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1 Introduction

We consider the algebraic Riccati equation

A∗X +XA+XBX − C = 0 (1)

for linear operators on a Hilbert space H where B and C are selfadjoint and
nonnegative. In particular, we study the case of unbounded B and C. Riccati
equations of type (1) are a key tool in systems theory, see e.g. [9, 20] and the
references therein. Unbounded B and C appear e.g. in [23, 28, 35].

It is well known that the solutions X of (1) are in one-to-one correspondence
with graph subspaces that are invariant under the operator matrix

T =

(
A B
C −A∗

)
,

the so-called Hamiltonian. This correspondence was extensively studied in the
finite-dimensional setting and led to a complete description of all solutions of the
Riccati equation, see e.g. [20, 24, 27]. In the infinite-dimensional setting with B,C
bounded, the invariant subspace approach was used by Kuiper and Zwart [19] for
Riesz-spectral T and by Langer, Ran and van de Rotten [21] for dichotomous T
(see also [7]).
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We extend these results to the case where B and C are unbounded: For Hamil-
tonians with a Riesz basis with parentheses of generalised eigenvectors we show
the existence of infinitely many selfadjoint solutions of (1). Here the concept of
a Riesz basis with parentheses of generalised eigenvectors includes Riesz-spectral
operators, and it also allows for operators that are not dichotomous.

In systems theory, solutions of (1) that are bounded and nonnegative are of
particular importance. For the case that T has a Riesz basis of generalised eigen-
vectors and B and C are uniformly positive, we prove the existence of infinitely
many bounded selfadjoint solutions X , among them a nonnegative one X+ and a
nonpositive one X−. Moreover we obtain the relations

X− ≤ X ≤ X+ and X = X+P +X−(I − P ), (2)

where P is an appropriate projection.
Bounded nonnegative solutions of (1) were obtained in [19, 21] without the

assumption of uniform positivity of B,C. However, in [21] the spectrum σ(A) of A
was restricted to a sector in the open left half-plane while here σ(A) may also con-
tain points in the right half-plane. In [19] conditions for the existence of solutions
were formulated in terms of the eigenvectors of T while we impose conditions on
the operators A,B,C only. In the system theoretic setting, the relations (2) were
derived in [8, 26], yet under the explicit assumption of the existence of X−.

The connection of invariant graph subspaces of block operator matrices to solu-
tions of a corresponding Riccati equation is not limited to Hamiltonian matrices. It
was exploited in [22, 29] for certain dichotomous operator matrices and in [17] for
selfadjoint ones. We also mention that, in systems theory, nonnegative solutions
of (1) are constructed by minimising a quadratic functional, see e.g. [9].

The structure of this article is as follows: In Sections 2 and 3 we study linear
operators T on a Hilbert space which possess a Riesz basis consisting of finite-
dimensional spectral subspaces Vk of T . We call such a Riesz basis finitely spectral
for T . Up to certain technical details, it is equivalent to a Riesz basis with paren-
theses of generalised eigenvectors, see Proposition 3.3. A finitely spectral Riesz
basis of subspaces yields the non-trivial T -invariant subspaces

∑

k∈NUk, Uk ⊂ Vk T -invariant,

which we call compatible with the Riesz basis, see Definition 2.3 and Lemma 3.10.
In particular, for every subset of the point spectrum there is an associated invariant
compatible subspace.

In Theorem 3.9 we use perturbation theory from [37] to obtain a general exis-
tence result for finitely spectral Riesz bases of subspaces and apply it to Hamilto-
nian operators in Theorem 4.6; Theorem 4.7 even yields a Riesz basis of eigenvec-
tors and finitely many generalised eigenvectors. On the other hand, there is a huge
literature on Riesz bases of eigenvectors (with or without parentheses) for various
types of operators, e.g. [15, 38, 39]; all these provide examples for finitely spectral
Riesz bases of subspaces.

In Section 4 we study Hamiltonian operator matrices. We use ideas from [21]
and consider the indefinite inner products

〈x|y〉 = (J1x|y) and [x|y] = (J2x|y)
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on H ×H associated with the fundamental symmetries

J1 =

(
0 −iI
iI 0

)
, J2 =

(
0 I
I 0

)
.

The Hamiltonian T is J1-skew-symmetric and J2-accretive, i.e.

〈Tx|y〉 = −〈x|Ty〉 and Re[Tx|x] ≥ 0, x, y ∈ D(T ).

This implies the symmetry of the spectrum of T with respect to the imaginary axis
and also yields a characterisation of its purely imaginary eigenvalues.

In Section 5 we consider subsets σ of the point spectrum of T that are skew-
conjugate, i.e., σ contains exactly one eigenvalue from each skew-conjugate pair of
eigenvalues. With σ we then associate an invariant compatible subspace U that is
hypermaximal J1-neutral. This means that U = U 〈⊥〉 where U 〈⊥〉 is the orthog-
onal complement of U with respect to the J1 inner product. The subspaces U±

corresponding to the spectrum in the right and left half-plane are J2-nonnegative
and -nonpositive, respectively: we have [x|x] ≥ 0 for x ∈ U+ and [x|x] ≤ 0 for
x ∈ U−.

Section 6 is devoted to the existence of solutions of the Riccati equation (1). In
Theorem 6.3 we establish a density condition in terms of A and B which implies
that every hypermaximal J1-neutral invariant compatible subspace is the graph of
a selfadjoint solution. If T has infinitely many skew-conjugate pairs of eigenvalues,
for example if T has no purely imaginary eigenvalues, then there are infinitely
many possible skew-conjugate subsets σ and we obtain infinitely many solutions.
The solutions X± corresponding to U± are nonnegative and nonpositive. Since all
these solutions are unbounded in general, the Riccati equation in fact takes the
slightly different form

X(Au+BXu) = Cu−A∗Xu, u ∈ D(A) ∩X−1D(A∗).

For the convenience of the reader, Theorem 6.7 contains a combination of the main
results of Theorems 4.6 and 6.3; the density condition can then be expressed in
terms of eigenspaces of A and the kernel of B.

Bounded solutions of (1) are the topic of Section 7. Theorem 7.6 shows that
a bounded linear operator is a solution of (1) on D(A) if and only if its graph
is an invariant compatible subspace. In Example 8.3 we construct a bounded
solution such that (1) holds only on a proper subspace of D(A) and whose graph is
invariant but not compatible. Finally we consider Hamiltonians with a Riesz basis
of Jordan chains and uniformly positive B and C. Then Theorem 7.9 yields that
the solutions corresponding to hypermaximal J1-neutral compatible subspaces are
in fact bounded and boundedly invertible, and that the relations (2) hold.

2 Riesz bases of subspaces

We study the concept of a Riesz basis of subspaces and define the notion of a
compatible subspace with respect to such a basis. We also recall the closely related
concepts of a Riesz basis (of vectors) and a Riesz basis with parentheses; see [13,
Chapter VI], [30, §15], [33, §1] and [36, §2] for more details about Riesz bases.
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Let V be a separable Hilbert space. We denote the subspace generated by a
system (Vλ)λ∈Λ of subspaces Vλ ⊂ V by

∑

λ∈Λ

Vλ = {xλ1
+ · · ·+ xλn

|xλj
∈ Vλj

, λj ∈ Λ, n ∈ N}.

The system is said to be complete if
∑

λ∈Λ Vλ ⊂ V is dense.

Definition 2.1 Let V be a separable Hilbert space.

(i) A sequence (vk)k∈N in V is called a Riesz basis of V if there is an isomorphism
Φ : V → V such that (Φvk)k∈N is an orthonormal basis of V .

(ii) A sequence of closed subspaces (Vk)k∈N of V is called a Riesz basis of sub-
spaces of V if there is an isomorphism Φ : V → V such that (Φ(Vk))k∈N is a
complete system of pairwise orthogonal subspaces.

(iii) The sequence (vk)k∈N in V is called a Riesz basis with parentheses of V if
there exists a Riesz basis of subspaces (Vk)k∈N of V and a subsequence (nk)k
of N with n0 = 0 such that (vnk

, . . . , vnk+1−1) is a basis of Vk.

The sequence (vk)k∈N is a Riesz basis if and only if span{vk} ⊂ V is dense and
there are constants m,M > 0 such that

m
n∑

k=0

|αk|2 ≤
∥∥∥∥

n∑

k=0

αkvk

∥∥∥∥
2

≤ M
n∑

k=0

|αk|2, αk ∈ C, n ∈ N. (3)

The sequence of closed subspaces (Vk)k∈N is a Riesz basis of subspaces of V if and
only if (Vk)k∈N is complete and there exists a constant c ≥ 1 such that

c−1
n∑

k=0

‖xk‖2 ≤
∥∥∥

n∑

k=0

xk

∥∥∥
2

≤ c

n∑

k=0

‖xk‖2, xk ∈ Vk, n ∈ N. (4)

If (vk)k∈N is a Riesz basis of V , then every x ∈ V has a unique representation
x =

∑∞
k=0 αkvk, αk ∈ C, and the convergence of the series is unconditional. For a

Riesz basis with parentheses we have the unique representation

x =

∞∑

k=0

(
nk+1−1∑

j=nk

αjvj

)
, αj ∈ C,

where the series over k converges unconditionally. These expansions are special
cases of the situation for a Riesz basis of subspaces:

Proposition 2.2 A Riesz basis of subspaces (Vk)k∈N has the following properties:

(i) There are projections Pk ∈ L(V ) onto Vk satisfying PjPk = 0 for j 6= k and
a constant c ≥ 1 such that

c−1
∞∑

k=0

‖Pkx‖2 ≤ ‖x‖2 ≤ c

∞∑

k=0

‖Pkx‖2 for all x ∈ V. (5)
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(ii) If xk ∈ Vk with
∑∞

k=0 ‖xk‖2 < ∞, then the series
∑∞

k=0 xk converges uncon-
ditionally.

(iii) Every x ∈ V has a unique expansion x =
∑∞

k=0 xk with xk ∈ Vk, and we
have xk = Pkx.

Proof. The proof is immediate since all assertions hold (with c = 1) if the Vk are
pairwise orthogonal, and they continue to hold (with some c ≥ 1 now) if we apply
the isomorphism Φ from Definition 2.1. �

For a Riesz basis of subspaces (Vk)k∈N, the unique expansion from (iii) yields
a decomposition of the space V into the subspaces Vk, which we denote by

V =
⊕2

k∈N Vk. (6)

Here, the superscript 2 indicates that, due to (5), the original norm on V is equiv-
alent to the l2-type norm (

∑
k∈N ‖Pkx‖2)1/2.

Definition 2.3 Let (Vk)k∈N be a Riesz basis of subspaces of V . We say that a
subspace U ⊂ V is compatible with (Vk)k∈N if

U =
∑

k∈NUk with closed subspaces Uk ⊂ Vk.

Evidently, (Uk)k∈N is then a Riesz basis of subspaces of U . We thus have the
decomposition

U =
⊕2

k∈N Uk.

As a special case, for every J ⊂ N we obtain the compatible subspace
⊕2

k∈J Vk.
1

Remark 2.4 It is easy to see that, with Pk as above, U is compatible with (Vk)

if and only if Pk(U) ⊂ U ; in this case U =
⊕2

k Pk(U).

Definition 2.5 If U and W are two subspaces of V satisfying U ∩W = {0}, we
say that their sum is algebraically direct, denoted by U ∔W . We say that the sum
is topologically direct and write U ⊕W if moreover the associated projection from
U ∔W onto U is bounded.

As a consequence of the closed graph theorem, if U ∩W = {0} and U , W and
U ∔W are closed, then in fact U ⊕W is topologically direct.

Proposition 2.6 Let (Vk)k∈N be a Riesz basis of subspaces of V .

(i) If Vk = Uk ⊕Wk for all k, then the sum

⊕2

k∈N Uk ∔
⊕2

k∈N Wk ⊂ V

is algebraically direct and dense.

1Note here that Definition 2.1 implicitly covers the case of systems with arbitrary index set
J ⊂ N since Vk = {0} is possible.
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(ii) For J ⊂ N we have the topologically direct sum

V =
⊕2

k∈J

Vk ⊕
⊕2

k∈N\J

Vk.

The associated projection onto the first summand is given by

PJ :
∑

k∈Nxk 7→
∑

k∈J

xk, xk ∈ Vk. (7)

It satisfies ‖PJ‖ ≤ c where c is the constant from (5).

Proof. (i): Let U =
⊕2

k Uk, W =
⊕2

k Wk, and x ∈ U ∩ W . We expand x in
the Riesz bases (Uk) of U and (Wk) of W : x =

∑
k uk =

∑
k wk with uk ∈ Uk,

wk ∈ Wk. As these are also expansions of x in the Riesz basis (Vk), we obtain
uk = wk and thus uk = 0 and x = 0. The sum U + W is dense in V since it
contains

∑
k∈N Vk.

(ii): From (5) we have the estimate

∥∥∥
∑

k∈J

xk

∥∥∥
2

≤ c
∑

k∈J

‖xk‖2 ≤ c
∑

k∈N ‖xk‖2 ≤ c2
∥∥∥
∑

k∈Nxk

∥∥∥
2

.

This shows that PJ defined by (7) satisfies ‖PJ‖ ≤ c. Obviously

R(PJ ) =
⊕2

k∈J

Vk, kerPJ =
⊕2

k∈N\J

Vk,

and V = R(PJ )⊕ kerPJ is topologically direct. �

3 Finitely spectral Riesz bases of subspaces

In this section we investigate operators with a Riesz basis of finite-dimensional
invariant subspaces. We obtain many non-trivial compatible subspaces that are
invariant under the operator. In particular, for every subset of the point spectrum
there is an associated invariant compatible subspace.

We recall some concepts for a linear operator T on a Banach space V , see also
[2, 16]. A point z ∈ C is called a point of regular type if T − z is injective and the
inverse (T −z)−1 (defined on R(T −z)) is bounded. The set of all points of regular
type is denoted by r(T ); it is open and satisfies ̺(T ) ⊂ r(T ) and σp(T )∩r(T ) = ∅.

A subspace W ⊂ V is called a core for the linear operator T if for every
x ∈ D(T ) there is a sequence (xn) in W such that xn → x and Txn → Tx.

Finally we denote by L(λ) the space of generalised eigenvectors or root subspace
of T corresponding to the eigenvalue λ ∈ σp(T ), i.e.

L(λ) =
⋃

k∈N ker(T − λ)k.

For λ 6∈ σp(T ) we set L(λ) = {0}. A sequence x1, . . . , xn ∈ L(λ) is called a Jordan
chain if (T − λ)xk = xk−1 for k ≥ 2 and (T − λ)x1 = 0.

Definition 3.1 Let T be a closed operator on a separable Hilbert space V . We
say that a Riesz basis of subspaces (Vk)k∈N of V is finitely spectral for T if
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(i) each Vk is finite-dimensional, T -invariant and satisfies Vk ⊂ D(T ),

(ii) the sets σ(T |Vk
) are pairwise disjoint, and

(iii)
∑

k∈N Vk is a core for T .

It is immediate from the definition, that T has infinitely many eigenvalues (for
dim V = ∞). In some situations, the conditions on the closedness and the core are
automatically fulfilled:

Proposition 3.2 Let T be a linear operator on V , (Vk)k∈N a Riesz basis of finite-
dimensional, T -invariant subspaces of V , Vk ⊂ D(T ) for all k, and σ(T |Vk

) pair-
wise disjoint. Then:

(i) T0 = T |∑
k
Vk

is closable and (Vk)k∈N is finitely spectral for T0.

(ii) If r(T ) 6= ∅, then T is closable and (Vk)k∈N is finitely spectral for T .

Proof. Let Pk be the projections onto the Vk corresponding to the Riesz basis.
Then for u ∈∑k Vk we have PkT0u = T |Vk

Pku for all k since u is a finite sum of
elements from the T -invariant subspaces Vk.

(i): Let xn ∈ D(T0) =
∑

k Vk with xn → 0 and T0xn → y. Since the restriction
T |Vk

is bounded, we have

Pky = lim
n→∞

PkT0xn = lim
n→∞

T |Vk
Pkxn = T |Vk

Pk lim
n→∞

xn = 0

for every k ∈ N and hence y = 0; T0 is closable. The other assertion is now
immediate.

(ii): In view of (i) it suffices to show T ⊂ T0: for T is closable then, and from
T0 ⊂ T we conclude T0 = T . Let x ∈ D(T ) and z ∈ r(T ). Using the Riesz basis
(Vk), we have the expansion (T − z)x =

∑∞
k=0 yk with yk ∈ Vk. Since T − z is

injective and Vk is finite-dimensional and T -invariant, T − z maps Vk onto Vk. We
can thus set xk = (T − z)−1yk ∈ Vk and obtain x =

∑∞
k=0 xk by the boundedness

of (T − z)−1. Consequently

D(T0) ∋
n∑

k=0

xk → x and (T0 − z)
n∑

k=0

xk =
n∑

k=0

yk → (T − z)x

as n → ∞, i.e., x ∈ D(T0) and T0x = Tx. �

The notion of a finitely spectral Riesz basis of subspaces contains many other
types of bases related to eigenvectors and the spectrum as special cases:

Proposition 3.3 Let T be a closed operator on V with r(T ) 6= ∅ and dimL(λ) <
∞ for all λ ∈ σp(T ). Then for the assertions

(i) T has a finitely spectral Riesz basis of subspaces,

(ii) the root subspaces L(λ), λ ∈ σp(T ), of T form a Riesz basis of V ,

(iii) T has a Riesz basis of Jordan chains,

we have (iii) ⇒ (ii) ⇒ (i). Moreover
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(i) ⇔ T has a Riesz basis with parentheses of Jordan chains, and for each λ ∈
σp(T ) there is a parenthesis that contains all Jordan chains from the basis
which correspond to λ;

(ii) ⇔ T has a Riesz basis with parentheses of Jordan chains, and for each λ ∈
σp(T ) there is a parenthesis that contains all Jordan chains from the ba-
sis which correspond to λ, but no Jordan chains corresponding to other
eigenvalues.

Proof. In view of Proposition 3.2(ii), the implication (ii)⇒(i) is trivial. For (iii)⇒(ii)
consider for each eigenvalue λ ∈ σp(T ) the subspace Vλ generated by all Jordan
chains from the basis which correspond to λ. Then (Vλ)λ∈σp(T ) is a Riesz basis
of subspaces and Vλ = L(λ). The equivalent characterisations of (i) and (ii) are
immediate from the definitions. �

Remark 3.4 Example 3.7 shows that the implications (iii) ⇒ (ii) ⇒ (i) are strict,
even for the case that T has compact resolvent. If T has compact resolvent, then
(ii) holds if and only if T is a spectral operator in the sense of Dunford, see [12, 36].

A closed operator T is called Riesz-spectral [9, 19] if all its eigenvalues are
simple, T has a Riesz basis of eigenvectors, and σp(T ) is totally disconnected. So
if T is Riesz-spectral then (iii) holds.

Proposition 3.5 Let T be a closed operator with a finitely spectral Riesz basis of
subspaces (Vk)k∈N. Then

D(T ) =

{
x =

∑

k∈Nxk

∣∣∣∣ xk ∈ Vk,
∑

k∈N ‖Txk‖2 < ∞
}
, (8)

Tx =
∑

k∈N Txk for x =
∑

k∈Nxk ∈ D(T ), xk ∈ Vk. (9)

The operator T is bounded if and only if the restrictions T |Vk
are uniformly bounded

and in this case (with c from (5))

‖T ‖ ≤ c sup
k∈N ‖T |Vk

‖.

Proof. (i): In order to derive (8) and (9), let first y ∈ D(T ). Since
∑

k Vk is a core
for T , there is a sequence (yn) in

∑
k Vk with yn → y, Tyn → Ty. As in the proof

of Proposition 3.2, we obtain

PkTy = lim
n→∞

PkTyn = lim
n→∞

T |Vk
Pkyn = T |Vk

Pk lim
n→∞

yn = TPky.

Hence
∑

k ‖TPky‖2 =
∑

k ‖PkTy‖2 ≤ c‖Ty‖2 < ∞ and

y =
∑

k

Pky ∈
{
x =

∑

k

xk

∣∣∣∣ xk ∈ Vk,
∑

k

‖Txk‖2 < ∞
}

with

Ty =
∑

k

PkTy =
∑

k

TPky.

If on the other hand x =
∑

k xk with xk ∈ Vk,
∑

k ‖Txk‖2 < ∞, then

D(T ) ∋
n∑

k=0

xk → x and T
n∑

k=0

xk =
n∑

k=0

Txk →
∞∑

k=0

Txk.
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Hence x ∈ D(T ) since T is closed.
(ii): Let L = supk ‖T |Vk

‖ < ∞. Then for x =
∑

k xk ∈ D(T ):

‖Tx‖2 =
∥∥∑

k

T |Vk
xk

∥∥2 ≤ c
∑

k

‖T |Vk
xk‖2 ≤ cL2

∑

k

‖xk‖2 ≤ c2L2‖x‖2;

thus T is bounded with norm ≤ c L. �

For the case that the Vk are pairwise orthogonal and possibly infinite-dimen-
sional, the spectrum of an operator defined by (8), (9) was calculated by Davies
[10, Theorem 8.1.12]. We obtain:

Corollary 3.6 Let T be a closed operator with a finitely spectral Riesz basis of
subspaces (Vk)k∈N. Then

σp(T ) =
⋃

k∈Nσ(T |Vk
), (10)

Vk =
∑

λ∈σ(T |Vk
)

L(λ), (11)

̺(T ) = r(T ) =
{
z ∈ C \ σp(T )

∣∣∣ sup
k∈N ‖(T |Vk

− z)−1‖ < ∞
}
. (12)

Moreover, for z ∈ ̺(T ),

(T − z)−1 compact ⇔ lim
k→∞

‖(T |Vk
− z)−1‖ = 0.

Proof. The inclusions “⊃” in (10) and “⊂” in (11) are trivial. For the other ones
let λ ∈ σp(T ) and x =

∑
j xj ∈ L(λ) \ {0}, xj ∈ Vj . Then (T − λ)nx = 0 for some

n ∈ N. Now (9) implies

0 = (T − λ)nx =
∑

j∈N(T |Vj
− λ)nxj

and hence (T |Vj
− λ)nxj = 0 for all j. Since xk 6= 0 for some k, we obtain

λ ∈ σ(T |Vk
). As the σ(T |Vj

) are disjoint, we have λ 6∈ σ(T |Vj
) and hence xj = 0

for j 6= k. Therefore x ∈ Vk.
To show (12), first note that if z ∈ r(T ), then for every k ∈ N, (T |Vk

−z)−1 exists
and is a restriction of (T − z)−1. Thus supk ‖(T |Vk

− z)−1‖ ≤ ‖(T − z)−1‖ < ∞.
Furthermore, if z ∈ C \ σp(T ) with supk ‖(T |Vk

− z)−1‖ < ∞, then

S :
∑

k∈N xk 7→
∑

k∈N(T |Vk
− z)−1xk

defines a bounded operator S : V → V satisfying (T − z)Sx = x for all x ∈ V .
Consequently z ∈ ̺(T ) with (T − z)−1 = S.

Now suppose that ‖(T |Vk
− z)−1‖ → 0 as k → ∞. Then the sequence of

finite-rank operators
∑n

k=0(T |Vk
− z)−1Pk, n ∈ N, converges in norm to (T − z)−1

since
∥∥∥
∑

k>n

(T |Vk
− z)−1Pk

∥∥∥ ≤ c sup
k>n

‖(T |Vk
− z)−1‖ → 0 as n → ∞.
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Hence (T−z)−1 is compact. On the other hand, let ‖(T |Vk
−z)−1‖ 6→ 0. Then there

exists a strictly increasing sequence of indices (kl) and xl ∈ Vkl
, yl = (T − z)−1xl,

such that ‖xl‖ = 1 and inf l ‖yl‖ > 0. From yl ∈ Vkl
it follows that every converging

subsequence of (yl) must converge to zero. So (yl) has no converging subsequence
and (T − z)−1 is not compact. �

The following example illustrates the differences between the three Riesz basis
properties from Proposition 3.3 for the case of a compact resolvent.

Example 3.7 Let (ek)k≥1 be an orthonormal basis of a separable Hilbert space V
and Vk = span{e2k−1, e2k}. Using Proposition 3.2, we can define a closed operator
T on V such that (Vk)k≥1 is finitely spectral for T and

T |Vk
∼=
(
ik2 1
k ik2

)
,

with respect to the basis (e2k−1, e2k) of Vk. The eigenvalues and corresponding
normalised eigenvectors of T |Vk

are

λ±
k = ik2 ±

√
k, v±k =

1√
1 + k

(
e2k−1 ±

√
k e2k

)
.

A direct computation yields limk→∞ ‖(T |Vk
− z)−1‖ = 0 for z 6∈ σp(T ) and hence

T has compact resolvent.
Consider now the sequences (xk)k≥1, (x

+
k )k≥1 and (x−

k )k≥1 given by

xk =
2√
k
e2k, x±

k =

√
1 + k

k
v±k .

Then xk = x+
k + x−

k with x±
k ∈ Cv±k , the sequence (xk) converges to zero, while

the sequences (x±
k ) do not. Consequently, the algebraically direct sum (see Propo-

sition 2.6) ⊕

k≥1

Cv+k ∔
⊕

k≥1

Cv−k
is not topologically direct, and the system of root subspaces L(λ±

k ) = Cv±k of T is
not a Riesz basis.

Altering the above definition, we can also consider the operator T1 with

T1|Vk
∼=
(
ik2 0
k ik2

)
.

Then T1 still has a compact resolvent. The root subspace of T1 are now L(ik2) = Vk

and form a Riesz basis of subspaces of V , but T1 has no Riesz basis of Jordan chains.

Definition 3.8 Let G and S be linear operators on a Banach space. Then S is
called p-subordinate to G with 0 ≤ p < 1 if D(G) ⊂ D(S) and there exists c ∈ R
such that

‖Sx‖ ≤ c‖x‖1−p‖Gx‖p for x ∈ D(G).
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If S is p-subordinate to G with p < 1, then S is relatively bounded to G with
G-bound 0, see e.g. [18, §I.7.1] or [36, §3.2]. Recall that S is relatively bounded to
G if D(G) ⊂ D(S) and there are constants a, b such that ‖Sx‖ ≤ a‖x‖+ b‖Gx‖ for
all x ∈ D(G). The infimum of all such b is called the G-bound of S.

We use the notation

N(r,G) =
∑

λ∈σp(G),|λ|≤r

dimL(λ)

for the sum of the algebraic multiplicities of the eigenvalues of G with |λ| ≤ r.

Theorem 3.9 Let G be a normal operator with compact resolvent whose eigenval-
ues lie on finitely many rays from the origin. Let S be p-subordinate to G with
0 ≤ p < 1. If

lim inf
r→∞

N(r,G)

r1−p
< ∞,

then T = G + S has a compact resolvent and a finitely spectral Riesz basis of
subspaces (Vk)k∈N.
Proof. See Theorems 4.5 and 6.1 in [37]. In particular, note that the Vk were
constructed as the ranges of Riesz projections associated with disjoint parts of
σ(T ), and hence the sets σ(T |Vk

) are disjoint. �

Now we study invariant subspaces with respect to a finitely spectral Riesz basis
of subspaces.

Lemma 3.10 Let T be a closed operator with a finitely spectral Riesz basis of sub-
spaces (Vk)k∈N. For a compatible subspace U =

⊕2
k∈N Uk, Uk ⊂ Vk, the following

assertions are equivalent:

(i) U is T -invariant;

(ii) all Uk are T -invariant.

For z ∈ ̺(T ), (i) and (ii) are equivalent to

(iii) U is (T − z)−1-invariant.

Proof. The first claim is immediate from (9). For z ∈ ̺(T ) note that dimUk < ∞
and Uk ⊂ D(T ) imply that Uk is T -invariant if and only if Uk is (T−z)−1-invariant.
Moreover (Vk) is also finitely spectral for (T − z)−1. �

Corollary 3.11 Let T be closed with a finitely spectral Riesz basis of subspaces
(Vk)k∈N. The subspace U is T -invariant and compatible with (Vk) if and only if

U =
∑

λ∈σp(T )

Wλ (13)

with T -invariant subspaces Wλ ⊂ L(λ). In this case U =
⊕2

k Uk with

Uk =
∑

λ∈σ(T |Vk
)

Wλ and Wλ = Uk ∩ L(λ), λ ∈ σ(T |Vk
). (14)

11



In particular, for every σ ⊂ σp(T ) there is the T -invariant compatible subspace

Uσ =
∑

λ∈σ

L(λ) (15)

associated with σ.

Proof. Let U =
⊕2

k Uk with Uk ⊂ Vk T -invariant. Since dimVk < ∞, an argument
from linear algebra implies that (14) holds, which in turn implies (13). On the
other hand, if U is given by (13), and we define Uk by the first identity in (14),

then Uk is T -invariant, Uk ⊂ Vk, and we obtain U =
⊕2

k Uk. �

In the following, we will occasionally consider the subspaces U± associated with
the point spectrum in the open right and left half-plane, respectively, i.e.

U± =
∑

λ∈σ±
p (T )

L(λ) where σ±
p (T ) =

{
λ ∈ σp(T )

∣∣ Reλ ≷ 0
}
.

Corollary 3.12 If T is closed with a finitely spectral Riesz basis of subspaces and
σp(T ) ∩ iR = ∅, then U+ ∔ U− ⊂ V algebraically direct and dense.

Proof. This follows from Proposition 2.6 since U± =
⊕2

k V
±
k where V ±

k are the
spectral subspaces of T |Vk

corresponding to the right and left half-plane. �

Remark 3.13 The concept of a finitely spectral Riesz basis of subspaces allows
for operators that have a strip around the imaginary axis in the resolvent set, but
are not dichotomous nonetheless:

A linear operator T is called dichotomous (see [21]) if a strip around the
imaginary axis belongs to ̺(T ), and there is a topologically direct decomposition
V = V+⊕V− such that V± is T -invariant and σ(T |V±

) is contained in the open right
and left half-plane, respectively. In particular U± ⊂ V±. Now for the operator T
from Example 3.7 we have U± =

⊕
k≥1Cv±k and that U+∔U− is not topologically

direct. Consequently T is not dichotomous. On the other hand, T has compact
resolvent and the eigenvalues ik2 ±

√
k, k ≥ 1. Hence {z | |Re z| < 1} ⊂ ̺(T ).

Lemma 3.14 Let T be a closed operator on V , z0 ∈ ̺(T ) and U ⊂ V a closed
(T − z0)

−1-invariant subspace. Then U is (T − z)−1-invariant for all z in the
connected component of z0 in ̺(T ).

Proof. It suffices to show that the set

A = {z ∈ ̺(T ) |U is (T − z)−1-invariant}

is relatively open and closed in ̺(T ). Let z ∈ A. For w ∈ C sufficiently close to z
a Neumann series argument shows that

(T − w)−1 = (T − z)−1
(
I − (w − z)(T − z)−1

)−1
=

∞∑

k=0

(w − z)k(T − z)−k−1.

If x ∈ U , then (T − z)−k−1x ∈ U for all k ≥ 0. Hence also (T − w)−1x ∈ U , i.e.
w ∈ A; A is an open set.

12



Now let w ∈ ̺(T ) with w = limn→∞ zn, zn ∈ A. For x ∈ U we then have

U ∋ (T − zn)
−1x → (T − w)−1x ∈ U as n → ∞

since the resolvent (T − z)−1 is continuous in z. Hence w ∈ A, i.e., A is relatively
closed. �

Proposition 3.15 Let T be an operator with compact resolvent and a finitely spec-
tral Riesz basis of subspaces (Vk)k∈N. If U is a closed subspace that is (T − z)−1-
invariant for some z ∈ ̺(T ), then U is T -invariant and compatible with (Vk)k∈N.
Proof. Since T has a compact resolvent, σ(T ) consists of isolated eigenvalues only
and ̺(T ) is connected. The previous lemma thus implies that U is (T − z)−1-
invariant for all z ∈ ̺(T ). Let Pk be the projections corresponding to the Riesz
basis. Since σk = σ(T |Vk

) is an isolated part of the spectrum of T , Pk is the Riesz
projection associated with σk:

Pk =
i

2π

∫

Γk

(T − z)−1dz (16)

where Γk is a simply closed, positively oriented integration contour with σk in its
interior and σ(T ) \ σk in its exterior, see e.g. [16, Theorem III.6.17]. Consequently
Pk(U) ⊂ U , and U is thus compatible with (Vk). The T -invariance is now a
consequence of Lemma 3.10. �

4 Hamiltonian operator matrices

The purpose of this section is to provide some basic facts about Hamiltonian op-
erator matrices, in particular about their connection to Krein spaces. We will also
derive existence results for finitely spectral Riesz bases of subspaces and for Riesz
bases of generalised eigenvectors for the Hamiltonian.

We use the following definition of a Hamiltonian operator matrix, see also [4].

Definition 4.1 Let H be a Hilbert space. A Hamiltonian operator matrix is a
block operator matrix

T =

(
A B
C −A∗

)
, D(T ) = (D(A) ∩ D(C)) × (D(A∗) ∩ D(B))

acting on H ×H with densely defined linear operators A, B, C on H such that B
and C are symmetric and T is densely defined.

If B and C are both nonnegative (positive, uniformly positive), then T is called
a nonnegative (positive, uniformly positive, respectively) Hamiltonian operator ma-
trix.2

Hamiltonian operator matrices are connected to two indefinite inner products
on H ×H . We recall some corresponding notions and refer to [5, 6, 14] for more
details: A vector space V together with an inner product 〈·|·〉 is called a Krein

2Note that the sign convention T =
(

A −B

−C −A
∗

)

, in particular with nonnegative B,C, is also

used in the literature, e.g. in [19, 21].
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space if V is also a Hilbert space with scalar product (·|·) and there is a selfadjoint
involution J : V → V such that 〈x|y〉 = (Jx|y) for all x, y ∈ V .

A subspace U ⊂ V is called J-neutral if 〈x|x〉 = 0 for all x ∈ U . The J-
orthogonal complement of U is defined by

U 〈⊥〉 = {x ∈ V | 〈x|y〉 = 0 for all y ∈ U}.

Two subspaces U,W ⊂ V are said to be J-orthogonal, U〈⊥〉W , if W ⊂ U 〈⊥〉. U is
J-neutral if and only if U ⊂ U 〈⊥〉. The subspace U is called J-non-degenerate if
U ∩ U 〈⊥〉 = {0}.

Let T be a densely defined linear operator on V . It is called J-symmetric if
〈Tx|y〉 = 〈x|Ty〉 for all x, y ∈ D(T ). The J-adjoint of T is defined as the maximal
operator T 〈∗〉 such that

〈Tx|y〉 = 〈x|T 〈∗〉y〉 for all x ∈ D(T ), y ∈ D(T 〈∗〉).

The operator is called J-selfadjoint if T = T 〈∗〉, and in this case its spectrum σ(T )
is symmetric with respect to the real axis.

Consider the Krein space inner products on H ×H given by

〈x|y〉 = (J1x|y) with J1 =

(
0 −iI
iI 0

)

and

[x|y] = (J2x|y) with J2 =

(
0 I
I 0

)
.

Here (·|·) denotes the usual scalar product on H ×H . The straightforward com-
putation

〈(A B
C −A∗

)(
u
v

) ∣∣∣
(
ũ
ṽ

)〉
= i(Au +Bv|ṽ)− i(Cu−A∗v|ũ)

= i(u|A∗ṽ − Cũ)− i(v| −Bṽ −Aũ)

=
〈(

u
v

) ∣∣∣
(
−A −B
−C A∗

)(
ũ
ṽ

)〉

shows that T is J1-skew-symmetric, i.e.

〈Tx|y〉 = −〈x|Ty〉 for all x, y ∈ D(T ).

As a consequence, T is always closable. In the following, additional assumptions
on T such as in Theorem 4.6 or a lower resolvent bound 0 in Section 7 will often
imply that T is already closed. From

Re
[(A B

C −A∗

)(
u
v

) ∣∣∣
(
u
v

)]
= Re

(
(Au +Bv|v) + (Cu −A∗v|u)

)

= (Bv|v) + (Cu|u)

we obtain that T is nonnegative if and only if it is J2-accretive, i.e. Re[Tx|x] ≥ 0
for all x ∈ D(T ).

The J1-skew-symmetry of T yields symmetry properties of the spectrum:

Proposition 4.2 Let T be a Hamiltonian operator matrix.
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(i) If λ, µ ∈ σp(T ) with λ 6= −µ, then the root subspaces L(λ) and L(µ) are
J1-orthogonal. In particular L(λ) is J1-neutral for λ 6∈ σp(T ) ∩ iR.

(ii) If T has a complete system of root subspaces, then σp(T ) is symmetric with
respect to the imaginary axis, and L(λ) + L(−λ) is J1-non-degenerate with
dimL(λ) = dimL(−λ) for every λ ∈ σp(T ).

(iii) If there exists z such that z,−z̄ ∈ ̺(T ), then T is J1-skew-selfadjoint, i.e.
T = −T 〈∗〉, and σ(T ) is symmetric with respect to the imaginary axis.

In particular, the point spectrum of a Hamiltonian with a finitely spectral Riesz
basis of subspaces is symmetric with respect to the imaginary axis.

Proof of the proposition. (i): Since iT is J1-symmetric, this is an immediate con-
sequence of [6, Theorem II.3.3].

(ii): Let

σ0 =
{
λ ∈ C ∣∣ Reλ ≥ 0 and

(
λ ∈ σp(T ) or − λ ∈ σp(T )

)}

and Uλ = L(λ)+L(−λ) for λ ∈ σ0. From (i) it follows that the Uλ are pairwise J1-

orthogonal. For x ∈ Uλ ∩U
〈⊥〉
λ this implies that 〈x|y〉 = 0 for all y ∈

∑
µ Uµ. Since∑

µ Uµ ⊂ H ×H is dense by assumption, we obtain 〈x|y〉 = 0 for all y ∈ H ×H
and thus x = 0: Uλ is J1-non-degenerate. For λ ∈ σ0 with Reλ > 0, the subspaces
L(λ) and L(−λ) are J1-neutral and their sum is non-degenerate. This implies that
dimL(λ) = dimL(−λ), see [6, §I.10]. In particular λ,−λ ∈ σp(T ) and hence the
symmetry of σp(T ).

(iii): We have that iT is J1-symmetric and w,w ∈ ̺(iT ) where w = iz. As in
the Hilbert space situation this implies that iT is J1-selfadjoint. Consequently, T
is J1-skew-selfadjoint. �

Remark 4.3 For any J-skew-selfadjoint operator T , σp(T ) is symmetric with re-
spect to iR if and only if the residual spectrum σr(T ) is empty; this is an immediate
consequence of [5, Theorem 2.1.16]. An example for a J1-skew-selfadjoint Hamil-
tonian with σr(T ) 6= ∅ and thus non-symmetric σp(T ) is constructed in [3].

The J2-accretivity of a nonnegative Hamiltonian leads to characterisations of
the spectrum on the imaginary axis:

Proposition 4.4 Let T be a nonnegative Hamiltonian operator matrix.

(i) We have σp(T ) ∩ iR = ∅ if and only if

ker(A− it) ∩ kerC = ker(A∗ + it) ∩ kerB = {0} for all t ∈ R. (17)

(ii) If T is uniformly positive with B,C ≥ γ, then

{
z ∈ C ∣∣ |Re z| < γ

}
⊂ r(T ).

Proof. (i): We show that (T − it)x = 0 for x = (u, v) ∈ D(T ) if and only if

u ∈ ker(A− it) ∩ kerC and v ∈ ker(A∗ + it) ∩ kerB.
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Indeed if (T − it)x = 0, then

(A− it)u+Bv = 0, Cu− (A∗ + it)v = 0, and

0 = Re(it[x|x]) = Re[Tx|x] = (Bv|v) + (Cu|u).

Since B and C are nonnegative, this yields (Bv|v) = (Cu|u) = 0. Thus for all
r ∈ R and w ∈ D(B),

0 ≤ (B(rv + w)|rv + w) = 2rRe(Bv|w) + (w|w),

which implies Bv = 0. Similarly Cu = 0 and thus (A− it)u = (A∗ + it)v = 0. The
other implication is immediate.

(ii): For x = (u, v) ∈ D(T ) we have Re[Tx|x] = (Bv|v) + (Cu|u) ≥ γ‖x‖2.
Let z ∈ C \ r(T ). Then there exists a sequence (xn) in D(T ) with ‖xn‖ = 1 and
(T − z)xn → 0 as n → ∞. For αn = Re[(T − z)xn|xn] this implies αn → 0. We
obtain

γ = γ‖xn‖2 ≤ Re[Txn|xn] = αn +Re z · [xn|xn]

≤ |αn|+ |Re z| |(J2xn|xn)| ≤ |αn|+ |Re z|‖xn‖2 → |Re z|

as n → ∞, i.e. γ ≤ |Re z|. �

We end this section with perturbation theorems for two classes of diagonally
dominant Hamiltonians, which ensure the existence of finitely spectral Riesz bases
of subspaces.

Definition 4.5 A Hamiltonian operator matrix is diagonally dominant if B is
relatively bounded to A∗ and C is relatively bounded to A.

Diagonally dominant block operator matrices are studied in [31, 32]. If the Hamil-
tonian T is diagonally dominant, then in particular

D(A) ⊂ D(C), D(A∗) ⊂ D(B). (18)

If A is closed, these inclusions are even sufficient for diagonally dominance since B
and C are closable; see [32, Remark 2.2.2].

Theorem 4.6 Let T be a Hamiltonian operator matrix where A is normal with
compact resolvent and B, C are p-subordinate to A with 0 ≤ p < 1. If σ(A) lies
on finitely many rays from the origin and

lim inf
r→∞

N(r, A)

r1−p
< ∞, (19)

then T has compact resolvent, is J1-skew-selfadjoint, and there exists a finitely
spectral Riesz basis of subspaces (Vk)k∈N for T .

Proof. This is an application of Theorem 3.9 to the decomposition

T = G+ S with G =

(
A 0
0 −A∗

)
, S =

(
0 B
C 0

)
,

see [37, Theorem 7.2] for details. The skew-selfadjointness then follows by Propo-
sition 4.2. �
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Theorem 4.7 Let T be a uniformly positive Hamiltonian such that A is skew-
selfadjoint with compact resolvent, B,C are bounded and satisfy B,C ≥ γ. Let irk
be the eigenvalues of A where (rk)k∈Λ is increasing and Λ ∈ {Z+,Z−,Z}. Suppose
that almost all eigenvalues irk are simple and that for some l > b = max{‖B‖, ‖C‖}
we have

rk+1 − rk ≥ 2l for almost all k ∈ Λ.

Then T has compact resolvent, almost all of its eigenvalues are simple,

σ(T ) ⊂ {z ∈ C | γ ≤ |Re z| ≤ b},

and T admits a Riesz basis of eigenvectors and finitely many Jordan chains.

Proof. See [37, Theorem 7.3]. �

Remark 4.8 Due to [37, Remark 6.7], Theorem 4.6 continues to hold if A is
an operator with compact resolvent and a Riesz basis of Jordan chains, B is p-
subordinate to A∗, C is p-subordinate to A, 0 ≤ p < 1, almost all eigenvalues
of A lie inside sets {eiθj (x + iy) |x > 0, |y| ≤ αxp} with α ≥ 0, −π ≤ θj < π,
j = 1, . . . , n, and (19) is satisfied. Theorem 4.7 also holds if A has a compact
resolvent, a Riesz basis of eigenvectors and finitely many Jordan chains, and almost
all eigenvalues of A are simple, contained in a strip around the imaginary axis and
their imaginary parts are uniformly separated. The constant b has to be adjusted
then.

5 Invariant subspaces of Hamiltonians

In this section we construct invariant compatible subspaces of the Hamiltonian
that are hypermaximal J1-neutral. For a nonnegative Hamiltonian, the subspaces
associated with the point spectrum in the open right and left half-plane are J2-
nonnegative and -nonpositive, respectively.

Let V be a Krein space. Recall that a subspace U ⊂ V is J-neutral if and only
if U ⊂ U 〈⊥〉. It is called hypermaximal J-neutral if U = U 〈⊥〉, see [5, 6]. It is not
hard to see that if U,W are J-neutral subspaces with V = U ⊕W , then U and W
are hypermaximal J-neutral. For dimV < ∞, this is even an equivalence:

Lemma 5.1 Let V be a finite-dimensional Krein space. If U ⊂ V is hypermaximal
J-neutral, then there exists a J-neutral subspace W such that V = U ⊕W .

Proof. By induction on n = dimU we show that there exist systems (e1, . . . , en)
in U and (f1, . . . , fn) in V that form a dual pair, i.e. 〈ej |fk〉 = δjk, and are such
that W = span{f1, . . . , fn} is neutral. Indeed, if dimU = n + 1 and e ∈ U \
span{e1, . . . , en}, we can set

en+1 = e−
n∑

j=1

〈e|fj〉ej .

Since V is non-degenerate, there exists f ∈ V with 〈en+1|f〉 = 1. Then

f̃ = f −
n∑

j=1

〈f |ej〉fj −
n∑

j=1

〈f |fj〉ej and fn+1 = f̃ − 〈f̃ |f̃〉
2

en+1
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RiR
σ

Figure 1: A point spectrum symmetric with respect to iR and a skew-conjugate
subset σ.

yields the desired properties.
If
∑n

j=1 αjej + βjfj = 0, then we can take the inner product of this equation
with the elements ej, fj and find αj = βj = 0 for all j: (e1, . . . , en, f1, . . . , fn) is
linearly independent. In particular (e1, . . . , en) is a basis of U and U ∩W = {0}.
To show V = U ⊕W , let x ∈ V and set u = x−w where w =

∑n
j=1〈x|ej〉fj ∈ W .

Then 〈u|ej〉 = 0 for all j, i.e. u ∈ U 〈⊥〉 = U . �

Definition 5.2 For a linear operator whose point spectrum σp(T ) is symmetric
with respect to the imaginary axis, we say that a subset σ ⊂ σp(T ) \ iR is skew-
conjugate if

(i) λ ∈ σ ⇒ −λ 6∈ σ and

(ii) λ ∈ σp(T ) \ iR ⇒ λ ∈ σ or −λ ∈ σ.

In other words, σ contains one eigenvalue from each skew-conjugate pair (λ,−λ)
in σp(T ) \ iR, compare Figure 1.

Theorem 5.3 Let T be a closed Hamiltonian operator matrix with a finitely spec-
tral Riesz basis of subspaces. Then T possesses a hypermaximal J1-neutral, T -
invariant, compatible subspace if and only if for all it ∈ σp(T ) ∩ iR we have

L(it) = Mit ⊕Nit with Mit, Nit J1-neutral and Mit T -invariant. (20)

In this case, for every skew-conjugate subset σ ⊂ σp(T ) \ iR the T -invariant com-
patible subspace

U =
∑

λ∈σ

L(λ) +
∑

it∈σp(T )∩iRMit (21)

is hypermaximal J1-neutral.

Proof. Let (Vk)k∈N be a finitely spectral Riesz basis of subspaces for T and write
σk = σ(T |Vk

). Suppose first that U is hypermaximal J1-neutral, T -invariant, and
compatible with (Vk). So U is of the form

U =
⊕2

k∈N Uk =
∑

λ∈σp(T )

Mλ
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where the subspaces Uk ⊂ Vk and Mλ ⊂ L(λ) are all T -invariant, compare Corol-
lary 3.11. By Proposition 4.2, each L(it), it ∈ σp(T ) ∩ iR, is J1-non-degenerate
and thus itself a Krein space. In view of the previous lemma it suffices to show

that Mit is hypermaximal neutral with respect to L(it), i.e., M 〈⊥〉
it ∩ L(it) = Mit.

Since Mit ⊂ U we have that Mit is neutral and hence Mit ⊂ M
〈⊥〉
it ∩L(it). Let

x ∈ M
〈⊥〉
it ∩L(it). Since L(it) is J1-orthogonal to L(λ) for every λ 6= it, we see that

x〈⊥〉Mλ for all λ and hence x ∈ U 〈⊥〉 = U . On the other hand x ∈ L(it) ⊂ Vk0
with

k0 such that it ∈ σk0
. Consequently x ∈ U ∩ Vk0

= Uk0
. Now the decomposition

Uk0
=
⊕

λ∈σk0

Mλ

implies that x ∈ Uk0
∩ L(it) = Mit.

For the other implication, suppose now that for every it ∈ σp(T )∩ iR there is a
decomposition L(it) = Mit ⊕Nit into neutral subspaces where Mit is T -invariant,
let σ ⊂ σp(T ) \ iR be skew-conjugate, and let U be given by (21). Since U is
the closure of the sum of neutral, pairwise orthogonal subspaces, U is neutral.
Moreover, U is T -invariant and compatible with (Vk) with decomposition

U =
⊕2

k∈N Uk, Uk =
∑

λ∈σk∩σ

L(λ) +
∑

it∈σk∩iRMit.

It remains to show that U 〈⊥〉 ⊂ U . We have Vk = Uk ⊕Wk with

Wk =
∑

λ∈τk

L(λ) +
∑

it∈σk∩iRNit, τk = σk \ (σ ∪ iR).

Let x ∈ U 〈⊥〉. We expand x in the Riesz basis (Vk) as x =
∑

k(uk + wk) with
uk ∈ Uk, wk ∈ Wk. To show that all wk are zero, we consider now the subspaces

Ũk =
∑

λ∈τk

L(−λ) +
∑

it∈σk∩iRMit.

The fact that σ is skew-conjugate yields λ ∈ τk ⇒ −λ ∈ σ, and therefore Ũk ⊂ U .
Moreover Ũk is J1-orthogonal to Wj for j 6= k, and Wk is neutral. For ũ ∈ Ũk,
w̃ ∈ Wk we thus compute

0 = 〈x|ũ〉 =
∑

j∈N〈uj + wj |ũ〉 = 〈wk|ũ〉 = 〈wk|ũ+ w̃〉.

In view of Proposition 4.2, Ũk + Wk is non-degenerate since it is the orthogonal
sum of subspaces L(λ) + L(−λ), λ ∈ τk ∪ (σk ∩ iR). Consequently wk = 0 for all
k and hence x =

∑
k uk ∈ U . �

Remark 5.4 Since all root subspaces of T are finite-dimensional, results about
the Jordan structure of J-symmetric matrices (e.g. [20, Theorem 2.3.2]) may be
used to reformulate condition (20): It turns out that (20) holds if and only if
L(it) = M ′

it ⊕N ′
it with neutral subspaces M ′

it, N
′
it.

Now we consider the subspaces associated with σ±
p (T ), the point spectrum of

T in the open right and left half-plane, respectively.
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Lemma 5.5 Let T be a linear operator on a Banach space with σp(T ) ∩ iR = ∅.
Consider the algebraically direct decomposition

∑

λ∈σp(T )

L(λ) = W+ ∔W−, W± =
∑

λ∈σ±
p (T )

L(λ),

and the associated algebraic projections P± onto W±. Then

1

iπ

∫ ′

iR(T − z)−1x dz = P+x− P−x for all x ∈
∑

λ∈σp(T )

L(λ) , (22)

where the prime denotes the Cauchy principal value at infinity, that is
∫ ′

iR f dz =

limr→∞

∫ ir

−ir f dz.

Note that the integrand in (22) is well-defined since (T − z)−1 acts, for each
x, on a finite sum of finite-dimensional subspaces generated by Jordan chains;
(T − z)−1x is thus continuous in z.

Proof of the lemma. By linearity it suffices to consider x ∈ L(λ) and the Jordan
chain generated by x. With respect to this Jordan chain, T is represented by the
matrix

Eλ =



λ 1

...
...

λ


 , (23)

and it suffices to show that
∫ ′

iR(Eλ − z)−1dz = ±iπI

for Reλ ≷ 0. This is a straightforward calculation. �

Lemma 5.6 Let T be an operator with a Riesz basis (xk)k∈N consisting of Jordan
chains. If σp(T )∩ iR = ∅ and σp(T ) is contained in a strip around the imaginary
axis, then

∫ ∞

−∞

‖(T − it)−1x‖2 dt ≥ c0‖x‖2 for x ∈ span{xk | k ∈ N}

with some constant c0 > 0.

Proof. Let x ∈ span{xk | k ∈ N}. Then there is a finite system F = (y1, . . . , yn) ⊂
(xk)k∈N consisting of Jordan chains such that x = α1y1 + . . .+ αnyn. spanF is a
T -invariant subspace with basis F . With respect to F , (T − it)−1 is represented
by a block diagonal matrix D with blocks of the form (Eλ − it)−1, Eλ as in (23).
Hence

(T − it)−1x =

n∑

k=1

αk(T − it)−1yk =

n∑

j,k=1

αkDjkyj .

Let m,M > 0 be the constants from (3) for the Riesz basis (xk). Putting ξ =
(α1, . . . , αn) and using the Euclidean norm on Cn, we find

‖(T − it)−1x‖2 ≥ m

n∑

j=1

∣∣∣
n∑

k=1

αkDjk

∣∣∣
2

= m‖Dξ‖2.

20



Now ‖Dξ‖2 is the sum of terms of the form ‖(Eλ − it)−1ν‖2, one for each Jordan
chain in F with ν the part of ξ corresponding to that Jordan chain. From

‖Eλ − it‖ ≤ |λ− it|+
∥∥
(

0 1...
...
0

)∥∥ ≤ |λ− it|+ 1

it follows that

‖(Eλ − it)−1ν‖2 ≥ 1

(|λ− it|+ 1)2
‖ν‖2.

With u = Reλ, v = Imλ, we calculate
∫ ∞

−∞

dt

(|λ− it|+ 1)2
≥
∫ ∞

−∞

dt

2(|λ− it|2 + 1)
=

1

2

∫ ∞

−∞

dt

1 + u2 + (t− v)2

=
1

2
√
1 + u2

arctan

(
t− v√
1 + u2

) ∣∣∣
∞

t=−∞
=

π

2
√
1 + u2

.

Choosing a > 0 such that |Reλ| ≤ a for all λ ∈ σp(T ), we obtain

∫ ∞

−∞

‖(T − it)−1x‖2 dt ≥ m
π

2
√
1 + a2

‖ξ‖2 ≥ mπ

2M
√
1 + a2

‖x‖2.
�

A subspace U ⊂ V of a Krein space is called J-nonnegative, J-positive and
uniformly J-positive if 〈x|x〉 ≥ 0, > 0 and ≥ α‖x‖2, respectively, for all x ∈ U \{0},
with some constant α > 0. Nonpositive, negative and uniformly negative subspaces
are defined accordingly.

A variant of the following result for dichotomous operators was obtained in [22,
Theorem 1.4]. In [5, Corollary 2.2.22], the first assertion is proved for so-called
W -dissipative operators.

Proposition 5.7 Let T be a nonnegative Hamiltonian operator matrix and con-
sider the subspaces

U± =
∑

λ∈σ±
p (T )

L(λ).

(i) U+ is J2-nonnegative and U− is J2-nonpositive.

(ii) If in addition T is uniformly positive, has a Riesz basis of Jordan chains, and
σp(T ) is contained in a strip around the imaginary axis, then U± is uniformly
J2-positive/-negative.

Proof. (i): To show that U+ is J2-nonnegative, it suffices to show that [x|x] ≥ 0
for every x = x1 + · · ·+ xn, xj ∈ L(λj), λj ∈ σ+

p (T ). Let

W0 = span
{
(T − λj)

kxj

∣∣ j = 1, . . . , n, k ∈ N}.
Then W0 is finite-dimensional, T -invariant, x ∈ W0, and the restriction T0 = T |W0

satisfies σ(T0) ⊂ {λ1, . . . , λn}. Lemma 5.5 and the J2-accretivity of T imply

[x|x] = Re[x|x] = 1

π

∫ ′R Re[(T0 − it)−1x|x] dt

=
1

π

∫ ′R Re[T0(T0 − it)−1x|(T0 − it)−1x] dt ≥ 0.
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A similar calculation shows that U− is J2-nonpositive.
(ii): We have Re[Tx|x] ≥ γ‖x‖2 with some γ > 0 and iR ⊂ r(T ). Let W+ be

the span of the Jordan chains from the Riesz basis which correspond to σ+
p (T ). As

a consequence of 0 ∈ r(T ) we have W+ = U+. For x ∈ W+, Lemmas 5.5 and 5.6
now yield

[x|x] = 1

π

∫ ′R Re[T (T − it)−1x|(T − it)−1x] dt

≥ γ

π

∫R ‖(T − it)−1x‖2 dt ≥ γc0
π

‖x‖2.

Consequently U+ is uniformly J2-positive. Again, a similar reasoning applies to
U−. �

Remark 5.8 Proposition 4.2 and Theorem 5.3 also hold for arbitrary (skew-)
symmetric operators on Krein spaces since in the proofs the particular structure of
the Hamiltonian as a block operator matrix was not used. Similarly, Proposition 5.7
holds for arbitrary (uniformly) accretive operators.

Lemma 5.9 Let T be a nonnegative Hamiltonian operator matrix with

C > 0 and ker(A∗ − λ) ∩ kerB = {0} for all λ ∈ C. (24)

Then the root subspaces L(λ) of T are J2-positive for Reλ > 0 and J2-negative for
Reλ < 0.

Proof. Suppose that Reλ > 0; the proof for Reλ < 0 is analogous. From Propo-
sition 5.7 we know that L(λ) is J2-nonnegative. Let x = (u, v) ∈ L(λ) \ {0} and
n ∈ N minimal such that (T − λ)nx = 0. We use induction on n to show that
[x|x] 6= 0 and thus [x|x] > 0.

For n = 1 we have

Reλ · [x|x] = Re[Tx|x] = (Bv|v) + (Cu|u).

If [x|x] = 0, then u = 0 since B is nonnegative and C positive. Hence

Tx =

(
Bv

−A∗v

)
= λ

(
0
v

)
,

and (24) yields v = 0, a contradiction.
For n > 1 we set y = (T − λ)x; so y 6= 0 and thus [y|y] > 0 by the induction

hypothesis. If [x|x] = 0, then

0 = Reλ · [x|x] = Re[Tx|x]− Re[y|x],

i.e.,
Re[y|x] = Re[Tx|x] = (Bv|v) + (Cu|u).

For r ∈ R let w = rx + y ∈ L(λ). Then 0 ≤ [w|w] = 2rRe[y|x] + [y|y]. Since r
is arbitrary, this implies Re[y|x] = (Bv|v) + (Cu|u) = 0. So again u = 0 and also
Bv = 0, see the proof of Proposition 4.4. Consequently, the first component of y
is zero and hence [y|y] = 0, again a contradiction. �
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6 Solutions of the Riccati equation

In this section we consider diagonally dominant Hamiltonian operator matrices.
We derive conditions that ensure the existence of (generally unbounded) solutions
of the corresponding Riccati equation.

For a linear operator X on the Hilbert space H we consider the graph subspace

Γ(X) =
{(

u
Xu

) ∣∣∣u ∈ D(X)
}
.

It is well known that invariant graph subspaces of block operator matrices are con-
nected to solutions of Riccati equations. In particular, the notions of strong as well
as weak solutions are considered. In [19] it was shown that these two notions are
equivalent for bounded solutions corresponding to Hamiltonian operator matrices
with bounded B, C. The equivalence for unbounded solutions corresponding to
bounded selfadjoint block operator matrices was proved in [17]. We consider the
situation where all involved operators are unbounded, see also Remark 7.7 and [36,
§4.3].

Proposition 6.1 Let T be a diagonally dominant Hamiltonian and X a linear
operator on H.

(i) Γ(X) is T -invariant if and only if X satisfies the Riccati equation

X(Au+BXu) = Cu−A∗Xu for all u ∈ D(A) ∩X−1D(A∗). (25)

(In particular Au+BXu ∈ D(X) for u ∈ D(A) ∩X−1D(A∗).)

(ii) If T has a finitely spectral Riesz basis of subspaces (Vk)k∈N and Γ(X) is
compatible with (Vk)k∈N, then D(A) ∩X−1D(A∗) is a core for X.

(iii) If X is selfadjoint and D(A)∩X−1D(A∗) is a core for X, then (25) holds if
and only if the weak Riccati equation

(Xu|Av) + (Au|Xv) + (BXu|Xv)− (Cu|v) = 0 (26)

holds for all u, v ∈ D(A) ∩X−1D(A∗).

Proof. (i): Γ(X) is T -invariant if and only if for all u ∈ D(A) ∩ D(X) with Xu ∈
D(A∗) there exists v ∈ D(X) such that

T

(
u
Xu

)
=

(
Au+BXu
Cu−A∗Xu

)
=

(
v
Xv

)
,

and this is obviously equivalent to (25).

(ii): By assumption, we have Γ(X) =
⊕2

k Uk with Uk ⊂ Vk ⊂ D(T ). Then∑
k Uk is dense in Γ(X), and hence the subspace D ⊂ H obtained by projecting∑
k Uk onto the first component is a core for X . Moreover D ⊂ D(A)∩X−1D(A∗)

since
∑

k Uk ⊂ D(T ); hence D(A) ∩X−1D(A∗) is a core for X .
(iii): Taking the scalar product of (25) with v ∈ D(A) ∩X−1D(A∗), we imme-

diately get (26). On the other hand, (26) can be rewritten as

(Au +BXu|Xv) = (Cu −A∗Xu|v).

Since D(A) ∩ X−1D(A∗) is a core for X , this equation holds for all v ∈ D(X).
Consequently Au+BXu ∈ D(X∗) = D(X) and (25) follows. �
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Graph subspaces are also naturally connected to the Krein space inner products
considered in Section 4, see also [11].

Lemma 6.2 Consider a linear operator X on the Hilbert space H.

(i) X is Hermitian, i.e. (Xu|v) = (u|Xv) for all u, v ∈ D(X), if and only if
Γ(X) is J1-neutral.

(ii) X is selfadjoint if and only if Γ(X) is hypermaximal J1-neutral.

If X is Hermitian, then

(iii) X is nonnegative and nonpositive if and only if Γ(X) is J2-nonnegative and
J2-nonpositive, respectively;

(iv) X is bounded and uniformly positive (negative) if and only if Γ(X) is uni-
formly J2-negative (positive).

Proof. The assertions (i) and (iii) are immediate. For (ii) suppose Γ(X) is hyper-
maximal J1-neutral. If w ∈ D(X)⊥ then

〈(
u
Xu

) ∣∣∣
(
0
w

)〉
= i(u|w) = 0 for all u ∈ D(X).

Hence (0, w) ∈ Γ(X)〈⊥〉 = Γ(X) and so w = 0; X is densely defined. Since X is
also Hermitian, it is thus symmetric, X ⊂ X∗. If now v ∈ D(X∗), then

〈(
u
Xu

) ∣∣∣
(

v
X∗v

)〉
= i(u|X∗v)− i(Xu|v) = 0 for all u ∈ D(X),

which implies (v,X∗v) ∈ Γ(X) and so v ∈ D(X) and X∗v = Xv. X is thus
selfadjoint. The converse implication in (ii) is proved similarly.

(iv): Let X be Hermitian and Γ(X) uniformly J2-positive. Then

2‖Xu‖‖u‖ ≥ 2(Xu|u) =
[(

u
Xu

) ∣∣∣
(

u
Xu

)]
≥ α

∥∥∥
(

u
Xu

)∥∥∥
2

= α‖u‖2 + α‖Xu‖2,

implies that (Xu|u) ≥ α
2 ‖u‖2 and ‖Xu‖ ≤ 2

α‖u‖. The proof of the other assertions
is similar. �

Now we formulate our main existence result for solutions of the Riccati equation.
Similar existence results have been obtained for bounded B and C: for Riesz-
spectral Hamiltonians in [19] and for dichotomous ones in [21]. Here we allow B
and C to be unbounded and consider finitely spectral Riesz bases of subspaces. This
concept is more general than a Riesz-spectral operator and it also allows for non-
dichotomous operators, see Remarks 3.4 and 3.13. Moreover, in [19] the conditions
for the existence of solutions were formulated in terms of the eigenvectors of T
while our conditions are solely on the operators A,B,C.

Theorem 6.3 Let T be a diagonally dominant, nonnegative Hamiltonian operator
matrix with ̺(T )∩ iR 6= ∅ and a finitely spectral Riesz basis of subspaces (Vk)k∈N.
Suppose that

(a) B is positive, or
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(b) there is a connected component M of ̺(A) such that M ∩ ̺(T )∩ iR 6= ∅ and

span
{
(A− z)−1B∗u

∣∣ z ∈ M, u ∈ D(B∗)
}
⊂ H is dense. (27)

Then the following holds:

(i) Every hypermaximal J1-neutral, T -invariant, compatible subspace U is the
graph U = Γ(X) of a selfadjoint operator X satisfying the Riccati equation

X(Au+BXu) = Cu−A∗Xu, u ∈ D(A) ∩X−1D(A∗), (28)

and D(A) ∩X−1D(A∗) is a core for X.

(ii) If
ker(A− it) ∩ kerC = {0} for all t ∈ R,

then σp(T ) ∩ iR = ∅ and for every skew-conjugate set σ ⊂ σp(T ) the as-
sociated invariant compatible subspace Uσ is hypermaximal J1-neutral; thus
Uσ = Γ(Xσ) with a selfadjoint solution Xσ of (28). The solutions X± cor-
responding to σ = σ±

p (T ) are nonnegative/nonpositive.

(iii) If C is even positive, then every Xσ is injective. In addition, X± is the
uniquely determined nonnegative/nonpositive selfadjoint solution of (28) whose
graph is compatible with (Vk)k∈N.

Before proving the theorem, we give some remarks on its conditions and asser-
tions.

Remark 6.4 If σp(T ) ∩ iR = ∅ (and dimH = ∞), then T has infinitely many
skew-conjugate pairs of eigenvalues since σp(T ) is symmetric to iR and infinite.
Hence there are infinitely many skew-conjugate sets σ ⊂ σp(T ) and infinitely many
corresponding solutions Xσ.

Remark 6.5 There is the following symmetric version of the assertions in Theo-
rem 6.3; it is immediate from the consideration of the transformed Hamiltonian

T̃ =

(
0 I
I 0

)(
A B
C −A∗

)(
0 I
I 0

)
=

(
−A∗ C
B A

)
: (29)

Suppose that C is positive or that there is a connected component M of ̺(A) such
that M ∩ ̺(T ) ∩ iR 6= ∅ and

span
{
(A∗ − z̄)−1C∗v

∣∣ z ∈ M, v ∈ D(C∗)
}
⊂ H is dense. (30)

Then a hypermaximal J1-neutral, T -invariant, compatible subspace U is the “in-
verse” graph

U = Γinv(Y ) =
{(Y v

v

) ∣∣∣ v ∈ D(Y )
}

of a selfadjoint operator Y such that

Y (CY v −A∗v) = AY v +Bv, v ∈ D(A∗) ∩ Y −1D(A), (31)

and D(A∗) ∩ Y −1D(A) is a core for Y . If in addition ker(A∗ − it) ∩ kerB = {0}
for all t ∈ R, then σp(T ) ∩ iR = ∅ and every skew-conjugate set σ ⊂ σp(T ) yields
a selfadjoint solution Yσ of (31). The solutions Y± corresponding to σ±

p (T ) are
nonnegative/nonpositive. If B is positive, then every Yσ is injective and the Y±

are uniquely determined.
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For bounded B,C, conditions analogous to (27) and (30) have been used in
[21]. In that setting, they are equivalent to the approximate controllability of the
pair (A,B) and the approximate observability of (A,C), respectively. Here we use
the following relation:

Proposition 6.6 Let A,B be densely defined operators on a Hilbert space H and
M ⊂ ̺(A). Then for the assertions

(i) span
{
(A− z)−1B∗v

∣∣ z ∈ M, v ∈ D(B∗)
}
⊂ H dense,

(ii) ker(A∗ − λ) ∩ kerB = {0} for all λ ∈ C,
we have the implication (i) ⇒ (ii). If A is normal with compact resolvent, B is
closable, D(A) ⊂ D(B), and M has an accumulation point in ̺(A), then (i) ⇔ (ii).

Proof. For (i)⇒(ii) consider A∗u = λu, Bu = 0. Then

((A − z)−1B∗v|u) = (v|B(A∗ − z̄)−1u) = (v|(λ − z̄)−1Bu) = 0

for every z ∈ M , v ∈ D(B∗) and (i) implies u = 0.
Now let A be normal with compact resolvent. Let (λk)k∈N be the eigenvalues

of A and Pk the corresponding orthogonal projections onto the eigenspaces. To
prove (i), let u ∈ H be such that ((A − z)−1B∗v|u) = 0 for all z ∈ M , v ∈ D(B∗);
we aim to show u = 0. The function

f(z) =
(
(A− z)−1B∗v

∣∣u
)
=

∞∑

k=0

1

λk − z
(PkB

∗v|u)

is holomorphic on ̺(A) and vanishes on M ; hence f = 0 by the identity theorem.
If we integrate the series along a circle in ̺(A) enclosing exactly one λk, we obtain

0 = (PkB
∗v|u) = (B∗v|Pku) for all v ∈ D(B∗),

i.e. Pku ∈ R(B∗)⊥ = kerB. Since Pku ∈ D(A) ⊂ D(B), we have in fact Pku ∈
kerB. Since the eigenspaces of A and A∗ coincide, (ii) now implies Pku = 0 for all
k ∈ N and thus u = 0. �

Proof of Theorem 6.3. (i): In view of Proposition 6.1 and Lemma 6.2, we only
need to show that U is a graph subspace. For this it is sufficient that (0, w) ∈ U
implies w = 0. Suppose that (a) holds, let it ∈ ̺(T ), t ∈ R, and set (u, v) =
(T − it)−1(0, w). Then

(A− it)u+Bv = 0, Cu − (A∗ + it)v = w.

Since U is J1-neutral and invariant under (T − it)−1, this implies

0 =
〈(0

w

) ∣∣∣
(
u
v

)〉
= −i(w|u)

and thus
0 = (w|u) = (Cu|u)− (v|(A− it)u) = (Cu|u) + (Bv|v).

Since B is positive and C nonnegative, we obtain v = 0 and, with the reasoning
from the proof of Proposition 4.4, Cu = 0. Hence w = 0.
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In the case of (b), for it ∈ M ∩ ̺(T )∩ iR we consider u, v as above and obtain
now Cu = Bv = 0. Since it ∈ ̺(A), we have −it ∈ ̺(A∗). For ũ ∈ D(B∗) we get

(
(A∗ + it)−1w

∣∣B∗ũ
)
= −(v|B∗ũ) = −(Bv|ũ) = 0.

Consequently, the function f(z) = ((A∗ − z̄)−1w|B∗ũ), which is holomorphic on
M , vanishes on M ∩ ̺(T ) ∩ iR. From the identity theorem we thus obtain

0 =
(
(A∗ − z̄)−1w

∣∣B∗ũ
)
=
(
w
∣∣ (A− z)−1B∗ũ

)
for all z ∈ M,

and (27) now implies w = 0.
(ii): The assertion that T has no eigenvalues on iR is immediate from Propo-

sition 4.4 and 6.6. Condition (20) in Theorem 5.3 is now trivially satisfied and
hence Uσ is hypermaximal J1-neutral. The subspace U± associated with σ±

p (T ) is
J2-nonnegative/-nonpositive by Proposition 5.7 and hence X± is nonnegative/non-
positive by Lemma 6.2.

(iii): If C > 0, then Uσ = Γinv(Yσ) by Remark 6.5. Hence Xσ is injective

with X−1
σ = Yσ. Now let X be nonnegative selfadjoint and Γ(X) =

⊕2
k Uk with

Uk ⊂ Vk T -invariant. Then each Uk is J2-nonnegative and the span of certain
root vectors of T . By Proposition 6.6, Lemma 5.9 can be applied and yields that
Uk is the span of root vectors corresponding to eigenvalues in the right half-plane.
Therefore Uk ⊂ U+ and hence Γ(X) ⊂ U+. Consequently X ⊂ X+ and thus
X = X+ since both operators are selfadjoint. The proof of the uniqueness of X−

is analogous. �

Under the additional assumptions of Theorem 4.6, which yields a finitely spec-
tral Riesz basis of subspaces for T , condition (27) for the existence of solutions of
the Riccati equation simplifies:

Theorem 6.7 Let T be a nonnegative Hamiltonian operator matrix such that A
is normal with compact resolvent and B, C are p-subordinate to A with 0 ≤ p < 1.
Suppose that σ(A) lies on finitely many rays from the origin, that

lim inf
r→∞

N(r, A)

r1−p
< ∞,

and that

ker(A− λ) ∩ kerB = {0} for all λ ∈ C,
ker(A− it) ∩ kerC = {0} for all t ∈ R.

Then T has compact resolvent, a finitely spectral Riesz basis of subspaces, and
σ(T )∩ iR = ∅. For every skew-conjugate set σ ⊂ σ(T ) the associated T -invariant
compatible subspace Uσ is the graph Uσ = Γ(Xσ) of a selfadjoint solution Xσ of
the Riccati equation

Xσ(Au+BXσu) = Cu −A∗Xσu, u ∈ D(A) ∩X−1
σ D(A∗), (32)

and D(A) ∩X−1
σ D(A∗) is a core for Xσ. The solutions X± corresponding to σ =

σ±
p (T ) are nonnegative/nonpositive.

Proof. This follows from Theorem 4.6, Theorem 6.3 and Proposition 6.6. Note
that ker(A− λ) = ker(A∗ − λ) since A is normal. �
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7 Bounded solutions of the Riccati equation

In this section we prove the existence of bounded solutions of the Riccati equation
and also obtain relations between those solutions. We make use of the following
quantity associated with relatively bounded perturbations:

Definition 7.1 Let G,S be linear operators on a Banach or Hilbert space such
that S is relatively bounded to G. We call

c0 = inf
z∈̺(G)

‖S(G− z)−1‖

the lower resolvent bound of S with respect to G.

Note that if c0 < 1, then there exists z ∈ ̺(G) with ‖S(G− z)−1‖ < 1, and a
Neumann series argument implies that z ∈ ̺(G+ S) and

(G+ S − z)−1 = (G− z)−1
(
I + S(G− z)−1

)−1
.

Recall that a linear operatorG on a Hilbert space is called accretive if Re(Gx|x) ≥
0 for all x ∈ D(G) and m-accretive if in addition z ∈ ̺(G) for one (and hence for
all) z with Re z < 0, see [16, §V.3.10].

Lemma 7.2 Let S be relatively bounded to G with G-bound b0 and lower resolvent
bound c0. Then:

(i) b0 ≤ c0.

(ii) If G is selfadjoint or m-accretive on a Hilbert space, then b0 = c0.

(iii) If there is a sequence (zk) in ̺(G) and a constant M ∈ R such that

lim
k→∞

|zk| = ∞ and ‖(G− zk)
−1‖ ≤ M

|zk|
,

then b0 = 0 ⇔ c0 = 0.

Proof. (i) follows from the estimate

‖Sx‖ ≤ ‖S(G− z)−1‖‖(G− z)x‖ ≤ ‖S(G− z)−1‖
(
‖Gx‖+ |z|‖x‖

)
.

(ii): If G is selfadjoint, then ‖(G − ir)−1‖ ≤ |r|−1 and ‖G(G − ir)−1‖ ≤ 1 for
r ∈ R \ {0}. Hence for every b > b0 there exists a ∈ R such that

‖S(G− ir)−1‖ ≤ a‖(G− ir)−1‖+ b‖G(G− ir)−1‖ ≤ a

|r| + b

for every r ∈ R\{0}; consequently c0 ≤ b0. If G is m-accretive, then ‖(G+r)−1‖ ≤
r−1 and ‖G(G+ r)−1‖ ≤ 1 for r > 0. Hence ‖S(G+ r)−1‖ ≤ ar−1 + b.

(iii): Let b0 = 0. The assumptions yield

‖G(G− zk)
−1‖ = ‖I + zk(G− zk)

−1‖ ≤ 1 +M

and

‖S(G− zk)
−1‖ ≤ a‖(G− zk)

−1‖+ b‖G(G− zk)
−1‖ ≤ aM

|zk|
+ b(1 +M),

where b > 0 can be chosen arbitrarily small. Hence c0 = 0. �
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Remark 7.3 For selfadjoint G, the above proof shows that in fact

lim
r→±∞

‖S(G− ir)−1‖ = b0.

This result is already contained in the book of Weidmann [34, Satz 9.1]. If G is
m-accretive, then

lim
r→∞

‖S(G+ r)−1‖ = b0.

For general G, the inequality b0 ≤ c0 may be strict: Consider for example some
b0 > 0 and normal operatorsG,S with a common orthonormal basis of eigenvectors
(ek), Gek = λkek, σp(G) = Z ∪ iZ, Sek = b0ek for λk = 0 and Sek = b0λkek for
λk 6= 0. Then straightforward computations show that b0 is the G-bound of S and
c0 ≥ b0

√
8/5.

Definition 7.4 For a diagonally dominant Hamiltonian T we consider the decom-
position

T = G+ S, G =

(
A 0
0 −A∗

)
, S =

(
0 B
C 0

)
. (33)

We define the lower resolvent bound of T to be the lower resolvent bound of S with
respect to G.

As seen above, if T has lower resolvent bound < 1, then ̺(T ) 6= ∅. Moreover,
the Hamiltonians from Theorem 4.6 and 4.7 have lower resolvent bound 0, which
is a consequence of Lemma 7.2(iii).

Proposition 7.5 Let T be a diagonally dominant Hamiltonian with lower resol-
vent bound 0. Let X : H → H be bounded such that Γ(X) is T - and (T − z)−1-
invariant for all z ∈ ̺(T ). Then XD(A) ⊂ D(A∗) and

A∗Xu+XAu+XBXu− Cu = 0, u ∈ D(A). (34)

Moreover

σ(A +BX) = σ(T |Γ(X)), σp(A+BX) = σp(T |Γ(X)),

and for every λ ∈ σp(A+BX) the root subspace of A+BX corresponding to λ is
the projection onto the first component of the root subspace of T |Γ(X) corresponding
to λ.

Proof. We consider the isomorphism ϕ and the projection pr1 given by

ϕ : H → Γ(X),

u 7→ (u,Xu),
and

pr1 : H ×H → H,

(u, v) 7→ u.

Hence ϕ−1 = pr1|Γ(X). Using the decomposition (33) and writing E = ϕ−1T |Γ(X)ϕ
and F = pr1Sϕ, we have

E − F = pr1Tϕ− pr1Sϕ = pr1Gϕ = A|D(A)∩X−1D(A∗).

The (T − z)−1-invariance of Γ(X) implies that ϕ−1(T − z)−1ϕ = (E − z)−1 for
z ∈ ̺(T ). Since T has lower resolvent bound 0, we can now use a Neumann series
argument to find z ∈ ̺(G) ∩ ̺(T ) such that

F (E − z)−1 = pr1Sϕ ◦ ϕ−1(T − z)−1ϕ = pr1S(T − z)−1ϕ

= pr1S(G− z)−1
(
I + S(G− z)−1

)−1
ϕ
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and ‖F (E − z)−1‖ < 1. Consequently z ∈ ̺(E − F ) = ̺(A|D(A)∩X−1D(A∗)). Since
also z ∈ ̺(A), we obtain D(A) ∩ X−1D(A∗) = D(A), i.e. XD(A) ⊂ D(A∗). The
Riccati equation (34) then follows from (25). Moreover, we have

ϕ−1T |Γ(X)ϕ = A+BX,

which immediately implies the equality of the spectra and point spectra of T |Γ(X)

and A+BX , and that ϕ maps the root subspaces of A+BX bijectively onto the
corresponding ones of T |Γ(X). �

In [19, Theorem 5.6], a correspondence between bounded solutions of the Riccati
equation and eigenvectors of Riesz-spectral Hamiltonians is derived. We obtain:

Theorem 7.6 Let T be a diagonally dominant Hamiltonian with lower resolvent
bound 0, compact resolvent and a finitely spectral Riesz basis of subspaces (Vk)k∈N.
Let X : H → H be bounded. Then Γ(X) is T -invariant and compatible with
(Vk)k∈N if and only if XD(A) ⊂ D(A∗) and X is a solution of the Riccati equation

A∗Xu+XAu+XBXu− Cu = 0, u ∈ D(A). (35)

Proof. If Γ(X) is invariant and compatible, then the assertion follows from Propo-
sition 7.5. So suppose that XD(A) ⊂ D(A∗) and that (35) holds. In view of Propo-
sition 3.15 it suffices to find z ∈ ̺(T ) such that Γ(X) is (T − z)−1-invariant. Let ϕ
and pr1 be as above. Let z ∈ ̺(G), in particular z ∈ ̺(A). Since XD(A) ⊂ D(A∗),
we have

A− z = pr1(G− z)ϕ.

Set W = (G− z)ϕ(D(A)). Then pr1 maps W bijectively onto H and we have

(A− z)−1 = ϕ−1(G− z)−1(pr1|W )−1.

We want to show that W is closed. Let xn ∈ W with xn → x as n → ∞ and
set yn = (G− z)−1xn. Then yn → (G− z)−1x as well as

yn = ϕ(A − z)−1pr1xn → ϕ(A− z)−1pr1x.

Consequently (G− z)−1x = ϕ(A− z)−1pr1x and hence x ∈ W . The open mapping
theorem now implies that (pr1|W )−1 is bounded. Since

BX(A− z)−1 = pr1Sϕ ◦ ϕ−1(G− z)−1(pr1|W )−1 = pr1S(G− z)−1(pr1|W )−1

and since T has lower resolvent bound 0, we can find z ∈ ̺(G) ∩ ̺(T ) such that
‖BX(A−z)−1‖ < 1, which in turn yields z ∈ ̺(A+BX). Since (35) holds, Γ(X) is
T -invariant and ϕ−1T |Γ(X)ϕ = A+BX ; in particular ̺(T |Γ(X)) = ̺(A+BX). We
end up with z ∈ ̺(T )∩ ̺(T |Γ(X)), which implies that Γ(X) is (T − z)−1-invariant.

�

Remark 7.7 Let X be bounded and selfadjoint. Then XD(A) ⊂ D(A∗) and

A∗Xu+XAu+XBXu− Cu = 0, u ∈ D(A),

if and only if XD(A) ⊂ D(B) and

(Xu|Av) + (Au|Xv) + (BXu|Xv)− (Cu|v) = 0, u, v ∈ D(A).

Indeed, the second equation implies that (Xu|Av) is bounded in v; hence Xu ∈
D(A∗) and the first equation follows.
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Lemma 7.8 Let X+, X− be bounded selfadjoint operators on a Hilbert space H
with X+ uniformly positive and X− nonpositive. If X is a Hermitian operator on
H satisfying D(X) = D+ ∔D−, X |D±

= X±|D±
, then X is bounded.

Proof. First consider u ∈ D+, v ∈ D− with ‖u‖ = ‖v‖ = 1. Then

Re(u− v|X+u+X−v) = Re
(
(u|X+u)− (v|Xu) + (u|Xv)− (v|X−v)

)

= (u|X+u)− (v|X−v) ≥ γ

where X+ ≥ γ > 0. Hence

γ ≤ |(u − v|X+u+X−v)| ≤ ‖u− v‖ ·
(
‖X+‖+ ‖X−‖

)
.

This implies

1− Re(u|v) = 1

2
‖u− v‖2 ≥ δ with δ =

1

2

(
γ

‖X+‖+ ‖X−‖

)2

> 0.

Consequently

|(u|v)| ≤ 1− δ for all u ∈ D+, v ∈ D− with ‖u‖ = ‖v‖ = 1.

Now for arbitrary u ∈ D+, v ∈ D− we have the estimates

‖X(u+ v)‖ = ‖X+u+X−v‖ ≤ max{‖X+‖, ‖X−‖}
(
‖u‖+ ‖v‖

)
,

(
‖u‖+ ‖v‖

)2 ≤ 2
(
‖u‖2 + ‖v‖2

)
,

‖u+ v‖2 ≥ ‖u‖2 + ‖v‖2 − 2|(u|v)| ≥ ‖u‖2 + ‖v‖2 − 2(1− δ)‖u‖‖v‖
≥ ‖u‖2 + ‖v‖2 − (1 − δ)

(
‖u‖2 + ‖v‖2

)
= δ
(
‖u‖2 + ‖v‖2

)
.

Therefore

‖X(u+ v)‖ ≤
√

2

δ
max

{
‖X+‖, ‖X−‖

}
‖u+ v‖,

X is bounded. �

For uniformly positive Hamiltonians we can now prove the existence of bounded
solutions of the Riccati equation and also obtain relations between them. The
existence of bounded solutions was shown in [21] for the case that σ(A) lies in a
sector in the open left half-plane; here σ(A) may also have points in the closed
right half-plane. The relations (37) and (39) were derived in [8, 26] under the
assumption of the existence of X−. On the other hand, no uniform positivity was
needed there.

Recall from Proposition 4.4 and (12) that a closed uniformly positive Hamil-
tonian with a finitely spectral Riesz basis of subspaces satisfies {z ∈ C | |Re z| <
γ} ⊂ ̺(T ) for some γ > 0.

Theorem 7.9 Let T be a uniformly positive, diagonally dominant Hamiltonian
with lower resolvent bound 0 and a Riesz basis of Jordan chains. Suppose that
all eigenvalues of T have finite multiplicity and that they are contained in a strip
around iR.
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(i) If U is a hypermaximal J1-neutral, T -invariant, compatible subspace, then
U = Γ(X) where X is bounded, selfadjoint, boundedly invertible, XD(A) =
D(A∗), and X is a solution of the Riccati equation

A∗Xu+XAu+XBXu− Cu = 0, u ∈ D(A). (36)

Moreover, the solutions X± corresponding to the compatible subspaces U±

associated with σ±
p (T ) are uniformly positive/negative and

X− ≤ X ≤ X+, X−1
− ≤ X−1 ≤ X−1

+ . (37)

(ii) If X is a closed symmetric operator satisfying D(A) ⊂ X−1D(B), and

(Xu|Av) + (Au|Xv) + (BXu|Xv)− (Cu|v) = 0, u, v ∈ D(A), (38)

then X is bounded, XD(A) ⊂ D(A∗) and (36) and the first inequality in (37)
hold. If in addition T has a compact resolvent, then Γ(X) is hypermaximal
J1-neutral, T -invariant and compatible, and hence all conclusions of (i) hold.

(iii) If X is bounded and Γ(X) is T -invariant and compatible, then there exists a
projection P such that

X = X+P +X−(I − P ). (39)

Proof. (i): Let (λk)k∈N be the eigenvalues of T . In view of Proposition 3.3, the
root subspaces L(λk) of T form a finitely spectral Riesz basis. Theorem 6.3 and Re-
mark 6.5 thus yield that U is a graph U = Γ(X) withX selfadjoint and injective. In
particular U± = Γ(X±) where X± is also bounded and uniformly positive/negative

by Proposition 5.7 and Lemma 6.2. We have Γ(X) =
⊕2

k∈N Uk with T -invariant
subspaces Uk ⊂ L(λk). Hence

Γ(X) = W+ ⊕W− with W+ =
⊕2

Reλk>0

Uk, W− =
⊕2

Reλk<0

Uk, (40)

andW± ⊂ Γ(X±). SettingD± = pr1(W±) where pr1 is the projection onto the first
component, we getD(X) = D+∔D−, X |D±

= X±|D±
, and Lemma 7.8 implies that

X is bounded. From Proposition 7.5 we thus obtain XD(A) ⊂ D(A∗) and (36).
Then (38) holds too, and the first inequality in (37) will be a consequence of (ii).

As Γ(X(±)) = Γinv(X
−1
(±)), the above reasoning applied to the Hamiltonian T̃ from

(29) yields the boundedness of X−1, X−1D(A∗) ⊂ D(A) (hence XD(A) = D(A∗)),
and the second inequality in (37).

(ii): Since equation (38) holds for X+, we have

0 = (Au|(X+ −X)u) + ((X+ −X)u|Au) + (BX+u|X+u)− (BXu|Xu)

= ((A +BX+)u|(X+ −X)u) + ((X+ −X)u|(A+BX+)u)

− (B(X+ −X)u|(X+ −X)u)

for u ∈ D(A). With ∆ = X+ −X and t ∈ R we obtain

2Re
(
(A+BX+ − it)u

∣∣∆u
)
= (B∆u|∆u) ≥ 0.
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Proposition 7.5 implies that iR ⊂ ̺(A + BX+), that σp(A + BX+) is contained
in the right half-plane, and that the system of root subspaces (Lλ) of A+BX+ is
complete in H . Then

Re
(
v
∣∣∆(A+BX+ − it)−1v

)
≥ 0 for v ∈ H,

and Lemma 5.5 yields

(∆v|v) = 1

π

∫ ′R Re
(
∆v
∣∣(A+BX+ − it)−1v

)
dt ≥ 0 for v ∈

∑

λ∈σp(A+BX+)

Lλ.

Hence X ≤ X+ on
∑

λ Lλ. Analogously we find X− ≤ X on
∑

λ Lλ. Since X+

and X− are bounded, this implies that X is bounded on
∑

λ Lλ and hence on H
since X is closed. Consequently X− ≤ X ≤ X+ holds on H , and XD(A) ⊂ D(A∗)
and (36) follow by Remark 7.7.

Let now T have a compact resolvent. Theorem 7.6 implies that Γ(X) is a
compatible subspace. It is also hypermaximal J1-neutral since X is selfadjoint.

(iii): We have again the decomposition (40). In particular, (Uk) is a Riesz basis
of Γ(X). Let Dk = pr1(Uk). Then (Dk) is complete in H . Moreover, if c is the
constant from (4) for the basis (Uk) and uk ∈ Dk, then

c−1
n∑

k=0

‖uk‖2 ≤ c−1
n∑

k=0

∥∥∥
(

uk

Xuk

)∥∥∥
2

≤
∥∥∥

n∑

k=0

(
uk

Xuk

)∥∥∥
2

≤ (1 + ‖X‖2)
∥∥∥

n∑

k=0

uk

∥∥∥
2

,

∥∥∥
n∑

k=0

uk

∥∥∥
2

≤
∥∥∥

n∑

k=0

(
uk

Xuk

)∥∥∥
2

≤ c

n∑

k=0

∥∥∥
(

uk

Xuk

)∥∥∥
2

≤ c(1 + ‖X‖2)
n∑

k=0

‖uk‖2.

So (Dk)k∈N is a Riesz basis of subspaces of H . Consequently, we have the decom-
position

H =
⊕2

Reλk>0

Dk ⊕
⊕2

Reλk<0

Dk.

Let P : H → H be the corresponding projection onto
⊕2

Reλk>0 Dk. Since X |Dk
=

X±|Dk
for Reλk ≷ 0, we obtain X = X+P +X−(I − P ). �

8 Examples

We start with an explicit example for the existence of infinitely many unbounded
solutions of the Riccati equation. The Hamiltonian here is neither Riesz-spectral
nor dichotomous, and so the results from [19] and [21] can not be applied.

Example 8.1 Let T be a nonnegative Hamiltonian with normal A, B = I and
selfadjoint C such that A and C admit an orthonormal basis (fk)k≥1 of common
eigenvectors, Afk = ik2fk and Cfk = kfk for k ≥ 1. Then C is 1/2-subordinate to
A and Theorem 6.7 can be applied. In fact, T is the operator from Example 3.7,
its eigenvalues and corresponding normalised eigenvectors are

λ±
k = ik2 ±

√
k, v±k =

1√
1 + k

(
fk

±
√
k fk

)
,
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and Vk = Cfk × Cfk yields a finitely spectral orthogonal basis of subspaces. In
particular, T is neither Riesz-spectral nor dichotomous, see also Remark 3.13. The
hypermaximal J1-neutral compatible subspace corresponding to a skew-conjugate
set σ ⊂ σ(T ) is given by

Uσ =
⊕2

k≥1

Uk with Uk =

{Cv+k if λ+
k ∈ σ,Cv−k if λ−
k ∈ σ.

It is the graph Uσ = Γ(Xσ) of a selfadjoint solution Xσ of the Riccati equation
(32),

Xσfk =

{ √
k fk if λ+

k ∈ σ,

−
√
k fk if λ−

k ∈ σ.

In particular, Xσ is unbounded and boundedly invertible. Moreover, every closed
densely defined solution X such that Γ(X) is compatible with (Vk) is of the above
form.

By choosing different eigenvalues for the operators A and C, it is easy to con-
struct solutions Xσ with different properties, for example solutions that are un-
bounded and not boundedly invertible, see also [36, §5.1].

We now prove the existence of infinitely many solutions of a Riccati equation
involving differential operators. Since B and C are unbounded, this example is
again not covered by [19, 21].

Example 8.2 Let H = L2([a, b]) and consider the operators A, B, C on H given
by

Au = u′′′, Bu = −(g1u
′)′ + h1u, Cu = −(g2u

′)′ + h2u,

D(A) =
{
u ∈ W 3,2([a, b])

∣∣ u(a) = u(b) = 0, u′(a) = u′(b)
}
,

D(B) = D(C) =
{
u ∈ C2([a, b])

∣∣ u(a) = u(b) = 0
}

where g1, g2 ∈ C1([a, b]), h1, h2 ∈ L2([a, b]), g1, g2, h1, h2 ≥ 0, and W k,2([a, b])
denotes the Sobolev space of k times weakly differentiable, square integrable func-
tions. Then A is skew-selfadjoint with compact resolvent, 0 ∈ ̺(A), and σ(A)
consists of at most two sequences of eigenvalues

λjk = cjkk
3, k ≥ kj0, j = 1, 2,

with converging sequences (cjk), see [25]. Since the multiplicity of every eigenvalue
is at most three, this implies that

sup
r≥1

N(r, A)

r1/3
< ∞.

The operators B and C are symmetric and nonnegative. Using Sobolev and inter-
polation inequalities, see [1], we can find constants b1, b2, b3 ≥ 0 such that

‖Bu‖L2 ≤ ‖g1‖∞‖u′′‖L2 + ‖g′1‖L2‖u′‖∞ + ‖h1‖L2‖u‖∞ ≤ b1‖u‖W 2,2

≤ b2‖u‖1/3L2 ‖u‖2/3W 3,2 ≤ b3‖u‖1/3L2

(
‖u‖L2 + ‖u′′′‖L2

)2/3

≤ b3
(
‖A−1‖+ 1

)2/3‖u‖1/3L2 ‖Au‖2/3L2
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for u ∈ D(A). Hence B, and similarly C, are 2/3-subordinate to A. By The-
orem 4.6, the Hamiltonian corresponding to A,B,C thus has a finitely spectral
Riesz basis of subspaces. If g1 > 0 or h1 > 0, and if g2 > 0 or h2 > 0, then both B
and C are positive, and Theorem 6.3 yields an injective selfadjoint solution of the
Riccati equation (28) for every skew-conjugate set σ ⊂ σ(T ).

This example immediately generalises to normal differential operators A on
[a, b] of order n and nonnegative symmetric differential operators B,C of order at
most n− 1.

In our final example we obtain the existence of bounded solutions. In contrast
to [8], the explicit assumption of the existence of X− is not needed here. We also
construct a solution whose graph is not a compatible subspace.

Example 8.3 Let H = L2([−1, 1]) and consider the operators

Au = u′, D(A) =
{
u ∈ W 1,2([−1, 1])

∣∣u(−1) = u(1)
}
,

Bu = bu, Cu = cu, D(B) = D(C) = H

with b, c ∈ L∞([−1, 1]) and b(t), c(t) ≥ γ > 0 for almost all t ∈ [−1, 1]. A is
skew-selfadjoint with compact resolvent and simple eigenvalues λk = iπk. B and
C are bounded and uniformly positive. If now ‖b‖∞, ‖c‖∞ < π/2, then we can
apply Theorems 4.7 and 7.9 and obtain bounded, selfadjoint, boundedly invertible
solutions of the Riccati equation (36) as well as the relations

X− ≤ X ≤ X+ and X = X+P +X−(I − P ).

Consider now the special case that c = χ2b with

χ(t) =

{
1, t < 0,

α, t ≥ 0,
α ∈ R \ {0, 1}.

Let X ∈ L(H) be the operator of multiplication with χ. It is not hard to see that

D(A) ∩X−1D(A) =
{
u ∈ W 1,2([−1, 1])

∣∣u(−1) = u(0) = u(1) = 0
}

and AXu = χu′ for u ∈ D(A) ∩X−1D(A). Hence

−AXu+XAu+XBXu− Cu = −χu′ + χu′ + χ2bu− cu = 0.

Consequently, X is a solution of the Riccati equation

−AXu+XAu+XBXu− Cu = 0, u ∈ D(A) ∩X−1D(A),

and D(A)∩X−1D(A) ⊂ H is dense. In particular, Γ(X) is a T -invariant subspace.
On the other hand, since D(A) ∩X−1D(A) 6= D(A) we have XD(A) 6⊂ D(A), and
with Theorem 7.6 we conclude that Γ(X) is not a compatible subspace.
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