is valid for « in a core for A, and Q1 and X are bounded, the
equation also holds for u € D(A); (iii) is proved. O

Note that all bounded solutions of (4.18) are core solutions of (4.16).

Remark 4.3.6 In a completely analogous way, T-invariant graph subspaces L(Y)
are related to the Riccati equation

AY—I—YA* — YQ2Y+Q1 = 0.

-

A solution X of a Riccati equation leads to a transformation of the Hamiltonian
to upper block triangular form. The transformation is given by the block operator

()I( ?) . D(X) x H — D(X) x H,

which is bijective with inverse
I o\' (I o0
X I C\-X I)

This transformation was also studied by Kuiper and Zwart [29, Lemma 5.5] for
Q1,Q2, X bounded and A the generator of a Cy-semigroup.
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Proposition 4.3.7 Consider a diagonally dominant Hamiltonian T and a solution
X(H — H) of the associated Riccati equation (4.14), i.e., the graph T'(X) of X is
T-invariant. Then we have

I O0\/A Q I 0\ [A+QX Q
(5 Do &) & D=2 n%) e

on D(A) N X~ 'D(A*) x D(A*) N QT D(X). For A € C and u € D(X) we obtain

u

u e ker((A + QlX — >‘)|’D(A)I’1X—1D(A*))k = (XU) S ker(T — )\)k, (421)

in particular op(A + Q1.X |paynx-1p(4+)) = op(T|r(x))-
If X : H— H is bounded, then

o((A+ Q1.X)|paynx-1pa) = o(Tlr(x))-

If moreover XD(A) C D(A*), then T'(X) is also (T — X)~l-invariant for every
A€o(T)No(A+ Q1 X).

Proof. Let u € D(A) N X ~'D(A*), v € D(A*). Then, using the Riccati equation,

(o %) (D))= (o S (o)

Au+ Q1 Xu+ Qv Au+ Q1 Xu+ Qv
Qou — A*Xu— A*v)  \X(Au+ Q1 Xu) — A* )’

If Qiv € D(X), we can rewrite this as
A Q I 0\ [u) _ Au+ Q1 Xu+ Qv
Q: —A*)\X I)\v) \X(Au+ Qi1 Xu+ Qv)— A*v— XQiv

. I 0 A4+ Q1 X Q1 u
) (7 a0l C)

and obtain (4.20). Now we consider the mapping
v : DX)—-T(X), ur— <X1'Lu> ,
which is bijective and maps D(A4) N X 1D(A*) onto I'(X) N D(T). This implies

¢ 'Tlrxyp : D(A)NX'D(A*) - D(X), ur— Au+ Q1 Xu.

Consequently

e NTlrixy = Ao = (A+Q1X — )‘)‘D(A)mXﬂD(A*))k ; (4.22)
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hence (4.21) and the equality of the point spectra.

If X is bounded, then ¢ : H — I'(X) is an isomorphism, and (4.22) with k£ =1
implies the equality of the resolvent sets. Now suppose that XD(A) C D(A*) too.
Then (4.20) holds on D(A) x D(A*). Let E=A+ X, F = -A"— XQ,

~_(E @
(%)
and A € o(T)No(E). Then X € g(f) In particular, T — \ is surjective and so F' — A

must be surjective. From the surjectivity of £ — X\ and the injectivity of T— )it
follows that F' — A is also injective. Consequently

= o1 ((E=XNTY —(E-NTTQuF -
(T =) —< 0 (F— \)-L :
Therefore H x {0} is (T — A)~*-invariant. Since (£9) maps H x {0} onto I'(X),
we conclude that I'(X) is (T — \)~-invariant. O

Remark 4.3.8 For a diagonally dominant Hamiltonian operator matrix and solu-
tions X,Y : H — H of the Riccati equations

A X+ XA+ XQ1 X —Q2=0 on D(A),
AY +YA* =Y QY +Q1 =0 on D(A")

such that ( )I( 31/) is invertible, we obtain the block diagonalisation

I YN''(A Q\[(I Y\ [A+QX 0
(x7) (& %) )= elow)

With the following proposition we establish a one-to-one correspondence between
bounded solutions of the Riccati equation and invariant graph subspaces of bounded
operators compatible with a spectral 2-decomposition of the Hamiltonian.

Proposition 4.3.9 Consider a diagonally dominant Hamiltonian operator T with
Q1 : H — H bounded and a finitely determining [?-decomposition Hx H = @ieJN Vi.
Suppose that there is a sequence (zi)ren in 0(A) with ||(A — zx) "t — 0.

(i) If the graph T'(X) of a bounded operator X : H — H is T-invariant compatible
with @3 Vi, i.e.
2
NXx)= @ Up with Up CVy T-invariant,
kelN
then X satisfies the Riccati equation (4.18) and we have

o(Tlrx)) = o(A+ Q1X).

The subspaces Dy, obtained by projection of Uy onto the first component form
a finitely determining 1?-decomposition for A+ Q1 X.
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(i) If A and T have compact resolvents, the decomposition @i Vi is finitely spec-
tral, and X : H — H is a bounded solution of the Riccati equation (4.18), then
the graph T'(X) of X is T-invariant compatible with @i Vi

Proof. (i): The family (Dy)ren forms an [?-decomposition by Lemma 4.2.3. From
the identity (4.22) in the previous proposition, we see that since each Uy is the
span of certain root vectors of T', Dy, is the span of the corresponding root vectors of
A+Q1 X|paynx-1p(a+)- Since Q1 and X are bounded, we have [|[Q1 X (A—z,) 7| < 1
for k sufficiently large. Then

A+ X — 2z, = (I + Q1X(A - Zk)il)(A — Zk)

implies 2z € o(A + @1X). Applying Proposition 2.3.8, we deduce that (Dg)ren
forms a finitely determining /2-decomposition for A + @1 X. In particular, > Dk
is a core for A + (1 X and hence (since Q1 X is bounded) for A. Since moreover
>w Dr C D(A) N X~1D(A*), we can apply Proposition 4.3.5 to obtain (4.18). Now
Proposition 4.3.7 yields o(A + Q1X) = o(T|r(x))-

(ii): Since A has compact resolvent and

_ _ C1y—1

(A+ QX —2) 7 = (A—z) (I + QX (A —2)7)

for k sufficiently large, A + @1 X has compact resolvent too. By Proposition 4.3.7,
[(X) is (T — A\)"tinvariant for all A € o(T) \ o(4 + Q1X), where o(A + Q1X)
has only finitely many points in any bounded subset of €. We can thus apply the
reasoning from the proof of Proposition 2.4.5 to get T'(X) = @; T'(X) N Vj. O

4.4 Hamiltonian operators with spectral
[>-decompositions

Now we use the perturbation theory from Chapter 3 to obtain finitely spectral 1%-
decompositions for Hamiltonian operator matrices where A is normal with compact
resolvent and ()1, Q2 are p-subordinate to A. For a nonnegative Hamiltonian, the
[2-decomposition enables us to prove the existence of infinitely many selfadjoint
solutions of the Riccati equation, see Theorem 4.4.1; in particular, we obtain a
nonnegative and a nonpositive solution X.. For a Hamiltonian such that )1 and
Q2 are bounded, Theorem 4.4.4 yields a representation of all bounded solutions of the
Riccati equation in terms of invariant subspaces. In Theorem 4.4.5 we finally show
the existence of bounded, boundedly invertible, selfadjoint solutions for a uniformly
positive Hamiltonian with @1, Q2 bounded and A skew-adjoint. We also obtain a
representation of every bounded solution as X = X, P+ X_(I — P) where P is a
projection.

For a dichotomous Hamiltonian operator with bounded @1, @2, the existence of
a selfadjoint nonnegative and nonpositive solution of the Riccati equation was shown
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by Langer, Ran and van de Rotten [31]. Under the additional assumption that —A
is maximal uniformly sectorial, which implies that the spectrum of A is contained
in a sector in the right half-plane strictly separated from the imaginary axis, the
boundedness of the nonnegative and bounded invertibility of the nonpositive solution
was shown. A similar result was obtained by Bubék, van der Mee and Ran [10] for
a Hamiltonian that is exponentially dichotomous with )1 compact. By contrast,
Theorem 4.4.1 also holds for unbounded operators )1, ()2 and non-dichotomous
Hamiltonians, compare Example 5.1.1. In Theorem 4.4.5, the operator A has its
spectrum on the imaginary axis.

For a Riesz-spectral Hamiltonian 7', Kuiper and Zwart [29, Theorem 5.6] ob-
tained a representation of all bounded solutions of the Riccati equation in terms
of eigenvectors of the Hamiltonian. Under the assumption that all eigenvalues of
T are simple, the authors gave conditions such that T is Riesz-spectral. Theo-
rem 4.4.4 applies to the more general class of Hamiltonians with a finitely spectral
[2-decomposition and requires no assumption on the eigenvalue multiplicities.

For the Riccati equation from optimal control, the existence of a bounded non-
negative solution is usually proved via a semigroup based approach, see e.g. [14].
Curtain, Iftime, and Zwart [13] obtained the representation X = X, P+ X_(I — P)
for all bounded selfadjoint solutions without requiring that the Hamiltonian is uni-
formly positive. However, they had to assume the existence of a bounded, boundedly
invertible, negative solution X_ of the Riccati equation.

Recall that the point spectrum of a Hamiltonian with finitely determining 1%-
decomposition is symmetric with respect to the imaginary axis by Corollary 4.1.3.
Also recall the notation N(r, A) for the sum of the multiplicities of all eigenvalues
A of an operator A with [A| <7, see (3.24).

Theorem 4.4.1 Let T be a nonnegative Hamiltonian operator matriz such that A
is normal with compact resolvent, Q1, Q2 are p-subordinate to A with 0 < p < 1,
and

ker(A —it) Nker Q1 = ker(A —it) Nker Q2 = {0} forall teR.
Suppose that the spectrum of A lies on finitely many rays from the origin and that

N
lim inf @
r—00 ri—P

< oQ.

Then o(T) NiR = @ and T has a compact resolvent and a finitely spectral [?-
decomposition @ieN Vie.

Let o(T) = ocUT be a partition of the spectrum of T which separates skew-
conjugate points. If

(a) ker(A —X)NkerQ; = {0} forall XeC,
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then the compatible subspace associated with o is the graph T'(X) of a selfadjoint
core solution X (H — H) of the Riccati equation

X(A+Q1X)=Q2— A'X. (4.23)

The solutions X+ corresponding to ¢ = o (T) are nonnegative and nonpositive,

2
respectively. If
() ker(A — X\) Nker Q2 = {0} forall Xe C,

then the compatible subspace associated with o is the graph L(Y') of a selfadjoint core
solution Y (H — H) of
Y(QY — A") = AY + Q1. (4.24)

The solutions Y1 corresponding to o = o (T) are nonnegative and nonpositive,

P
respectively.

Proof. Since A is a normal operator, we have ker(4 — \) = ker(A* — \) for A € C
and ||Au|| = ||A*u|| for v € D(A) = D(A*). Hence N(r,A) = N(r,A*) and Q; is
p-subordinate to A*. Proposition 3.4.5 thus shows that 7" has a compact resolvent
and a finitely spectral /2-decomposition; Proposition 4.1.6 implies o(T) N iR = @.
We can now find an open disc M C o(A)No(T) with centre on the imaginary axis.
By Proposition 4.2.8, property (a) implies property (a2) from Proposition 4.2.11;
similarly, (b) implies (b2). Propositions 4.2.11, 4.3.4 and Remark 4.3.6 thus yield
the existence of the core solutions. The solutions X4 and Y corresponding to o;,t (T)
are nonnegative and nonpositive by Lemma 4.2.10. ]

Remark 4.4.2 Since T has a compact resolvent, o(7") consists of countably many
skew-conjugate pairs of eigenvalues (for dim H = oc). A partition which separates
skew-conjugate points then amounts to the choice of one eigenvalue from each skew-
conjugate pair. There are thus uncountably many such partitions and we obtain
uncountably many corresponding core solutions of (4.23) and (4.24), respectively.
In contrast to the discrete nature of the choices from the eigenvalue pairs, a family
of solutions depending on a continuous parameter is also possible, see Example 5.1.3.
_l

Corollary 4.4.3 Let the assumptions of Theorem 4.4.1 be satisfied.

(i) If X is a selfadjoint core solution of (4.23) such that T'(X) is compatible with
@Z Vi and the condition (b) from Theorem 4.4.1 holds, then X is injective.
Similarly, if Y is a selfadjoint core solution of (4.24) such that L(Y") is com-
patible with @; Vi and (a) holds, then Y is injective.

(ii) Let both (a) and (b) be satisfied, o(T) = o U7 a partition which separates
skew-conjugate points, and X the core solution of (4.23) corresponding to o.
Then X is injective and Y = X1 is the core solution of (4.24) corresponding
too.
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(iii) Suppose that (a) and Q2 > 0 or that (b) and Q1 > 0 holds. Then the solutions
X+ of (4.23) corresponding to U;t(T) are positive and negative, respectively;
they are the uniquely determined nonnegative and nonpositive selfadjoint core
solutions of (4.23) whose graph is compatible with @z Vi.

Proof. (i): From the proof of Theorem 4.4.1 we know that there exists an open disc
M C o(A)Np(T') and that the properties (a) and (b) imply (4.12) and (4.13), respec-
tively. Suppose that X is selfadjoint, I'(X) is T-invariant compatible with @i Vi,
and (b) holds. Then I'(X) is Ji-neutral, (T'— A\)~!-invariant and Proposition 4.2.6
implies that I'(X) = L(Yp) with some operator Yy. Hence X is injective. The proof
for Y is analogous.

(ii): This is a direct consequence of (i).

(iii): X4 are injective by (ii) and thus positive and negative by Lemma 4.1.4.
Let X be nonnegative selfadjoint with

2
NXx)= EB Ui, Ug CV, T-invariant.
keN

Then I'(X) is Jo-nonnegative and each Uy is the span of certain root vectors of 7. By
Proposition 4.1.7, the root subspaces of T for eigenvalues in the right/left half-plane
are Jo-positive/-negative. Therefore, Uy, is spanned by root vectors corresponding to
the right half-plane and we obtain I'(X') C Uy where Uy = I'(X) is the compatible
subspace associated with the spectrum in the right half-plane. So X C X, and
hence X = X since both operators are selfadjoint. The proof of the uniqueness of
X_ is analogous. 0

Hamiltonian operators with bounded )1 and )2 typically occur in the theory
of optimal control. For this class of Hamiltonians the next theorem establishes a
one-to-one correspondence between bounded solutions of the Riccati equation and
compatible T-invariant graph subspaces. Note that we do not need the nonnegativity
of T here.

Theorem 4.4.4 Consider a Hamiltonian operator matriz T with Q1,Q2 : H — H
bounded. Suppose that A is normal with compact resolvent, o(A) lies on finitely
many rays from the origin, and

lim inf N(r, 4) < 00

r—00 r

Then T has a compact resolvent and a finitely spectral 12-decomposition @zeJN Vi.
The bounded operator X : H — H is a solution of the Riccati equation

A*X + XA+ XQ1X —Q2=0 on D(A) (4.25)

if and only if its graph T'(X) is T-invariant compatible with @i Vi. In this case we
have U(T‘I‘(X)) =0(A+X).



138 4. Hamiltonian operators and Riccati equations

Proof. As in the proof of Theorem 4.4.1 we can use Proposition 3.4.5, now with
p = 0, to deduce the compactness of the resolvent of T" and the existence of the
I2-decomposition. Since the spectrum of A lies on a finite number of rays, there
is a sequence (z;)r in o(A) with [[(A — zx)"!|| — 0. Hence all assumptions of
Proposition 4.3.9 are fulfilled and the assertion follows. O

For uniformly positive Hamiltonians, i.e. uniformly positive Q1 and @2, we will
now prove the existence of bounded, boundedly invertible solutions of the Riccati
equation and derive the representation X = X, P+ X_(I — P).

Theorem 4.4.5 Consider a uniformly positive Hamiltonian operator matriz with
A(H — H) skew-adjoint with compact resolvent, Q1,Q2 : H — H bounded and
Q1,Q2 > ~v. Suppose that almost all eigenvalues of A are simple and

o(A) C {Lirf |k e N}
where (r,f)ng are monotonically increasing sequences of nonnegative numbers such
that

4
r,irl — 75 >26b  for almost all k, b= max{||Q1]],|Q2/}, &> —;W.

Then T has a compact resolvent, almost all of its eigenvalues are simple,
o(T)C {z € C|y <|Rez| <b},

and T admits a Riesz basis of eigenvectors and finitely many Jordan chains.

For every partition 0,(T) = o UT which separates skew-conjugate points, the
compatible subspace associated with o is the graph I'(X) of a selfadjoint, bounded,
boundedly invertible solution X : H — H of the Riccati equation

—AX + XA+ X1 X —Q2=0 on D(A); (4.26)

in particular XD(A) C D(A). The solutions X1 corresponding to J;,t(T) are uni-
formly positive and negative, respectively; they are the uniquely determined nonnega-
tive and nonpositive bounded solutions of (4.26).

A bounded operator X : H — H is a solution of (4.26) if and only if its
graph T'(X) is T-invariant compatible with the 12-decomposition of root subspaces

EBiaw(T) L(N). In this case there is a projection P : H — H such that
X=X,P+X_(I-P).

Finally, every bounded selfadjoint solution X of (4.26) is boundedly invertible
and satisfies

XD(A)=D(A), X_<X<X;, X ‘'<Xx't<xh
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Proof. We apply Theorem 3.4.7 with p = 8 =0, a = b to the decomposition

B (A 0 (0 @
T=G+58, G<0 A), S<Q2 0).

G is skew-adjoint with compact resolvent, o(G) C {j:z'rgE |k € N}, and almost all
of its eigenvalues have multiplicity 2. S is bounded with ||S|| = b. Consequently, T
has a compact resolvent, almost all eigenvalues lie inside rectangular regions

K,;t = {iia: +y| |z — rki\ < 6b, |yl < 5b},

and N (K ,;t,T) = 2 for almost all k. Since the spectrum of 7" is symmetric with
respect to the imaginary axis and due to Proposition 4.1.6, almost all K ,;t contain
only one skew-conjugate pair of simple eigenvalues A\, —\ with | Re A| > ~. Therefore,
Theorem 3.4.7 implies that the root subspaces of T form an [?>-decomposition of
H x H and that almost all of them have dimension one. Lemma 2.3.15 then yields
the existence of the Riesz basis of eigenvectors and finitely many Jordan chains. In
view of Remark 3.4.2 we have o(T') C {|Rez| < b} and obtain the asserted shape of
the spectrum.

With z, = k, k > 1, Proposition 4.3.9 yields the correspondence between ar-
bitrary bounded solutions of (4.26) and invariant graph subspaces compatible with
@?\ L(\). By Proposition 4.2.12, the compatible subspace associated with o is the
graph of a selfadjoint isomorphism X. In particular, X solves (4.26). The solutions
X4 are the unique nonnegative/nonpositive solutions by Corollary 4.4.3. Moreover,
the graph of any bounded solution may be written as

2 2
I'(X) = @ Uy @ @ U with Uy C L(\;) T-invariant,
Re A >0 Re A\ <0

where (A;)ren are the eigenvalues of T. If Dy, is the subspace obtained by projection
of Ui onto the first component, we have

H= @ Do @ Dy

Re A >0 Re A\ <0

by Lemma 4.2.3. Let P : H — H be the projection onto @QRe A,>0 Dk corresponding
to this decomposition. We obtain X = Xy P + X_(I — P) since X|p, = X4|p, for
Re Ax 2 0.

Now let X be a bounded selfadjoint solution of (4.26). Taking the difference of
the Riccati equations for X and X, we obtain

0= (Au|(X+ — X)u) + (X1 — X)u|Au) + (Q1 X1 u|X1u) — (Q1 X u|Xu)

= ((A+ QX )ul[(X4 — X)u) + (X — X)ul(A + Q1 X4 )u)
— (Q1( X+ — X)u|(X4 — X)u)
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for u € D(A). With A = X — X and ¢t € R we deduce

2Re((A + Q1 X4 —it)u|Au) = (Q1Au|Au) > 0.
Proposition 4.3.9 implies that

oA+ Xy)=0T|y,) C{z€C|Rez >~}

Thus
Re(Au|(A+ Q1 X4 —it)'u) >0 for u€H.

Since all eigenvalues of A+ Q1 X, lie in the right half-plane, Proposition 2.6.4 yields

1 !
- / (A4+ Q1 X, —it) ludt =u for we Z L(N);
R Ae€op(A+Q1X4)

hence

/
m(Aulu) = / Re(Au|(A+ Q1 X4 — it)_lu) dt >0 for ue Z L(N).
R AEap(A+Q1 X 1)

By Propositions 4.3.7 and 4.3.9 the root subspaces of A + QX form an [?-decom-
position of H. Thus (Aulu) > 0 for all w € H, that is X < X,. An analogous
reasoning yields X_ < X. From Proposition 4.2.5 we see that X is injective and we
have the decomposition

2
LX H=W,oW_, W= @ Ug, Uk C L(\g) T-invariant.
Re A\, 20

As in the proof of Proposition 4.2.12, this implies that X ! is bounded. Using the
fundamental symmetry Js : (u,v) — (v,u) and setting

A Q

T = JoTJy = (Q1 A

>, Up = JoUy, Vi = JoL(),

we have that @ieN Vk is an [2-decomposition of root subspaces for T and

2 ~ ~ ~ ~
F(Xil) = JQL(Xfl) = @ U,, Uy CV, T-invariant.
kelN

Proposition 4.3.9 applied to the Hamiltonian 7' then yields X~ 1D(A) c D(4) and
thus XD(A) = D(A). Finally, the same calculations as above for X', X1 and T
yield the relation X l<x1< X;l. O

In view of Remark 3.4.14, the assumptions on A in Theorems 4.4.1, 4.4.4 and 4.4.5
to be normal with spectrum on rays from the origin can be relaxed:
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Remark 4.4.6 Let A be an operator with compact resolvent and a Riesz basis of
Jordan chains, let ()1 be p-subordinate to A*, Q3 p-subordinate to A, and consider
the decomposition

. . (A 0 (0 @1
T'=G+S with G—<O —A*>’ S_<Q2 O>'

Then A* and G also have a compact resolvent and a Riesz basis of Jordan chains.
Furthermore, S is p-subordinate to G, cf. Proposition 3.4.5. If A satisfies the condi-
tion (i) from Proposition 3.4.13, then so does G and that proposition implies

JTJ ' =JGJ '+ JST ' =Go+ Sog+ JSJ!

where Sy + JSJ ! is p-subordinate to Gy. By Theorem 3.4.4, JTJ~! and hence
also T have a finitely spectral {>-decomposition, and all conclusions of Theorem 4.4.1
and Corollary 4.4.3 hold if some assumptions are adapted: We need (4.6) to obtain
o(T) N iR = @ and conditions (a2) and (b2) of Proposition 4.2.11 to show the
existence of core solutions of (4.23) and (4.24), respectively.

Analogously, Theorem 4.4.4 continues to hold if the spectrum of A is located in
strips around rays from the origin. For Theorem 4.4.5 we use case (ii) of Proposi-
tion 3.4.13 and obtain the condition

g(A) C {iir,f +y|lkeN,y€[-a,al}

and b= [Sp + JSJ . ;
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Chapter 5

Examples and applications

In this chapter we present examples and applications for the theorems from the pre-
vious chapter on Hamiltonian operator matrices and solutions of Riccati equations.
In Section 5.1 we consider explicitly solvable examples as well as non-trivial Riccati
equations involving differential and multiplication operators.

In Section 5.2 the theory is applied to the Riccati equation from optimal control.
We prove the existence of infinitely many selfadjoint solutions. So far, only the
existence of a nonnegative and a nonpositive solution has been shown [14, 31, 10].
Moreover, we study the heat equation with an unbounded control operator.

5.1 Examples for Hamiltonians with spectral
[>-decompositions

To illustrate the conditions and results from Section 4.4, we consider some examples
in which determining /2-decompositions of the Hamiltonian and solutions of the
Riccati equation can be explicitly calculated. The examples include cases with
unbounded solutions, invertible solutions with unbounded inverse, solutions that
are not invertible, non-selfadjoint solutions, a family of solutions depending on a
continuous parameter, and a Hamiltonian having Jordan chains of arbitrary length.
After this, we apply the theory to non-trivial examples of Riccati equations whose
coefficients are differential and multiplication operators.

Let T be a nonnegative Hamiltonian with compact resolvent such that A is
normal and the operators A, Q1,Q2(H — H) have a common finitely determining
orthogonal decomposition

H= EB Hy.

k>1

Then the subspaces Vi, = Hj X Hj constitute a finitely determining orthogonal
decomposition for T' (cf. Proposition 2.3.8).

143
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The first two examples show the existence of solutions of the Riccati equation
that are unbounded, bounded and not boundedly invertible, and unbounded and
not boundedly invertible, respectively.

Example 5.1.1 Let dim Hy, = 1, Hj, = Cey, where (ej)g>1 is an orthonormal basis
of H. Let Q1 = I, Aep = iarer, Qaep = qiek with ar,qx € Rso; so Ty, is

represented by the matrix
iak 1
Ty, = . . 1
v () (5.1

Consequently, T'|y;, has the eigenvalues and corresponding eigenvectors

)\:I: — jan &+ + _ €k )
k 1ag qk’? Uk; (ilek

We choose aj, = k2, qi = vk for k > 1 so that Qs is unbounded, 1/2-subordinate to
A, and T is positive: Theorem 4.4.1 can be applied. In particular, T' has indeed a
compact resolvent and H x H = @, Vj, is a finitely spectral decomposition for T

The selfadjoint core solution X, corresponding to o from a partition o(7) = o Ut
which separates skew-conjugate points is given by

Co;” if A\ e
T(X,) = U, with Up=4 & = %= (5.2)
> Cuv, if A\ € 0.

Hence

e =Vke if A\ € o,
Xy en :{ A " k (5.3)

—qrer = —Vkep if A\ € 0;
in particular, X, is unbounded. The positive and negative solutions are given by
Xiep = tqrer. Moreover, if a densely defined solution X satisfies I'(X) = @, Uy
with Uy C Vi T-invariant, then for every k either Uy = (Dv,j or Uy = Cuy;; hence
X = X, with o appropriate. Every densely defined solution with I'(X) compatible
with @, Vi is thus selfadjoint, unbounded and there are infinitely many of these.
Consider the sequence

Ty = %ek _ ﬁek 1—|—k‘ /1—{—]{3
0 er _ek — ) |Uk i |Uk I

We have limz; = 0 while the components (1 + k‘l)l/Qv,f/Hv,fH with respect to
Vi = (DU/,;F @® Cv,. do not converge to zero. Consequently the algebraic direct sum

@le—: + @ Cuv,,

k>1 k>1
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is not topological direct, the system of root subspaces ((Dv,j, Cvy, )k>1 does not form
an [?-decomposition, and the operator T is neither spectral nor dichotomous; yet
a strip around the imaginary axis belongs to o(T'); compare Remark 2.1.9, Theo-
rem 2.3.17, and Definition 2.4.8. J

Example 5.1.2 We modify Example 5.1.1 by setting ¢ = 1/k for k > 1. So Q2 is
now bounded and Theorems 4.4.1 and 4.4.4 can be applied. The solutions X,

1
Xoep =1 ex if \feo,

are bounded, selfadjoint, injective, yet not boundedly invertible. Just as in Exam-
ple 5.1.1, the solutions X, cover all possible densely defined solutions whose graph
is compatible with €D, Vi, and there are infinitely many of these. Again, the direct
sum P, (Dv,:r + @, Cu,, is not topological direct and the system of root subspaces
does not form an I2-decomposition.

We can further modify the example by setting

{\/E if k odd,
qr =

k=1 if k even.

The solutions X, are then unbounded and not boundedly invertible. a

Now we illustrate how multiple eigenvalues of the Hamiltonian lead to families
of selfadjoint and non-selfadjoint solutions of the Riccati equation which depend on
a continuous parameter.

Example 5.1.3 Suppose that dim H; = 2, dim H, = 1 for k > 2, Q1 = Q2 = 1,
and A|g, = ikQIHk for all k. So we are in the situation of Theorem 4.4.5. Let (eq, e2)
be an orthonormal basis of Hy. Then T'|y; has the double eigenvalues ¢ + 1 with a
corresponding basis of eigenvectors

+ _ €1 + _ €2
= (j:el> Y2 = <:|:€2> ‘

Consider the invariant subspace

Uy = spanf{vy +rvg, —rvp +vy } C V4 with || < 1. (5.4)
Then
0y 4 4 oo~ (la=rB)er + (ra+ Bez
(ac) = aly o)+ fl=rep ) = ((Oz +rp)er + (ra— B)es
implies

a—rB=ra+=0 = (r2+1)ﬂ:0 = (=0 = «a=0,z=0.
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Hence U; =TI'(X;) with
Xi(er +rex) =eg +rea, Xi(—rer+e3) =re; — ea.

From (e; + res] — re; + e2) = 0 it follows that X; is selfadjoint. Together with
appropriate choices of invariant subspaces Uy C Vi, k > 2, this leads to bounded
selfadjoint solutions X of the Riccati equation associated with T which depend on
the parameter r.

For the invariant subspace

U, = span{vy,rv; +vy } C Vi with r e C, (5.5)

we have the implication

0y B v ((a+1rB)er + Pes
(x) = av + B(roy +vy) = ((a—rﬂ)el _5€2>

= a+r6=p=0 = a=0 = zx=0.
So now ﬁl = I‘()Zl) with )?161 =e; and
)2162 = )~(1(r61 + 62) — 7“)2161 = —2re; — es.

With respect to the orthonormal basis (eq, e2), X is thus represented by the matrix

> o (1 —2r

= )
ie., X is not selfadjoint for r # 0. We obtain bounded non-selfadjoint solutions of
the Riccati equation which depend on 7. g

This example features solutions that are not invertible:

Example 5.1.4 Let dim H = 1 for all k, A selfadjoint, Q1 = I, and A|g, = 1,

Q2|H1 =0, i.e.
o (1 1
nos (s 1)

So in Theorem 4.4.1, assumption (a) is fulfilled while (b) is not. Eigenvectors cor-
responding to the eigenvalues 1 and —1 of T'|y, are

(o) = (%)

respectively. Hence, for the solution X, corresponding to ¢ such that 1 € o, we have
H, C ker X,; equivalently, I'(X,) can not be written as a graph subspace L(Y;). _
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The following example shows that in the setting of Theorems 4.4.1 and 4.4.4
Hamiltonians with Jordan chains of arbitrary length are possible.

Example 5.1.5 Suppose that dim Hy = k, @1 = Q2 and

ik* 1 a 1
-1 ik* . 1 «
Al = Ay = o , Qilm, =Bk = o
—1 ik? 1 «
with a > 2. So A is skew-adjoint and T'|y, = B A Straightforward calcula-
ko Ak

tions show that
(K = 2)[|z]|* < (1Apz]z) < (K + 2)[|=]?,
(= 2)[|z]|* < (Bzlz) < (a+2)[|?
for all x € Hy, £ > 1. From this it follows that A has a compact resolvent and

satisfies lim, oo N(r, A)r~! < oco. Furthermore, Q; is bounded and positive, and
Theorems 4.4.1 and 4.4.4 are thus applicable. Now

ik*+a 2 ik* —a
9
Ap+DBy, = , Ap—
ik? + o -2 ik —a
and
Yy T (Ak+Bk—Zk32+Oé x
(T‘V’“ (ih~ + a)) (m) ((Ak + B — zk2 + a) x
a2 T\ (Ak—Bk—zk2 :1:
(T|Vk (’Lk a)) <—ZL‘> < (Ak — By — ’Lk‘Q x
Hence T has Jordan chains of arbitrary length. a

We apply the theory from Chapter 4 to Riccati equations whose coefficients are
ordinary differential operators. In the first example, we allow (1 and @2 to be
unbounded.

Example 5.1.6 Let H = L?([a,b]) and consider the operators A, Q1, Q2 on H
given by

Au=1d"", Qu=—(q1v') +hu, Qau=—(gu') + hou,

D(A) = {u e W*(la,5]) | ula) = u() = 0, u'(a) = u'(B)},

D(Q1) = D(Q2) = {u € C*([a, b)) | u(a) = u(b) = 0}
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where g1, g2 € C'([a,b]), h1, ha € L?([a,b]), g1, g2, h1, ha > 0. Then A is skew-adjoint
with compact resolvent, 0 € p(A), and

N 4)

< 00
r>0 ri/3

(compare Example 3.5.1; the boundary conditions of A are regular). The operators
@1 and Q2 are symmetric, nonnegative and 2/3-subordinate to A (see Proposi-
tions 3.2.15 and 3.2.16). Moreover @)1 is positive if g > 0 or hy > 0, analogously
for Q. If ()1 and Q2 are positive, then the Hamiltonian operator 1" corresponding
to A, Q1, Q2 satisfies 0,(T) N iR = @& and Theorem 4.4.1 yields the existence of
infinitely many selfadjoint injective core solutions of

XA+ X)=Q:—A"X.
All conclusions still hold if we replace A with e*? A, ¢ € [0, 27]. N

For a skew-adjoint differential operator A and bounded, boundedly invertible
multiplication operators @)1, (2, we prove the existence of bounded, boundedly
invertible solutions of the Riccati equation:

Example 5.1.7 Let H = L?([0,1]) and consider the operators

Au=iu", D(A)={ueW>?([0,1])]|u(0) = u(1) =0},
Qiru = fiu, Qu= fou, D(Q1)=D(Q2) =

with fi, fo € L*°(]0,1]), f1,f2 > ¢ > 0. A is skew-adjoint with compact resolvent
and simple eigenvalues. @}1 and ()2 are bounded and uniformly positive. The eigen-
values of A are \, = —in?k?, k > 1, which implies |A\gi1| — [MAx| — o0 as k — oo.
Hence, all conditions of Theorem 4.4.5 are fulfilled, and in particular we obtain the
existence of infinitely many selfadjoint, bounded, boundedly invertible solutions of

—AX + XA+ X1 X —Q2=0 on D(A).

We can also apply the theorem if A is the operator of first derivation u — u’ with
boundary condition «(0) = u(1). In this case the eigenvalues of A are A\ = 27ik
with k € 7Z, i.e. Agr1 — A\ = 27mi, and we need the additional assumption

2
4+

max{|| fi[loo | folloo } <

to guarantee the spectral condition of Theorem 4.4.5. J
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5.2 Hamiltonian operators in optimal control

We apply the results from Section 4.4 to the linear quadratic optimal control of
infinite-dimensional systems. In Theorem 5.2.3 we prove the existence of infinitely
many selfadjoint solutions of the Riccati equation and obtain a representation of all
bounded solutions in terms of invariant subspaces of the Hamiltonian. As examples,
we consider heat and wave equations with distributed control; the final example
features an unbounded control operator B.

The only known methods to prove the existence of solutions of the Riccati equa-
tion for infinite-dimensional control systems seem to be the semigroup based ap-
proach from control theory, see Theorem 5.2.2, and the methods due to Langer,
Ran and van de Rotten [31], and Bubék, van der Mee and Ran [10] for the case of
dichotomous Hamiltonians. In both cases, only the existence of a nonnegative and
a nonpositive solution has been shown.

A characterisation of all bounded solutions of the Riccati equation in terms
of eigenvectors of the Hamiltonian was obtained by Kuiper and Zwart [29, The-
orem 5.6] for the case of a Riesz-spectral Hamiltonian. Under the assumption of
the existence of a bounded, boundedly invertible, negative solution of the Riccati
equation, Curtain, Iftime and Zwart [13] derived a representation of all bounded
selfadjoint solutions in terms of invariant subspaces of the semigroup generated by
A — BB*X; here X is the minimal nonnegative solution of the Riccati equa-
tion. Theorem 5.2.3 allows for the more general class of Hamiltonians with a finitely
spectral [2-decomposition and has no a priori assumption about the existence of a
solution of the Riccati equation.

We start by briefly reviewing the concepts of linear quadratic optimal control.
For more details we refer to the book of Curtain and Zwart [14] and to the intro-
duction.

Definition 5.2.1 A control system or state linear system is a system
2(t) = Az(t) + Bu(t) for t>0, 2(0) = zo,
y(t) = C=(t)

with operators on Hilbert spaces A(Z — Z), B: U — Z, C : Z — Y, where A is
the generator of a strongly continuous semigroup 7'(¢) and B and C' are bounded.
The function z : [0,00[— Z is called the state of the system, zy € Z is the initial
state, and Z denotes the derivative with respect to the time ¢. u : [0,00] — U is the
input or control and y : [0,00[— Y the output. J

(5.6)

For zy € D(A) and u € C1([0, 00[,U) the control system has a classical solution
z € C*(]0,00[, D(A)) given by the variation of constants formula

() = T(t)z + /0 T(t — 5)Bul(s) ds. (5.7)
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For arbitrary zg € Z and u € L?([0, o[, U), (5.7) yields a function z € C°([0, cc[, Z),
which is then called a mild solution of the state linear system.

The problem of linear quadratic optimal control on the infinite-time horizon is
now for given initial state zp € Z to minimise the so-called cost functional

J(20,u) = /OOO(Hy(t)H2 + [Ju()|?) dt (5.8)

among all controls u € L%([0,00[,U), where z is the mild solution corresponding to
2o and u.
For optimisable systems, this problem can indeed be solved [14, Theorem 6.2.4]:

Theorem 5.2.2 If the control system is optimisable, i.e., for every zo € Z there
exists u € L%([0,00[,U) such that J(zo,u) < 0o, then the cost functional has a
minimum for every zo € Z and there is a nonnegative selfadjoint operator X € L(Z)
such that
min J(z0,u) = (X 20|z or all 29 € Z.
u€L2([0,00[,U) ( 0 ) ( 0‘ O) f 0

The operator X is the minimal bounded nonnegative solution of the weak algebraic
Riccati equation

(Az1| X 2z2) + (X 21|Az2) — (B* X 21|B* X 23) + (Cz1|Cz) =0, 21,22 € D(A), (5.9)
and the optimal control is given by

u(t) = —B* X z(t).
O

The Hamiltonian operator matrix related to the control system has the form

A  —BB*
T_<_C*C g > (5.10)

From Proposition 4.3.5 it follows that the bounded selfadjoint operator X : Z — Z is
a solution of (5.9) if and only if XD(A) C D(A*) and the graph I'(X) is T-invariant.
By Definition 4.1.1, the Hamiltonian 7' is nonpositive. Since in Section 4.4 non-
negative Hamiltonian operators were considered, we apply the respective theorems

to
—A DBB*
-T = N . |-
cC A
As a consequence, the compatible subspace associated with the spectrum of T in
the right half-plane is Jo-nonpositive and the graph of a nonpositive solution X_ of

the Riccati equation; the compatible subspace associated with the spectrum in the
left half-plane yields a nonnegative solution X .
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Theorem 5.2.3 Consider operators on Hilbert spaces A(Z — Z), B: U — Z and
C :Z —'Y such that A is normal with compact resolvent and B and C are bounded.
Suppose that the spectrum of A lies on finitely many rays from the origin,

lim inf M < 00

r—00 r

and that ker(A — \) N R(B)* = ker(A — \) Nker C = {0} for all A € ©. Then the

Hamiltonian operator
T_ A —BB*
- \-C*C A

has a compact resolvent, a finitely spectral 1?-decomposition Z x 7 = @z@N Vi, and
its spectrum satisfies o(T) NiR = @.

For every partition o(T) = o U7 which separates skew-conjugate points, the
compatible subspace associated with o is the graph T'(X) of an injective selfadjoint
operator X(Z — Z) that is a core solution of the Riccati equation

I

X(A— BB*X) = —C*C — A*X. (5.11)

The operator X1 obtained for the compatible subspace associated with the spectrum in
the left and right half-plane is positive and negative, respectively. Moreover, every
selfadjoint core solution X of (5.11) such that I'(X) is compatible with @i Vi is
injective. If also R(B) C Z is dense orker C = {0}, then X nonnegative/nonpositive
implies X = X 4.

Finally, a bounded operator X : Z — Z is a solution of

A*X + XA— XBB*X +C*C=0 on D(A) (5.12)
if and only if its graph T'(X) is compatible with @z V.

Proof. We want to apply Theorems 4.4.1, 4.4.4 and Corollary 4.4.3 to the operator
—T and have to show that the conditions (a) and (b) in Theorem 4.4.1 are satisfied.
Indeed by Lemma 4.1.4,

z€ker(BB*) & (BB*z|2) =0 & |B*z|?=0 & B*2=0 < zc R(B)*

and analogously ker(C*C') = kerC. Moreover, BB* is injective if and only if
R(B)* = {0} and C*C is injective if and only if ker C = {0}. This yields the
uniqueness result for Xy. O

Remark 5.2.4 In order to obtain selfadjoint core solutions of (5.11), it is sufficient
that ker(A — X\) Nker C' = {0} holds for all A € iR instead of A € C.

To show the existence of bounded solutions, we could apply Theorem 4.4.5 to
—T. Then we would have to assume that A is skew-adjoint and B, C are boundedly
invertible. However, these assumptions appear to be unnatural in control theory. _
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Motivated by examples in Curtain and Zwart [14] and Kuiper and Zwart [29],
we apply Theorem 5.2.3 to controlled heat and wave equations.

Example 5.2.5 Consider the two-dimensional heat equation on the unit disc B;(0)
with distributed control and Dirichlet boundary condition,

Oz(t,x) = Az(t,z) + b(x)u(t,z) for (t,z) € R>o x B1(0),
2(0,z) = zo(x) for x € B1(0),
z(t,z) =0 for (t,z) € R>0 x 0B1(0),

where A = 92 + 02, is the Laplacian, dB;(0) the boundary of the unit disc, and
be L*(B1(0)),b>0,b#0. We choose Z =U = L?(B;(0)) as the state and input
spaces and define A and B by

Av = Av, D(A) = W22(B,(0)) N WE2(B,(0)),
Bu = bu.

In addition, we take Y = Z, C' = I, that is, we consider the cost functional

J(z0,u) = /OOO(IIZ(f)II2 + u(®)]?) dt.

Then A is selfadjoint with compact resolvent and the asymptotic behaviour of

its spectrum is such that
N(r,A) 1

lim = -

r—00 r 4’

see Example 3.5.4. An orthonormal basis of eigenfunctions for A in polar coordinates
is given by

v (r, ) = ,majm(ak,uﬂ’)eihp with ke N\ {0}, l€Z (5.13)

where J,, are the Bessel functions, ay, are the positive zeros of .J,,, and Ok, are
normalisation constants, see [12, §V.5.5]. In particular,

0 = (Builow) = (bogavw) = |[Voou|?

implies Vb = 0 and thus b = 0, since the set of zeros of vg; has measure zero in
B1(0). But b # 0 by assumption, and hence (Buvy|vy) # 0 and vy € R(B)* for all
k,l. The Hamiltonian of this control problem is

A -BB*
= (G )

and Theorem 5.2.3 can be applied. g
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Example 5.2.6 Consider the following wave equation with distributed control,
DPw(t, x) = d2w(t, ) + b(x)u(t,z) for (t,x) € Rxg x [0,1],
Orw(t,0) = drw(t, 1) =0 for te€ R>o,

with b € L*°([0,1]), b > 0, b # 0. As a first step we reformulate the problem as

a system which is of first order in time. One possibility is to choose as new state
variables the momentum p and the strain g,

p(t,x) = dw(t,z), qt,z) = 0,w(t,x).

The transformed system is then

b(0)-(3 )0+ (5) o oo
p(t,0) = p(t,1) = 0.

Let Z = L?([0,1])? be the state space, U = L?([0,1]) the input space, and define
the operators A(Z — Z), B: U — Z by

A= (0 %) () 2= {00 e w002 0) = 1) =0},

q q

bu
Bu = < 0 > .
As cost functional we consider

T = [ (1Ol aome + 10O aqo) d

ieY=2 C=1.
Straightforward calculations show that A is skew-adjoint with compact resolvent,
o(A) = {ink |k € Z}, and

wle) = () ) i ke

is an orthonormal basis of eigenvectors for A. This yields

lim N(r.4) _2

rT—00 r s

and (Bug|vx) # 0 for all k, where vy, ; denotes the first component of v;. We can
thus apply Theorem 5.2.3 to the Hamiltonian

A -BB*
(5

of the system. J
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Our final example is a system with unbounded control operator B. Although
the standard control theory from Theorem 5.2.2 and also Theorem 5.2.3 are not
applicable, we can nevertheless put the system in the form (5.6) with B unbounded
and apply Theorem 4.4.1 to the resulting Hamiltonian.

Example 5.2.7 We consider the one-dimensional heat equation with distributed

control,
Dz(t,x) = 022(t,2) + b(z)u(t,z) for (t,x) € Rsqg x [0,1],
2(0,x) = zo(x) for z€10,1],
z(t,0) = z(¢,1) = for t e R>o,

with b € L4([0,1]), b > 0, b # 0. We choose Z = U = L?([0,1]) as the state and
input spaces and define the operators A(Z — Z) and B(U — Z) by

Av = 0%v, D(A) = {v e W>2([0,1]) | v(0) = v(1) = 0},
Bu=bu, D(B)={uc L*[0,1])|bu € L*([0,1])}.

Then A is selfadjoint with compact resolvent, o(A4) = {—7%k? |k =1,2,...}, and
vp(z) = V2 sin(rkx) with k> 1
is an orthonormal basis of eigenvectors. We have N (72k?, A) = k and hence

lim N(r, 4) = 1

r—00 r1/2 T

The operator B is densely defined and symmetric, and for u € C°(]0, 1]) we have
u € D(BB*) and BB*u = b*u. From Proposition 3.2.16 it follows that BB* is
1/2-subordinate to A. Since b > 0, b # 0, we have

1
(Bug|vg) = 2/ b(x) sin?(wkz) dx # 0,
0
i.e. vp € R(B)*. As in the proof of Theorem 5.2.3 we have

z€ker(BB*) & zeR(B)*

and thus vy & ker(BB*) for all k.
Choosing C' = I as the output operator, the Hamiltonian of the system becomes

A —BB*
ro (4 -8y,
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We have 0,(T) NiR = @ and can apply Theorem 4.4.1 to —7'. In particular, for
every o from a partition o(7T") = o U7 which separates skew-conjugate points, this
yields the existence of a selfadjoint injective core solution of

X(A—BB*X)=—I— AX.

The solutions X4 corresponding to left and right half-plane are positive and negative,
respectively. a
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Notation index

N
RZO
Ja, 0]
B;(a)

Q- 0+), Qp)

dist(z, M)

|A]

AUB, [Jyer Ax

span D

={0,1,2,...}, the natural numbers including zero

the nonnegative real numbers

open interval

open ball with radius r around a in R"™ or C"
sectors around the positive real axis in C, 73
distance of z € C to M Cc C

cardinality of a set
disjoint union

subspace spanned by the elements of D
scalar product of a Hilbert space

Krein space inner products, 46, 114
orthogonal subspaces of a Krein space, 47
Krein space orthogonal complement, 47

sum of subspaces, 19
algebraic direct sum, 18, 19
topological direct sum, 18

orthogonal direct sum in a Krein space, 47

orthogonal decomposition of a Hilbert space

I2-decomposition of a Banach space, 21

linear operator, 13

domain of definition, 13

range, 13

kernel, 13

adjoint operator in a Hilbert space, 14
adjoint operator in a Krein space, 49

161



N(K,G)
N(r,G)
Ni(r1,72,G)

Notation index

space of bounded operators T : V — V
identity operator

resolvent set, 13

= C\ o(T), spectrum

point spectrum, the set of all eigenvalues

point spectrum in the open right/left half-plane
set of points of regular type, 36

root subspace, 13
sum of multiplicities of all eigenvalues in K C C, 95

— N(B,(0),G), 95
= N(Jr1,m2[,G), 84



Index

algebraic projection, 18 exponentially dichotomous operator, 44
basis, 18 finitely linearly independence, 18
Riesz, see Riesz basis of subspaces, 19

unconditional, see unconditional ba- fundamental symmetry, 47
sis
with parentheses, 31
biorthogonal systems, 48
block operator matrix, 97
diagonally dominant, 97, 128
boundary condition, 69

generalised eigenvector, 14
graph subspace, 119

Hamiltonian operator matrix, 5, 114
of a control system, 7, 150
heat equation, 152
with unbounded control, 154
Hermitian operator, 14, 120
hypermaximal neutral subspace, 52

compact resolvent, 14
compatible subspace, 42
associated with o, 44
complete sequence, 18
control system, 6, 149
with unbounded control, 154
core, 13
core solution, see Riccati equation, core
solution
cost functional, 6, 150

invariant subspace, 13

J-accretive operator, 54
J-orthogonal
complement, 47
subspaces, 47
J-selfadjoint operator, 49
J-skew-adjoint operator, 49
J-skew-symmetric operator, 49
J-symmetric operator, 49
Jordan chain, 14

dense system of root subspaces, 37
dichotomous operator, 46
differential operator
and Riccati equation, 147, 148
finitely spectral [?-decomposi- Krein space, 46
tion, 109-112
p-subordination property, 66, 67, 71  [2-decomposition, 20

direct sum finitely determining, 32
algebraic, 18, 19 finitely spectral, 38
J-orthogonal, 47 linear quadratic optimal control, see op-
topological, 18 timal control
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neutral subspace, 47
non-degenerate subspace, 47
nonnegative subspace, 47
normal operator, 14

operator, 13
optimal control, 6, 150
optimisable system, 7, 150

p-subordinate operator, 63

partition
which separates conjugate points, 52
which separates skew-conjugate

points, 126

point of regular type, 36

positive subspace, 47

projection, 19

relatively bounded operator, 64
relatively compact operator, 65
resolvent set, 13
Riccati equation, 5, 128-131
bounded solution, 130, 137, 138, 145,
148
core solution, 130, 136, 151
of optimal control, 6, 150, 151
solution depending on continuous pa-
rameter, 145
uncountably many solutions, 136
weak solution, 129-131
Riesz basis, 18
with parentheses, 31
with parentheses of Jordan chains,
37
with parentheses of root vectors, 37—
38
Riesz projection, 14
Riesz-spectral operator, 40
root
subspace, 13
vector, 13

skew-adjoint operator, 14

Index

spectral
decomposition, 45
operator, 39
subspace, 44, 45

subspace, 13

unconditional basis, 18

of subspaces, 29

with parentheses, 31
uniformly positive subspace, 47

wave equation, 153
weak Riccati equation, see Riccati equa-
tion, weak solution



