Online seminar on port-Hamiltonian systems (pHOne) 6th March 2024, online

# The Partitioned Finite Element Method for port-Hamiltonian systems: a structure-preserving discretization for boundary-controlled wave and heat PDEs.

Denis Matignon<sup>1</sup>

<sup>1</sup>ISAE-SUPAERO, Université de Toulouse



### -Outline

### 1 Introduction

- Goal of the presentation and a few references
- Main objective of PFEM

### 2 Linear Wave equations: towards PH-DAEs and PH-ODEs

- Discretization in terms of energy and co-energy variables: PH-DAEs
- Application: Boundary Dissipation
- Case of mixed boundary control: PH-DAEs again
- Convergence of PFEM

### 3 Thermodynamics

- Short recall
- Lyapunov functional as Hamiltonian
- 4 Heat Wave PDE system coupled through the boundary
  - The simplified, linearised fluid-structure model
  - Coupled pHs model at the discrete level
  - Simulation results

### 5 Extensions & applications of PFEM?



- Goal of the presentation and a few references
- Main objective of PFEM

Outline

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

3 Thermodynamics

- 4 Heat Wave PDE system coupled through the boundary
- 5 Extensions & applications of PFEM?

- **Goal**: the underlying structure of physical systems must be preserved by numerical methods at the discrete level, i.e. from infinite dimension to finite dimension (but still in continuous time).
- Applications: the 2D wave PDE, and the 2D heat PDE with collocated boundary control and observation.
- Proof of concept: the heat-wave coupling and refined asymptotics can be recovered at the discrete level.

Twenty years of distributed port-Hamiltonian systems: a literature review **Rashad, R., Califano, F., van der Schaft, A.J. and Stramigioli, S.** *IMA J. Mathematics of Control and Information, vol.37 (4), pp. 1400–1422 (2020)* 

 $\implies$  More than 170 up-to-date references on:

- Theoretical Framework
- Modeling
- Analysis and Control
- Discretization

- Numerical Methods for Distributed Parameter Port-Hamiltonian Systems Kotyczka P. TUM University Press, Munich (2019),
- Structure preserving approximation of dissipative evolution problems Egger H. Numerische Mathematik vol. 143(1), pp. 85–106 (2019)
- A Partitioned Finite-Element Method for power-preserving discretization of open systems of conservation laws, Cardoso-Ribeiro F.L., Matignon D., Lefèvre L. IMA J. Mathematics of Control and Information, vol. 38(2), pp. 493–533 (2021)
- Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method, Haine G., Matignon D., Monteghetti F. Mathematical Reports, vol. 22(1–2), pp. 187–215 (2022).

• Origin of the method:

F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. In <u>6th IFAC Workshop on Lagrangian and</u> Hamiltonian Methods for Nonlinear Control (LHMNLC), Valparaíso, Chile, 2018. IFAC-PapersOnLine, Vol. 51, Issue 3, 2018, pp. 119–124 • Origin of the method:

F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. In <u>6th IFAC Workshop on Lagrangian and</u> Hamiltonian Methods for Nonlinear Control (LHMNLC), Valparaíso, Chile, 2018. IFAC-PapersOnLine, Vol. 51, Issue 3, 2018, pp. 119–124

Collaborators on the **PFEM 4 pHs** project since then:

- Anass SERHANI
- Andrea BRUGNOLI
- Ghislain HAINE
- Valérie POMMIER BUDINGER
- Daniel ALAZARD
- Michel SALAÜN
- Xavier VASSEUR
- Florian MONTEGHETTI
- Michel FOURNIÉ
- Giuseppe FERRARO
- Antoine BENDIMERAD-HOHL



#### 1 Introduction

Goal of the presentation and a few references

Main objective of PFEM

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

- 3 Thermodynamics
- 4 Heat Wave PDE system coupled through the boundary
- 5 Extensions & applications of PFEM?

# -Main Objective

#### Aim:

*Simulate complex open physical systems* by ensuring the *conservation of the <i>power balance* for a chosen functional: the **Hamiltonian**.

## -Main Objective

#### Aim:

*Simulate complex open physical systems* by ensuring the *conservation of the power balance* for a chosen functional: the **Hamiltonian**.

- Finite Element Method:
  - $\rightarrow$  Complex geometries are allowed.
  - $\rightarrow$  A wide range of implementation tools are available.

## Main Objective

#### Aim:

*Simulate complex open physical systems* by ensuring the *conservation of the power balance* for a chosen functional: the **Hamiltonian**.

#### Finite Element Method:

- $\rightarrow$  Complex geometries are allowed.
- $\rightarrow$  A wide range of implementation tools are available.

### Port-Hamiltonian Systems (PHS):

- $\rightarrow$  Model "energy" exchanges between simpler open subsystems.
- $\rightarrow$  The power balance is *encoded* in a **Stokes-Dirac structure**.

## -Main Objective

#### Aim:

*Simulate complex open physical systems* by ensuring the *conservation of the power balance* for a chosen functional: the **Hamiltonian**.

#### Finite Element Method:

- $\rightarrow$  Complex geometries are allowed.
- $\rightarrow$  A wide range of implementation tools are available.

### Port-Hamiltonian Systems (PHS):

- $\rightarrow$  Model "energy" exchanges between simpler open subsystems.
- $\rightarrow$  The power balance is encoded in a Stokes-Dirac structure.
- Partitioned Finite Element Method (PFEM):
  - $\rightarrow$  It approximates the Stokes-Dirac structure into a **Dirac structure**.
  - $\rightarrow$  The discrete Hamiltonian satisfies a "discrete" power balance.

A Partitioned Finite-Element Method for power-preserving discretization of open systems of conservation laws Cardoso-Ribeiro F.L., Matignon D., Lefèvre L.

IMA J. Mathematics of Control and Information, vol.38(2), pp. 493–533 (2021)

# Change of paradigm?



## Change of paradigm?



# Change of paradigm?



- The energy variables  $\vec{\alpha}$  (vector field);
- The Hamiltonian  $\mathcal{H}(\vec{\alpha}(t))$  (positive functional);

- The energy variables  $\vec{\alpha}$  (vector field);
- The Hamiltonian  $\mathcal{H}(\vec{\alpha}(t))$  (positive functional);
- The co-energy variables  $\overrightarrow{e}_{\overrightarrow{\alpha}} := \delta_{\overrightarrow{\alpha}} \mathcal{H}$  (vector field),

 $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\vec{\alpha}$ ;

- The energy variables  $\vec{\alpha}$  (vector field);
- The Hamiltonian  $\mathcal{H}(\vec{\alpha}(t))$  (positive functional);
- The co-energy variables  $\vec{e}_{\vec{\alpha}} := \delta_{\vec{\alpha}} \mathcal{H}$  (vector field),

 $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\overrightarrow{\alpha}$ ;

- The *structure* operator *J* (linear and *formally skew-symmetric*);
- The resistive/dissipative operator R (linear and positive);

- The energy variables  $\vec{\alpha}$  (vector field);
- The Hamiltonian  $\mathcal{H}(\vec{\alpha}(t))$  (positive functional);
- The co-energy variables  $\overrightarrow{e}_{\overrightarrow{\alpha}} := \delta_{\overrightarrow{\alpha}} \mathcal{H}$  (vector field),

 $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\overrightarrow{\alpha}$ ;

- The *structure* operator *J* (linear and *formally skew-symmetric*);
- The resistive/dissipative operator *R* (linear and *positive*);
- The **control operator** *B* (linear);
- The input *u* and the collocated output *y* (boundary fields);

- The energy variables  $\vec{\alpha}$  (vector field);
- The Hamiltonian  $\mathcal{H}(\vec{\alpha}(t))$  (positive functional);
- The co-energy variables  $\overrightarrow{e}_{\overrightarrow{\alpha}} := \delta_{\overrightarrow{\alpha}} \mathcal{H}$  (vector field),

 $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\overrightarrow{\alpha}$ ;

- The *structure* operator *J* (linear and *formally skew-symmetric*);
- The resistive/dissipative operator R (linear and positive);
- The **control operator** *B* (linear);
- The input *u* and the collocated output *y* (boundary fields);
- The dynamical system:

$$\begin{cases} \partial_t \overrightarrow{\boldsymbol{\alpha}}(t) = (J-R) \overrightarrow{\boldsymbol{e}}_{\overrightarrow{\boldsymbol{\alpha}}}(t) + B\boldsymbol{u}(t), \\ \boldsymbol{y}(t) = B^* \overrightarrow{\boldsymbol{e}}_{\overrightarrow{\boldsymbol{\alpha}}}(t). \end{cases}$$

- The energy variables  $\vec{\alpha}$  (vector field);
- The Hamiltonian  $\mathcal{H}(\vec{\alpha}(t))$  (positive functional);
- The co-energy variables  $\overrightarrow{e}_{\overrightarrow{\alpha}} := \delta_{\overrightarrow{\alpha}} \mathcal{H}$  (vector field),

 $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\overrightarrow{\alpha}$ ;

- The *structure* operator *J* (linear and *formally skew-symmetric*);
- The resistive/dissipative operator R (linear and positive);
- The **control operator** *B* (linear);
- The input *u* and the collocated output *y* (boundary fields);
- The dynamical system:

$$\left\{ \begin{array}{l} \partial_t \overrightarrow{\alpha}(t) = (J - R) \overrightarrow{e}_{\overrightarrow{\alpha}}(t) + B \boldsymbol{u}(t), \\ \boldsymbol{y}(t) = B^* \overrightarrow{e}_{\overrightarrow{\alpha}}(t). \end{array} \right.$$

#### Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}(t)) = -\left\langle R\overrightarrow{\boldsymbol{e}}_{\overrightarrow{\boldsymbol{\alpha}}}(t), \overrightarrow{\boldsymbol{e}}_{\overrightarrow{\boldsymbol{\alpha}}}(t)\right\rangle_{J} + \left\langle \boldsymbol{u}(t), \boldsymbol{y}(t)\right\rangle_{B} \leq \left\langle \boldsymbol{u}(t), \boldsymbol{y}(t)\right\rangle_{B}$$

Although the underlying geometry is well-determined with the above equality, constitutive relations between  $\vec{\alpha}$  and  $\vec{e}_{\vec{\alpha}}$  are also needed to solve the system!

Matignon (ISAE-SUPAERO)

#### 2 Linear Wave equations: towards PH-DAEs and PH-ODEs

- Discretization in terms of energy and co-energy variables: PH-DAEs
- Application: Boundary Dissipation

Outline

- Case of mixed boundary control: PH-DAEs again
- Convergence of PFEM

### 3 Thermodynamics

- 4 Heat Wave PDE system coupled through the boundary
- 5 Extensions & applications of PFEM?

**Deflection** *w* of a 2D-membrane, *boundary deflection velocity* as control.

**Deflection** w of a 2D-membrane, *boundary deflection velocity* as control. Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{T}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

**Deflection** *w* **of a 2D-membrane**, *boundary deflection velocity* as control. Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{T}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

•  $\rho$  the mass density of the medium and  $\overline{T}$  the Young modulus tensor; •  $\alpha_p := \rho \,\partial_t w$  the linear momentum and  $\overrightarrow{\alpha}_q := \overrightarrow{\mathbf{grad}}(w)$  the strain;

**Deflection** *w* **of a 2D-membrane**, *boundary deflection velocity* as control. Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

ρ the mass density of the medium and T the Young modulus tensor;
α<sub>p</sub> := ρ ∂<sub>t</sub> w the linear momentum and α<sub>q</sub> := grad (w) the strain;
e q := δ<sub>α<sub>q</sub></sub> H = T · α<sub>q</sub> the stress;

•  $e_p := \delta_{\alpha_p} \mathcal{H} = \frac{\alpha_p}{\rho} = \partial_t w$  the *deflection velocity* and  $u := e_p$ ;

**Deflection** *w* **of a 2D-membrane**, *boundary deflection velocity* **as control.** Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

- ρ the mass density of the medium and T the Young modulus tensor;
  α<sub>p</sub> := ρ ∂<sub>t</sub>w the linear momentum and α<sub>q</sub> := grad (w) the strain;
  e d<sub>q</sub> := δ<sub>d<sub>q</sub></sub> H = T · α<sub>q</sub> the stress;
- $e_p := \delta_{\alpha_p} \mathcal{H} = \frac{\alpha_p}{\rho} = \partial_t w$  the *deflection velocity* and  $u := e_p$ ;
- $\boldsymbol{y} := \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}}$  the output *normal stress*.

**Deflection** *w* **of a 2D-membrane**, *boundary deflection velocity* as control. Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

ρ the mass density of the medium and T the Young modulus tensor;
α<sub>p</sub> := ρ ∂<sub>t</sub>w the linear momentum and α<sub>q</sub> := grad (w) the strain;
e q := δ<sub>α<sub>q</sub></sub> H = T · α<sub>q</sub> the stress;

• 
$$e_p := \delta_{\alpha_p} \mathcal{H} = \frac{\alpha_p}{\rho} = \partial_t w$$
 the *deflection velocity* and  $u := e_p$ ;

•  $\boldsymbol{y} := \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}}$  the output *normal stress*.

$$\begin{cases} \boldsymbol{\rho} \partial_{tt}^2 w = \operatorname{div} \left( \overline{\overline{T}} \cdot \overline{\operatorname{\mathbf{grad}}}(w) \right), \\ \boldsymbol{u} = \partial_t w, \\ \boldsymbol{y} = \left( \overline{\overline{T}} \cdot \overline{\operatorname{\mathbf{grad}}}(w) \right) \cdot \overrightarrow{\boldsymbol{n}}. \end{cases}$$

**Deflection** *w* **of a 2D-membrane**, *boundary deflection velocity* as control. Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

ρ the mass density of the medium and T the Young modulus tensor;
α<sub>p</sub> := ρ ∂<sub>t</sub>w the linear momentum and α<sub>q</sub> := grad (w) the strain;
e<sub>q</sub> := δ<sub>α<sub>q</sub></sub> H = T · α<sub>q</sub> the stress;

• 
$$e_p := \delta_{\alpha_p} \mathcal{H} = \frac{\alpha_p}{\rho} = \partial_t w$$
 the *deflection velocity* and  $u := e_p$ ;

**y** :=  $\overrightarrow{e}_q \cdot \overrightarrow{n}$  the output *normal stress*.

$$\begin{cases} \boldsymbol{\rho}\partial_{tt}^{2}w = \operatorname{div}\left(\overline{\overline{T}}\cdot\overline{\mathbf{grad}}(w)\right), \\ \boldsymbol{u} = \partial_{t}w, \\ \boldsymbol{y} = \left(\overline{\overline{T}}\cdot\overline{\mathbf{grad}}(w)\right)\cdot\overrightarrow{\boldsymbol{n}}. \end{cases} \Leftrightarrow \begin{cases} \partial_{t}\overrightarrow{\boldsymbol{\alpha}}_{q} = \overline{\mathbf{grad}}(e_{p}), \\ \partial_{t}\alpha_{p} = \operatorname{div}\left(\overrightarrow{\boldsymbol{e}}_{q}\right), \end{cases} \& \begin{cases} \boldsymbol{u} = e_{p}, \\ \boldsymbol{y} = \overrightarrow{\boldsymbol{e}}_{q}\cdot\overrightarrow{\boldsymbol{n}}. \end{cases}$$

**Deflection** *w* **of a 2D-membrane**, *boundary deflection velocity* as control. Its total energy is given by the sum of the potential & kinetic energies:

$$\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_q, \alpha_p) := \frac{1}{2} \int_{\Omega} \left( \overrightarrow{\boldsymbol{\alpha}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\alpha}}_q + \frac{1}{\rho} \alpha_p^2 \right).$$

•  $\rho$  the mass density of the medium and  $\overline{\overline{T}}$  the Young modulus tensor; •  $\alpha_p := \rho \partial_t w$  the linear momentum and  $\overrightarrow{\alpha}_q := \overrightarrow{\operatorname{grad}}(w)$  the strain; •  $\overrightarrow{e}_q := \delta_{\overrightarrow{\alpha}_q} \mathcal{H} = \overline{\overline{T}} \cdot \overrightarrow{\alpha}_q$  the stress;

• 
$$e_p := \delta_{\alpha_p} \mathcal{H} = \frac{\alpha_p}{\rho} = \partial_t w$$
 the *deflection velocity* and  $u := e_p$ ;

**y** := 
$$\overrightarrow{e}_q \cdot \overrightarrow{n}$$
 the output *normal stress*.

$$\begin{cases} \rho \partial_{tt}^2 w = \operatorname{div} \left( \overline{\overline{T}} \cdot \overline{\operatorname{\mathbf{grad}}}(w) \right), \\ \mathbf{u} = \partial_t w, \\ \mathbf{y} = \left( \overline{\overline{T}} \cdot \overline{\operatorname{\mathbf{grad}}}(w) \right) \cdot \overrightarrow{\mathbf{n}}. \end{cases} \Leftrightarrow \begin{cases} \partial_t \overrightarrow{\alpha}_q = \overline{\operatorname{\mathbf{grad}}}(e_p), \\ \partial_t \alpha_p = \operatorname{div} \left( \overline{e}_q \right), \end{cases} \& \begin{cases} \mathbf{u} = e_p, \\ \mathbf{y} = \overline{e}_q, \overrightarrow{\mathbf{n}}. \end{cases}$$

Lossless Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}(\overrightarrow{\boldsymbol{\alpha}}_{q},\boldsymbol{\alpha}_{p}) = \langle \boldsymbol{y}, \boldsymbol{u} \rangle_{H^{-\frac{1}{2}},H^{\frac{1}{2}}}.$$

Matignon (ISAE-SUPAERO)

## the Finite Element Method in 1D: a short reminder

Example of a  $\mathbb{P}^1$ -Lagrange mass matrix

Discretization:



Mass matrix:

$$M_{i,j} = \int_0^1 \varphi_j(x) \varphi_i(x) \, \mathrm{d}x = \sum_{k=0}^9 \underbrace{\int_{x_k}^{x_{k+1}} \varphi_j(x) \varphi_i(x) \, \mathrm{d}x}_{\neq 0 \Rightarrow i, j=k, k+1} \quad \Rightarrow \quad \text{sparsity}$$

Elementary matrix:

$$(M_k^{elt})_{i,j} := \int_{x_k}^{x_{k+1}} \varphi_j(x)\varphi_i(x) \,\mathrm{d}x \in \mathbb{R}^{2\times 2}, \qquad i,j=k,k+1.$$

Assembly algorithm (pseudo-code): for k in (0,9); do  $M[k:k+1,k:k+1] = M_{k}^{elt}$ ;

Matignon (ISAE-SUPAERO)

The strategy follows:

#### The strategy follows:

**1** Write the **weak formulation**;

#### The strategy follows:

- **1** Write the **weak formulation**;
- 2 Apply an appropriate Stokes (Green) identity (such that *u* "appears");

#### The strategy follows:

- **1** Write the **weak formulation**;
- 2 Apply an appropriate Stokes (Green) identity (such that *u* "appears");
- **3** Project on a finite-dimensional space thanks to **FEM**.
## Conservative System: PFEM strategy

### The strategy follows:

- **1** Write the **weak formulation**;
- **2** Apply an appropriate **Stokes (Green) identity** (such that **u** "appears");
- 3 Project on a finite-dimensional space thanks to FEM.

For all test functions  $\overrightarrow{v}_q$ ,  $v_p$  and  $v_\partial$  (smooth enough):

$$\begin{cases} \left\langle \partial_t \overrightarrow{\boldsymbol{\alpha}}_q, \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2} = \left\langle \overrightarrow{\mathbf{grad}} \left( e_p \right), \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2}, \\ \left\langle \partial_t \alpha_p, v_p \right\rangle_{L^2} = \left\langle \operatorname{div} \left( \overrightarrow{\boldsymbol{e}}_q \right), v_p \right\rangle_{L^2}, \\ \left\langle \boldsymbol{y}, v_\partial \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} = \left\langle \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}}, v_\partial \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}. \end{cases}$$

## Conservative System: PFEM strategy

### The strategy follows:

- **1** Write the **weak formulation**;
- **2** Apply an appropriate **Stokes (Green) identity** (such that **u** "appears");
- 3 Project on a finite-dimensional space thanks to **FEM**.

For all test functions  $\overrightarrow{v}_q$ ,  $v_p$  and  $v_\partial$  (smooth enough):

$$\begin{cases} \left\langle \partial_t \overrightarrow{\boldsymbol{\alpha}}_q, \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2} = \left\langle \overrightarrow{\mathbf{grad}} \left( e_p \right), \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2}, \\ \left\langle \partial_t \alpha_p, v_p \right\rangle_{L^2} = \left\langle \operatorname{div} \left( \overrightarrow{\boldsymbol{e}}_q \right), v_p \right\rangle_{L^2}, \\ \left\langle \boldsymbol{y}, v_0 \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} = \left\langle \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}}, v_0 \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}. \end{cases}$$

Applying Green's formula on the 1st line and using the definition of u:

$$\left\langle \partial_t \overrightarrow{\boldsymbol{\alpha}}_q, \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2} = -\left\langle \boldsymbol{e}_p, \operatorname{div}\left(\overrightarrow{\boldsymbol{v}}_q\right) \right\rangle_{L^2} + \left\langle \overrightarrow{\boldsymbol{v}}_q \cdot \overrightarrow{\boldsymbol{n}}, \boldsymbol{u} \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

## Conservative System: PFEM strategy

### The strategy follows:

- **1** Write the **weak formulation**;
- 2 Apply an appropriate Stokes (Green) identity (such that *u* "appears");
- 3 Project on a finite-dimensional space thanks to **FEM**.

For all test functions  $\overrightarrow{v}_q$ ,  $v_p$  and  $v_\partial$  (smooth enough):

$$\begin{cases} \left\langle \partial_t \overrightarrow{\boldsymbol{\alpha}}_q, \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2} = \left\langle \overrightarrow{\mathbf{grad}} \left( e_p \right), \overrightarrow{\boldsymbol{v}}_q \right\rangle_{\mathbf{L}^2}, \\ \left\langle \partial_t \alpha_p, v_p \right\rangle_{L^2} = \left\langle \operatorname{div} \left( \overrightarrow{\boldsymbol{e}}_q \right), v_p \right\rangle_{L^2}, \\ \left\langle \boldsymbol{y}, v_0 \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} = \left\langle \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}}, v_0 \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}. \end{cases}$$

Applying Green's formula on the 1st line and using the definition of u:

$$\langle \partial_t \overrightarrow{\boldsymbol{\alpha}}_q, \overrightarrow{\boldsymbol{v}}_q \rangle_{\mathbf{L}^2} = - \langle \boldsymbol{e}_p, \operatorname{div}\left(\overrightarrow{\boldsymbol{v}}_q\right) \rangle_{L^2} + \langle \overrightarrow{\boldsymbol{v}}_q \cdot \overrightarrow{\boldsymbol{n}}, \boldsymbol{u} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

Green's formula applied on the 2nd line would lead to normal stress control  $u = \vec{e}_q \cdot \vec{n}$ . The energy variables are **partitioned** accordingly.

The energy, co-energy, boundary and test functions of the *same* index are discretized by using the *same* bases, either scalar- or **vector**-valued:

$$\overrightarrow{\pmb{\alpha}}_q^{ap}(t,\overrightarrow{\pmb{x}}):=\textstyle\sum_{\ell=1}^{N_q}\overrightarrow{\pmb{\phi}}_q^\ell(\overrightarrow{\pmb{x}})\alpha_q^\ell(t)=\overrightarrow{\pmb{\Phi}}_q^\top\cdot\underline{\alpha}_q(t),$$

with  $\overrightarrow{\mathbf{\Phi}}_q$  an  $N_q imes 2$  matrix,

The energy, co-energy, boundary and test functions of the *same* index are discretized by using the *same* bases, either scalar- or **vector**-valued:

$$\overrightarrow{\pmb{\alpha}}_q^{ap}(t,\overrightarrow{\pmb{x}}):=\sum_{\ell=1}^{N_q}\overrightarrow{\pmb{\phi}}_q^\ell(\overrightarrow{\pmb{x}})\alpha_q^\ell(t)=\overrightarrow{\pmb{\Phi}}_q^\top\cdot\underline{\alpha}_q(t),\quad \overrightarrow{\pmb{e}}_q^{ap}(t,\overrightarrow{\pmb{x}})=\overrightarrow{\pmb{\Phi}}_q^\top\cdot\underline{e}_q(t),$$

with  $\overrightarrow{\mathbf{\Phi}}_q$  an  $N_q imes 2$  matrix,

The energy, co-energy, boundary and test functions of the *same* index are discretized by using the *same* bases, either scalar- or **vector**-valued:

$$\begin{split} \overrightarrow{\pmb{\alpha}}_{q}^{ap}(t,\overrightarrow{\pmb{x}}) &:= \sum_{\ell=1}^{N_{q}} \overrightarrow{\phi}_{q}^{\ell}(\overrightarrow{\pmb{x}}) \alpha_{q}^{\ell}(t) = \overrightarrow{\pmb{\Phi}}_{q}^{\top} \cdot \underline{\alpha}_{q}(t), \quad \overrightarrow{\pmb{e}}_{q}^{ap}(t,\overrightarrow{\pmb{x}}) = \overrightarrow{\pmb{\Phi}}_{q}^{\top} \cdot \underline{e}_{q}(t), \\ \alpha_{p}^{ap}(t,\overrightarrow{\pmb{x}}) &:= \sum_{k=1}^{N_{p}} \varphi_{p}^{k}(\overrightarrow{\pmb{x}}) \alpha_{p}^{k}(t) = \phi_{p}^{\top} \cdot \underline{\alpha}_{p}(t), \qquad e_{p}^{ap}(t,\overrightarrow{\pmb{x}}) = \phi_{p}^{\top} \cdot \underline{e}_{p}(t), \end{split}$$

with  $\overrightarrow{\mathbf{\Phi}}_q$  an  $N_q imes 2$  matrix,  $\pmb{\phi}_p$  an  $N_p imes 1$  matrix

The energy, co-energy, boundary and test functions of the *same* index are discretized by using the *same* bases, either scalar- or **vector**-valued:

$$\begin{split} \overrightarrow{\boldsymbol{\alpha}}_{q}^{ap}(t,\overrightarrow{\boldsymbol{x}}) &:= \sum_{\ell=1}^{N_{q}} \overrightarrow{\boldsymbol{\phi}}_{q}^{\ell}(\overrightarrow{\boldsymbol{x}}) \boldsymbol{\alpha}_{q}^{\ell}(t) = \overrightarrow{\boldsymbol{\Phi}}_{q}^{\top} \cdot \underline{\boldsymbol{\alpha}}_{q}(t), \quad \overrightarrow{\boldsymbol{e}}_{q}^{ap}(t,\overrightarrow{\boldsymbol{x}}) = \overrightarrow{\boldsymbol{\Phi}}_{q}^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \\ \boldsymbol{\alpha}_{p}^{ap}(t,\overrightarrow{\boldsymbol{x}}) &:= \sum_{k=1}^{N_{p}} \varphi_{p}^{k}(\overrightarrow{\boldsymbol{x}}) \boldsymbol{\alpha}_{p}^{k}(t) = \boldsymbol{\phi}_{p}^{\top} \cdot \underline{\boldsymbol{\alpha}}_{p}(t), \quad \boldsymbol{e}_{p}^{ap}(t,\overrightarrow{\boldsymbol{x}}) = \boldsymbol{\phi}_{p}^{\top} \cdot \underline{\boldsymbol{e}}_{p}(t), \\ \boldsymbol{u}^{ap}(t,\overrightarrow{\boldsymbol{s}}) &:= \sum_{m=1}^{N_{0}} \psi^{m}(\overrightarrow{\boldsymbol{s}}) \boldsymbol{u}^{m}(t) = \boldsymbol{\Psi}^{\top} \cdot \underline{\boldsymbol{u}}(t), \quad \boldsymbol{y}^{ap}(t,\overrightarrow{\boldsymbol{s}}) = \boldsymbol{\Psi}^{\top} \cdot \underline{\boldsymbol{y}}(t), \end{split}$$

with  $\overrightarrow{\Phi}_q$  an  $N_q \times 2$  matrix,  $\phi_p$  an  $N_p \times 1$  matrix and  $\Psi$  an  $N_\partial \times 1$  matrix.

The energy, co-energy, boundary and test functions of the *same* index are discretized by using the *same* bases, either scalar- or **vector**-valued:

$$\begin{split} \overrightarrow{\boldsymbol{\alpha}}_{q}^{ap}(t,\overrightarrow{\boldsymbol{x}}) &:= \sum_{\ell=1}^{N_{q}} \overrightarrow{\boldsymbol{\phi}}_{q}^{\ell}(\overrightarrow{\boldsymbol{x}}) \boldsymbol{\alpha}_{q}^{\ell}(t) = \overrightarrow{\boldsymbol{\Phi}}_{q}^{\top} \cdot \underline{\boldsymbol{\alpha}}_{q}(t), \quad \overrightarrow{\boldsymbol{e}}_{q}^{ap}(t,\overrightarrow{\boldsymbol{x}}) = \overrightarrow{\boldsymbol{\Phi}}_{q}^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \\ \boldsymbol{\alpha}_{p}^{ap}(t,\overrightarrow{\boldsymbol{x}}) &:= \sum_{k=1}^{N_{p}} \varphi_{p}^{k}(\overrightarrow{\boldsymbol{x}}) \boldsymbol{\alpha}_{p}^{k}(t) = \boldsymbol{\phi}_{p}^{\top} \cdot \underline{\boldsymbol{\alpha}}_{p}(t), \quad \boldsymbol{e}_{p}^{ap}(t,\overrightarrow{\boldsymbol{x}}) = \boldsymbol{\phi}_{p}^{\top} \cdot \underline{\boldsymbol{e}}_{p}(t), \\ \boldsymbol{u}^{ap}(t,\overrightarrow{\boldsymbol{s}}) &:= \sum_{m=1}^{N_{p}} \psi^{m}(\overrightarrow{\boldsymbol{s}}) \boldsymbol{u}^{m}(t) = \boldsymbol{\Psi}^{\top} \cdot \underline{\boldsymbol{u}}(t), \quad \boldsymbol{y}^{ap}(t,\overrightarrow{\boldsymbol{s}}) = \boldsymbol{\Psi}^{\top} \cdot \underline{\boldsymbol{y}}(t), \end{split}$$

with  $\vec{\Phi}_q$  an  $N_q \times 2$  matrix,  $\phi_p$  an  $N_p \times 1$  matrix and  $\Psi$  an  $N_\partial \times 1$  matrix.

#### The discretized system (giving the structure) then reads:

$$\begin{split} \overline{\boldsymbol{M}}_{q} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{q}(t) &= D \cdot \underline{\boldsymbol{e}}_{p}(t) + B \cdot \underline{\boldsymbol{u}}(t), \\ M_{p} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{p}(t) &= -D^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \\ M_{\partial} \cdot \underline{\boldsymbol{y}}(t) &= B^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \end{split}$$

The energy, co-energy, boundary and test functions of the *same* index are discretized by using the *same* bases, either scalar- or **vector**-valued:

$$\begin{split} \overrightarrow{\boldsymbol{\alpha}}_{q}^{ap}(t,\overrightarrow{\boldsymbol{x}}) &:= \sum_{\ell=1}^{N_{q}} \overrightarrow{\boldsymbol{\phi}}_{q}^{\ell}(\overrightarrow{\boldsymbol{x}}) \boldsymbol{\alpha}_{q}^{\ell}(t) = \overrightarrow{\boldsymbol{\Phi}}_{q}^{\top} \cdot \underline{\boldsymbol{\alpha}}_{q}(t), \quad \overrightarrow{\boldsymbol{e}}_{q}^{ap}(t,\overrightarrow{\boldsymbol{x}}) = \overrightarrow{\boldsymbol{\Phi}}_{q}^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \\ \boldsymbol{\alpha}_{p}^{ap}(t,\overrightarrow{\boldsymbol{x}}) &:= \sum_{k=1}^{N_{p}} \varphi_{p}^{k}(\overrightarrow{\boldsymbol{x}}) \boldsymbol{\alpha}_{p}^{k}(t) = \boldsymbol{\phi}_{p}^{\top} \cdot \underline{\boldsymbol{\alpha}}_{p}(t), \quad \boldsymbol{e}_{p}^{ap}(t,\overrightarrow{\boldsymbol{x}}) = \boldsymbol{\phi}_{p}^{\top} \cdot \underline{\boldsymbol{e}}_{p}(t), \\ \boldsymbol{u}^{ap}(t,\overrightarrow{\boldsymbol{s}}) &:= \sum_{m=1}^{N_{p}} \psi^{m}(\overrightarrow{\boldsymbol{s}}) \boldsymbol{u}^{m}(t) = \boldsymbol{\Psi}^{\top} \cdot \underline{\boldsymbol{u}}(t), \quad \boldsymbol{y}^{ap}(t,\overrightarrow{\boldsymbol{s}}) = \boldsymbol{\Psi}^{\top} \cdot \underline{\boldsymbol{y}}(t), \end{split}$$

with  $\overline{\Phi}_q$  an  $N_q \times 2$  matrix,  $\phi_p$  an  $N_p \times 1$  matrix and  $\Psi$  an  $N_\partial \times 1$  matrix.

#### The discretized system (giving the structure) then reads:

$$\overline{M}_{q} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{q}(t) = D \cdot \underline{\underline{e}}_{p}(t) + B \cdot \underline{\underline{u}}(t), \\
M_{p} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{p}(t) = -D^{\top} \cdot \underline{\underline{e}}_{q}(t), \\
M_{\partial} \cdot \underline{\underline{y}}(t) = B^{\top} \cdot \underline{\underline{e}}_{q}(t),$$

where:

$$\overrightarrow{M}_q := \int_{\Omega} \overrightarrow{\Phi}_q \cdot \overrightarrow{\Phi}_q^{\top}, \qquad M_p := \int_{\Omega} \phi_p \cdot \phi_p^{\top}, \qquad M_\partial := \int_{\partial\Omega} \Psi \cdot \Psi^{\top},$$
 $D := -\int_{\Omega} \operatorname{div} \left(\overrightarrow{\Phi}_q\right) \cdot \phi_p^{\top}, \qquad B := \int_{\partial\Omega} \left(\overrightarrow{\Phi}_q \cdot \overrightarrow{n}\right) \cdot \Psi^{\top}.$ 

Finite-Dimensional extended structure operator

$$\mathcal{J}_d := \begin{pmatrix} 0 & D & B \\ -D^{\top} & 0 & 0 \\ -B^{\top} & 0 & 0 \end{pmatrix}.$$

Finite-Dimensional extended structure operator

$$\mathcal{I}_d := \begin{pmatrix} 0 & D & B \\ -D^{\top} & 0 & 0 \\ -B^{\top} & 0 & 0 \end{pmatrix}.$$

The inner product on  $\mathbb{R}^{N_q}$ ,  $\mathbb{R}^{N_p}$  and  $\mathbb{R}^{N_{\partial}}$  has to be taken w.r.t. the mass matrices  $\vec{M}_q$ ,  $M_p$  and  $M_{\partial}$ : e.g.  $\langle \vec{v}_1, \vec{v}_2 \rangle_{N_q} := \vec{v}_2^\top \cdot \vec{M}_q \cdot \vec{v}_1$ .

Finite-Dimensional extended structure operator

$$\mathcal{I}_d := \begin{pmatrix} 0 & D & B \\ -D^{\top} & 0 & 0 \\ -B^{\top} & 0 & 0 \end{pmatrix}.$$

The inner product on  $\mathbb{R}^{N_q}$ ,  $\mathbb{R}^{N_p}$  and  $\mathbb{R}^{N_{\partial}}$  has to be taken w.r.t. the mass matrices  $\overrightarrow{M}_q$ ,  $M_p$  and  $M_{\partial}$ : e.g.  $\langle \overrightarrow{v}_1, \overrightarrow{v}_2 \rangle_{N_q} := \overrightarrow{v}_1^{\top} \cdot \overrightarrow{M}_q \cdot \overrightarrow{v}_1$ .

Discrete Hamiltonian

$$\mathcal{H}_d\left(\underline{\alpha}_q,\underline{\alpha}_p\right) := \mathcal{H}\left(\overrightarrow{\boldsymbol{\alpha}}_q^{ap},\alpha_p^{ap}\right) = \frac{1}{2}\left(\underline{\alpha}_q^\top \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} \cdot \underline{\alpha}_q + \underline{\alpha}_p^\top \cdot M_{\frac{1}{\rho}} \cdot \underline{\alpha}_p\right),$$

Finite-Dimensional extended structure operator

$$\mathcal{I}_d := \begin{pmatrix} 0 & D & B \\ -D^\top & 0 & 0 \\ -B^\top & 0 & 0 \end{pmatrix}.$$

The inner product on  $\mathbb{R}^{N_q}$ ,  $\mathbb{R}^{N_p}$  and  $\mathbb{R}^{N_{\partial}}$  has to be taken w.r.t. the mass matrices  $\overrightarrow{M}_q$ ,  $M_p$  and  $M_{\partial}$ : e.g.  $\langle \overrightarrow{v}_1, \overrightarrow{v}_2 \rangle_{N_q} := \overrightarrow{v}_1^{\top} \cdot \overrightarrow{M}_q \cdot \overrightarrow{v}_1$ .

Discrete Hamiltonian

$$\begin{aligned} \mathcal{H}_d\left(\underline{\alpha}_q,\underline{\alpha}_p\right) &:= \mathcal{H}\left(\overrightarrow{\boldsymbol{\alpha}}_q^{ap},\alpha_p^{ap}\right) = \frac{1}{2} \left(\underline{\alpha}_q^\top \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} \cdot \underline{\alpha}_q + \underline{\alpha}_p^\top \cdot M_{\frac{1}{\rho}} \cdot \underline{\alpha}_p\right), \\ \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} &:= \int_{\Omega} \overrightarrow{\boldsymbol{\Phi}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\Phi}}_q^\top \qquad \& \qquad M_{\frac{1}{\rho}} := \int_{\Omega} \frac{1}{\rho} \boldsymbol{\phi}_p \cdot \boldsymbol{\phi}_p^\top. \end{aligned}$$

Finite-Dimensional extended structure operator

$$\mathcal{T}_d := \begin{pmatrix} 0 & D & B \\ -D^{\top} & 0 & 0 \\ -B^{\top} & 0 & 0 \end{pmatrix}.$$

The inner product on  $\mathbb{R}^{N_q}$ ,  $\mathbb{R}^{N_p}$  and  $\mathbb{R}^{N_{\partial}}$  has to be taken w.r.t. the mass matrices  $\overrightarrow{M}_{a}$ ,  $M_p$  and  $M_{\partial}: \text{ e.g. } \left\langle \overrightarrow{\boldsymbol{v}}_1, \overrightarrow{\boldsymbol{v}}_2 \right\rangle_{N_{\sigma}} := \overrightarrow{\boldsymbol{v}}_2^\top \cdot \overrightarrow{\boldsymbol{M}}_q \cdot \overrightarrow{\boldsymbol{v}}_1.$ 

Discrete Hamiltonian

$$\begin{aligned} \mathcal{H}_d\left(\underline{\alpha}_q,\underline{\alpha}_p\right) &:= \mathcal{H}\left(\overrightarrow{\boldsymbol{\alpha}}_q^{ap}, \underline{\alpha}_p^{ap}\right) = \frac{1}{2} \begin{pmatrix} \underline{\alpha}_q^\top \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} \cdot \underline{\alpha}_q + \underline{\alpha}_p^\top \cdot M_{\frac{1}{\rho}} \cdot \underline{\alpha}_p \end{pmatrix}, \\ \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} &:= \int_{\Omega} \overrightarrow{\boldsymbol{\Phi}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\Phi}}_q^\top & \& \qquad M_{\frac{1}{\rho}} := \int_{\Omega} \frac{1}{\rho} \phi_p \cdot \phi_p^\top. \end{aligned}$$

 $\textbf{Constitutive relations:} \quad \overrightarrow{M}_q \cdot \underline{e}_q = \overrightarrow{M}_{\overline{r}} \cdot \underline{\alpha}_q \quad \& \quad M_p \cdot \underline{e}_p = M_{\frac{1}{\rho}} \cdot \underline{\alpha}_p$ 

././

Finite-Dimensional extended structure operator

$$\mathcal{I}_d := \begin{pmatrix} 0 & D & B \\ -D^{\top} & 0 & 0 \\ -B^{\top} & 0 & 0 \end{pmatrix}.$$

The inner product on  $\mathbb{R}^{N_q}$ ,  $\mathbb{R}^{N_p}$  and  $\mathbb{R}^{N_{\partial}}$  has to be taken w.r.t. the mass matrices  $\overrightarrow{M}_q$ ,  $M_p$  and  $M_{\partial}$ : e.g.  $\langle \overrightarrow{v}_1, \overrightarrow{v}_2 \rangle_{N_q} := \overrightarrow{v}_1^\top \cdot \overrightarrow{M}_q \cdot \overrightarrow{v}_1$ .

Discrete Hamiltonian

$$\begin{aligned} \mathcal{H}_d\left(\underline{\alpha}_q,\underline{\alpha}_p\right) &:= \mathcal{H}\left(\overrightarrow{\boldsymbol{\alpha}}_q^{ap}, \underline{\alpha}_p^{ap}\right) = \frac{1}{2} \left(\underline{\alpha}_q^\top \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} \cdot \underline{\alpha}_q + \underline{\alpha}_p^\top \cdot M_{\frac{1}{\rho}} \cdot \underline{\alpha}_p\right) \\ \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{T}}}} &:= \int_{\Omega} \overrightarrow{\boldsymbol{\Phi}}_q \cdot \overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\boldsymbol{\Phi}}_q^\top & \& \qquad M_{\frac{1}{\rho}} := \int_{\Omega} \frac{1}{\rho} \phi_p \cdot \phi_p^\top. \end{aligned}$$

 $\begin{array}{lll} \textbf{Constitutive relations:} & \overrightarrow{\boldsymbol{M}}_q \cdot \underline{\boldsymbol{e}}_q = \overrightarrow{\boldsymbol{M}}_{\overline{\overline{T}}} \cdot \underline{\boldsymbol{\alpha}}_q & \& & M_p \cdot \underline{\boldsymbol{e}}_p = M_{\frac{1}{\rho}} \cdot \underline{\boldsymbol{\alpha}}_p \\ \textbf{Denote } \underline{\boldsymbol{f}} := \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t}\underline{\boldsymbol{\alpha}}_q, & \frac{\mathrm{d}}{\mathrm{d}t}\underline{\boldsymbol{\alpha}}_p, & -\underline{\boldsymbol{y}} \end{pmatrix}^\top \text{ and } \underline{\boldsymbol{e}} := \begin{pmatrix} \underline{\boldsymbol{e}}_q, & \underline{\boldsymbol{e}}_p, & \underline{\boldsymbol{u}} \end{pmatrix}^\top \text{, then:} \\ \end{array}$ 

Discrete Lossless Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_d\left(\underline{\boldsymbol{\alpha}}_q,\underline{\boldsymbol{\alpha}}_p\right) = \underline{\boldsymbol{u}}^\top \cdot M_\partial \cdot \underline{\boldsymbol{y}}.$$

Matignon (ISAE-SUPAERO)

## - A Proof of the Discrete Power Balance

Since by definition the discrete Hamiltonian reads:

$$\mathcal{H}_d\left(\underline{\alpha}_q,\underline{\alpha}_p\right) = \frac{1}{2} \left(\underline{\alpha}_q^\top \cdot \overrightarrow{M}_{\overline{\overline{T}}} \cdot \underline{\alpha}_q + \underline{\alpha}_p^\top \cdot M_{\frac{1}{\rho}} \cdot \underline{\alpha}_p\right),$$

we can compute its time derivative along the trajectories:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{d}\left(\underline{\alpha}_{q},\underline{\alpha}_{p}\right) = \left(\frac{\mathrm{d}}{\mathrm{d}t}\underline{\alpha}_{q}\right)^{\top}\cdot\overrightarrow{M}_{\overline{T}}\cdot\underline{\alpha}_{q} + \left(\frac{\mathrm{d}}{\mathrm{d}t}\underline{\alpha}_{p}\right)^{\top}\cdot M_{\frac{1}{p}}\cdot\underline{\alpha}_{p},$$

$$= \left(\frac{\mathrm{d}}{\mathrm{d}t}\underline{\alpha}_{q}\right)^{\top}\cdot\overrightarrow{M}_{q}\cdot\underline{e}_{q} + \left(\frac{\mathrm{d}}{\mathrm{d}t}\underline{\alpha}_{p}\right)^{\top}\cdot M_{p}\cdot\underline{e}_{p},$$

$$= \left(\overrightarrow{M}_{q}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\underline{\alpha}_{q}\right)^{\top}\cdot\underline{e}_{q} + \left(M_{p}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\underline{\alpha}_{p}\right)^{\top}\cdot\underline{e}_{p},$$

$$= \left(D\cdot\underline{e}_{p}(t) + B\cdot\underline{u}(t)\right)^{\top}\cdot\underline{e}_{q} + \left(-D^{\top}\cdot\underline{e}_{q}(t)\right)^{\top}\cdot\underline{e}_{p},$$

$$= \underline{u}(t)^{\top}\cdot B^{\top}\cdot\underline{e}_{q}$$

$$= \underline{u}(t)^{\top}\cdot M_{\partial}\cdot\underline{y}(t). \Box$$

## PFEM for pHs gives rise to PH-DAEs

Summarizing the main steps: discretization of the structure and of the constitutive relations are made separately.

The discretized system is a PH-DAE:

$$\begin{cases} \overrightarrow{\boldsymbol{M}}_{q} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{q}(t) = D \cdot \underline{\boldsymbol{e}}_{p}(t) + B \cdot \underline{\boldsymbol{u}}(t), \\ M_{p} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{p}(t) = -D^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \\ M_{\partial} \cdot \underline{\boldsymbol{y}}(t) = B^{\top} \cdot \underline{\boldsymbol{e}}_{q}(t), \\ \text{together with} \\ \begin{cases} \overrightarrow{\boldsymbol{M}}_{q} \cdot \underline{\boldsymbol{e}}_{q}(t) = \overrightarrow{\boldsymbol{M}}_{\overline{\overline{T}}} \cdot \underline{\alpha}_{q}(t), \\ M_{p} \cdot \underline{\boldsymbol{e}}_{p}(t) = M_{\frac{1}{p}} \cdot \underline{\alpha}_{p}(t) \end{cases} \end{cases}$$

 $\implies$  in general, PFEM for pHs gives rise to finite-dimensional PH-DAEs, for which efficient numerical methods can be used.

**Remark**: in the linear case only, an alternative implementation of PFEM gives rise to PH-ODEs in terms of the co-energy variables only.

### 2 Linear Wave equations: towards PH-DAEs and PH-ODEs

- Discretization in terms of energy and co-energy variables: PH-DAEs
- Application: Boundary Dissipation

Outline

- Case of mixed boundary control: PH-DAEs again
- Convergence of PFEM

### 3 Thermodynamics

- 4 Heat Wave PDE system coupled through the boundary
- 5 Extensions & applications of PFEM?

The Impedance Boundary Condition, with  $Z \ge 0$  on  $\partial\Omega$ , and  $\boldsymbol{\nu}$  as new control, is considered:  $\boldsymbol{\nu} = e_p + Z \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}} \Leftrightarrow \boldsymbol{\nu} = \partial_t w + Z \left( \overline{\overrightarrow{\boldsymbol{T}}} \cdot \overrightarrow{\operatorname{\mathbf{grad}}}(w) \right) \cdot \overrightarrow{\boldsymbol{n}}.$ 

The Impedance Boundary Condition, with  $Z \ge 0$  on  $\partial\Omega$ , and  $\nu$  as new control, is considered:  $\nu = e_p + Z \overrightarrow{e}_q \cdot \overrightarrow{n} \Leftrightarrow \nu = \partial_t w + Z \left( \overline{\overrightarrow{T}} \cdot \overrightarrow{\mathbf{grad}}(w) \right) \cdot \overrightarrow{n}$ . This kind of dissipation does not *easily* fit in the "J - R framework".

The Impedance Boundary Condition, with  $Z \ge 0$  on  $\partial\Omega$ , and  $\nu$  as new control, is considered:

 $\boldsymbol{\nu} = e_p + Z \overrightarrow{\boldsymbol{e}}_q \cdot \overrightarrow{\boldsymbol{n}} \Leftrightarrow \boldsymbol{\nu} = \partial_t w + Z \left(\overline{\overline{\boldsymbol{T}}} \cdot \overrightarrow{\mathbf{grad}}(w)\right) \cdot \overrightarrow{\boldsymbol{n}}$ . This kind of dissipation does not *easily* fit in the "J - R framework".

It can be seen as an *output feedback law*  $\boldsymbol{u} = -Z\boldsymbol{y} + \boldsymbol{\nu}$  in the previous case.

#### Lossy Power Balance

$$rac{\mathrm{d}}{\mathrm{d} t}\mathcal{H}(\overrightarrow{oldsymbollpha}_q,lpha_p) = -ig\langleoldsymbol y, oldsymbol Zoldsymbol yig
angle_{H^{-rac{1}{2}},H^{rac{1}{2}}} +ig\langleoldsymbol y, oldsymbol 
uig
angle_{H^{-rac{1}{2}},H^{rac{1}{2}}} +ig\langleoldsymbol y, oldsymbol 
uig
angle_{H^{-rac{1}{2}},H^{rac{1}{2}}}.$$

The Impedance Boundary Condition, with  $Z \ge 0$  on  $\partial\Omega$ , and  $\nu$  as new control, is considered:  $\nu = e_p + Z \overrightarrow{e}_q \cdot \overrightarrow{n} \Leftrightarrow \nu = \partial_t w + Z \left( \overline{\overrightarrow{T}} \cdot \overrightarrow{\mathbf{grad}}(w) \right) \cdot \overrightarrow{n}$ . This kind of dissipation does not *easily* fit in the "J - R framework".

It can be seen as an *output feedback law*  $\boldsymbol{u} = -Z\boldsymbol{y} + \boldsymbol{\nu}$  in the previous case.

#### Lossy Power Balance

$$rac{\mathrm{d}}{\mathrm{d} t}\mathcal{H}(\overrightarrow{oldsymbollpha}_q,lpha_p) = -\left_{H^{-rac{1}{2}},H^{rac{1}{2}}} + \left_{H^{-rac{1}{2}},H^{rac{1}{2}}}.$$

Add impedance ports  $(f_i, e_i)$  and dissipative constitutive relation  $e_i = Z f_i$ , and approximate  $f_i$  and  $e_i$  in the boundary FEM basis  $\Psi$ :

$$\begin{pmatrix} \overline{M}_{q} & 0 & 0 & 0 & 0 \\ 0 & M_{p} & 0 & 0 & 0 \\ 0 & 0 & M_{p} & 0 & 0 \\ 0 & 0 & 0 & M_{\partial} & 0 \\ 0 & 0 & 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{q}(t) \\ \frac{\mathrm{d}}{\mathrm{d}t} \underline{\alpha}_{p}(t) \\ \underline{f}_{i}(t) \\ -\underline{\mathbf{y}}(t) \end{pmatrix} = \begin{pmatrix} 0 & D & -B & B \\ -D^{\top} & 0 & 0 & 0 \\ B^{\top} & 0 & 0 & 0 \\ -B^{\top} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_{q}(t) \\ \underline{e}_{p}(t) \\ \underline{e}_{i}(t) \\ \underline{\nu}(t) \end{pmatrix}$$
 and  $M_{\partial} \cdot \underline{e}_{i} = \langle Z \rangle \cdot \underline{f}_{i}, \qquad \text{with } \langle Z \rangle := \int_{\partial\Omega} Z \boldsymbol{\Psi} \cdot \boldsymbol{\Psi}^{\top} \ge 0.$ 

The Impedance Boundary Condition, with  $Z \ge 0$  on  $\partial\Omega$ , and  $\nu$  as new control, is considered:  $\nu = e_p + Z \overrightarrow{e}_q \cdot \overrightarrow{n} \Leftrightarrow \nu = \partial_t w + Z \left( \overline{\overrightarrow{T}} \cdot \overrightarrow{\operatorname{grad}}(w) \right) \cdot \overrightarrow{n}$ . This kind of dissipation does not *easily* fit in the "J - R framework".

It can be seen as an *output feedback law*  $\boldsymbol{u} = -Z\boldsymbol{y} + \boldsymbol{\nu}$  in the previous case.

#### Lossy Power Balance

$$rac{\mathrm{d}}{\mathrm{d} t}\mathcal{H}(\overrightarrow{oldsymbollpha}_q,lpha_p) = -ig\langleoldsymbol y, oldsymbol Zoldsymbol yig
angle_{H^{-rac{1}{2}},H^{rac{1}{2}}} +ig\langleoldsymbol y,oldsymbol 
uig
angle_{H^{-rac{1}{2}},H^{rac{1}{2}}} +ig\langleoldsymbol y,oldsymbol 
uig
angle_{H^{-rac{1}{2}},H^{rac{1}{2}}}.$$

Add impedance ports  $(f_i, e_i)$  and dissipative constitutive relation  $e_i = Z f_i$ , and approximate  $f_i$  and  $e_i$  in the boundary FEM basis  $\Psi$ :

$$\begin{pmatrix} \overline{M}_q & 0 & 0 & 0 & 0 \\ 0 & M_p & 0 & 0 & 0 \\ 0 & 0 & M_p & 0 & 0 \\ 0 & 0 & 0 & M_{\partial} & 0 \\ 0 & 0 & 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \underline{\omega}_q(t) \\ \frac{\mathrm{d}}{\mathrm{d}t} \underline{\omega}_p(t) \\ \frac{f_i(t)}{-\underline{\mathbf{y}}(t)} \end{pmatrix} = \begin{pmatrix} 0 & D & -B & B \\ -D^\top & 0 & 0 & 0 \\ B^\top & 0 & 0 & 0 \\ -B^\top & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_q(t) \\ \underline{e}_p(t) \\ \underline{\underline{e}}_i(t) \\ \underline{\underline{\nu}}(t) \end{pmatrix}$$
 and  $M_{\partial} \cdot \underline{e}_i = \langle Z \rangle \cdot \underline{f}_i, \qquad \text{with } \langle Z \rangle := \int_{\partial\Omega} Z \boldsymbol{\Psi} \cdot \boldsymbol{\Psi}^\top \ge 0.$ 

Discrete Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_d\left(\underline{\alpha}_q,\underline{\alpha}_p\right) = -\underline{\boldsymbol{y}}^\top \cdot \langle \boldsymbol{Z} \rangle \cdot \underline{\boldsymbol{y}} + \underline{\boldsymbol{\nu}}^\top \cdot M_\partial \cdot \underline{\boldsymbol{y}}.$$

Matignon (ISAE-SUPAERO)

## Boundary Dissipation: Simulations

- Heteregenous ( $\rho \neq constant$ );
- Anisotropic (tensor  $\overline{\overline{T}} \neq constant$ );
- $\epsilon \equiv 0;$
- $Z \neq 0$  for  $t \geq 2$ ;
- Raviart-Thomas FEM for q-variables;
- Lagrange FEM for *p*-variables;
- Lagrange FEM for ∂-variables;



### 2 Linear Wave equations: towards PH-DAEs and PH-ODEs

Discretization in terms of energy and co-energy variables: PH-DAEs
 Application: Boundary Dissipation

### Case of mixed boundary control: PH-DAEs again

Convergence of PFEM

Outline

### 3 Thermodynamics

4 Heat - Wave PDE system coupled through the boundary

### 5 Extensions & applications of PFEM?

## Mixed boundary control: principle

- **1** The basic idea is:  $\partial \Omega = \Gamma_D \cup \Gamma_N$  and  $\int_{\partial \Omega} = \int_{\Gamma_D} + \int_{\Gamma_N}$ .
- 2 Where the control is not known, a Lagrange multiplier  $\lambda$  is introduced instead + a constraint is added to the system, an extended skew-symmetric  $J_e$  matrix is obtained.
- $\mathbf{3} \Longrightarrow$  a PH-DAE is readily obtained, with a Lagrange multiplier of very small dimension.
- This method is detailed in one early reference, Brugnoli, A., Cardoso-Ribeiro, F.L., Haine, G., and Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions In *IFAC-PapersOnLine*, volume 53(2), 7557–7562. (2020), but several other possibilities have been explored since then.
- a PH-ODE can be obtained, taking advantage of the Hellinger-Reissner principle, see e.g. Brugnoli, A., Haine, G., and Matignon, D. Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control In *IFAC-PapersOnLine*, volume 55(30), 418–423. (2022).

### 2 Linear Wave equations: towards PH-DAEs and PH-ODEs

- Discretization in terms of energy and co-energy variables: PH-DAEs
- Application: Boundary Dissipation

Outline

- Case of mixed boundary control: PH-DAEs again
- Convergence of PFEM

### 3 Thermodynamics

- 4 Heat Wave PDE system coupled through the boundary
- 5 Extensions & applications of PFEM?

## **Convergence rate: theory**

#### Theorem (Haine, Matignon & Serhani, 2023)

Let 
$$\kappa \geq 1$$
 be an integer, and  $T > 0$ .  
Let  $\begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_{q_0} \\ \alpha_{p_0} \end{pmatrix} \in \mathcal{Z}_{\kappa} := \begin{pmatrix} \overline{T} & 0 \\ 0 & \frac{1}{\rho} \end{pmatrix}^{-1} \begin{bmatrix} \mathbf{H}_{\mathrm{div}}^{\kappa+1}(\Omega) \\ H^{\kappa+1}(\Omega) \end{bmatrix}$ ,  $\boldsymbol{u} \in C^2([0,\infty); H^{\kappa+1}(\partial\Omega))$ .  
Let  $\begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_{q}^{ap}(0) \\ \alpha_{p}^{ap}(0) \end{pmatrix}$ ,  $\boldsymbol{u}^{ap}$  be their interpolations with  $(\mathbb{P}^k)^N \times \mathbb{P}^\ell \times \mathbb{P}^m$ .  
Let  $\mathbf{E}(t) := \left\| \left( (\overrightarrow{\boldsymbol{\alpha}}_q - \overrightarrow{\boldsymbol{\alpha}}_q^{ap})(t), \quad (\alpha_p - \alpha_p^{ap})(t) \right)^\top \right\|_{\mathbf{L}^2 \times L^2}$ ,  
 $\exists C_T > 0$ , independent of  $\begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_{q_0} \\ \alpha_{p_0} \end{pmatrix}$ , and  $\boldsymbol{u}$ : for all  $h$  and all  $t \in [0, T]$   
 $\mathbf{E}(t) \leq C_T h^{\min\{\ell; k; m\}} \left( \left\| \begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_q \\ \alpha_p \end{pmatrix} \right\|_{L^{\infty}([0,T]; \mathcal{Z}_{\kappa})} + \|\boldsymbol{u}\|_{L^{\infty}([0,T]; H^{\kappa+1}(\partial\Omega))} \right)$ 

The **optimal** order is  $\kappa$ , when  $k = \kappa$ ,  $\ell = \kappa$  and  $m = \kappa$ .

## **Convergence rate:** theory

#### Theorem (Haine, Matignon & Serhani, 2023)

Let 
$$\kappa \geq 1$$
 be an integer, and  $T > 0$ .  
Let  $\begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_{q_0} \\ \alpha_{p_0} \end{pmatrix} \in \mathcal{Z}_{\kappa} := \begin{pmatrix} \overline{T} & 0 \\ 0 & \frac{1}{\rho} \end{pmatrix}^{-1} \begin{bmatrix} \mathbf{H}_{\mathrm{div}}^{\kappa+1}(\Omega) \\ H^{\kappa+1}(\Omega) \end{bmatrix}$ ,  $\boldsymbol{u} \in C^2([0,\infty); H^{\kappa+1}(\partial\Omega))$ .  
Let  $\begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_{q}^{ap}(0) \\ \alpha_{p}^{ap}(0) \end{pmatrix}$ ,  $\boldsymbol{u}^{ap}$  be their interpolations with  $(\mathbb{P}^k)^N \times \mathbb{P}^\ell \times \mathbb{P}^m$ .  
Let  $\mathbf{E}(t) := \left\| \left( (\overrightarrow{\boldsymbol{\alpha}}_q - \overrightarrow{\boldsymbol{\alpha}}_q^{ap})(t), (\alpha_p - \alpha_p^{ap})(t) \right)^\top \right\|_{\mathbf{L}^2 \times L^2}$ ,  
 $\exists C_T > 0$ , independent of  $\begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_{q_0} \\ \alpha_{p_0} \end{pmatrix}$ , and  $\boldsymbol{u}$ : for all  $h$  and all  $t \in [0, T]$   
 $\mathbf{E}(t) \leq C_T h^{\min\{\ell; k; m\}} \left( \left\| \begin{pmatrix} \overrightarrow{\boldsymbol{\alpha}}_q \\ \alpha_p \end{pmatrix} \right\|_{L^{\infty}([0,T]; \mathcal{Z}_{\kappa})} + \|\boldsymbol{u}\|_{L^{\infty}([0,T]; H^{\kappa+1}(\partial\Omega))} \right)$ 

The **optimal** order is  $\kappa$ , when  $k = \kappa$ ,  $\ell = \kappa$  and  $m = \kappa$ .

 $RT_{\kappa-1}\times \mathbb{P}^{\kappa}\times \mathbb{P}^{\kappa} \qquad \qquad BDM_{\kappa}\times \mathbb{P}^{\kappa}\times \mathbb{P}^{\kappa}$ 

 $BDFM_{\kappa}\times \mathbb{P}^{\kappa}\times \mathbb{P}^{\kappa}$ 

Matignon (ISAE-SUPAERO)

Online seminar on port-Hamiltonian systems (pHOne) 20 / 5

### **Convergence rate: numerics**



Matignon (ISAE-SUPAERO)

PFEM 4 PHS

# **Periodic Table of the Finite Elements**



Matignon (ISAE-SUPAERO)

| 🖕 🤇 Hom 🦟 A.De 💷 Do                                                                                                                                | ki 🗈 app. 🗈 Seks 🖟 Aers 🚯 L'éq. 🔛 ISAE 🔚 (25) : l'fac202: 📟 Opti 📔 (221 🛛 The lox) 🔤 Leni. 🎯 origi 🕌 230: 🔞 Regi 👌 🕂 🧡 👘 🗖 🗸                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ← → C       O     A https://algopaul.github.log/PortHamiltonianBenchmarkSystems.jl/LosslessWave/     ID     Q. Rechercher     ID     ±     Δ     I |                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                    | Benchmark Systems / The lossless wave equation with Neumann boundary control 🛛 🖓 Edit on GitHub 🏚                                                                                                                                                                                                        |
| PortHamiltonianBenchmarkSystems                                                                                                                    | The lossless wave equation with Neumann boundary<br>control                                                                                                                                                                                                                                              |
| Search docs                                                                                                                                        | The model                                                                                                                                                                                                                                                                                                |
| Home                                                                                                                                               | Let us consider the vertical deflection from equilibrium $w$ of a 2D membrane $\Omega \subset \mathbb{R}^2$ . Denoting $\rho$ the mass density<br>an $\Omega$ The Young modulus of the membrane, a positive definite tensor, leads to the following well-known wave                                      |
| Benchmark Systems                                                                                                                                  | equation                                                                                                                                                                                                                                                                                                 |
| Single MSD Chain                                                                                                                                   | $ ho(x)rac{\partial^2}{\partial t^2}w(t,x)-\operatorname{div}\left(T(x)\cdot\operatorname{grad}\left(w(t,x) ight) ight)=0, t\geq 0,x\in\Omega,$                                                                                                                                                         |
| Poroelastic Network Model                                                                                                                          |                                                                                                                                                                                                                                                                                                          |
| RCL Ladder Network                                                                                                                                 | together with Neumann boundary control                                                                                                                                                                                                                                                                   |
| Damped Wave Net                                                                                                                                    | $(T(x) \cdot \mathrm{grad}(w(t,x))) \cdot \mathbf{n} = u_\partial(t,x),  t \geq 0,  x \in \partial\Omega,$                                                                                                                                                                                               |
| Planar Elasticity (Work in Progress)                                                                                                               | where ${f n}$ is the outward normal to $\Omega.$                                                                                                                                                                                                                                                         |
| Heat equation with Neumann<br>boundary control                                                                                                     | The Hamiltonian is the total mechanical energy, given as the sum of potential and kinetic energies                                                                                                                                                                                                       |
| The lossless wave equation with<br>Neumann boundary control                                                                                        | $\mathcal{H}(t) := \frac{1}{2} \int_{\Omega} \left( \operatorname{grad} \left( w(t,x) \right) \right)^\top \cdot T(x) \cdot \operatorname{grad} \left( w(t,x) \right) \mathrm{d}x + \frac{1}{2} \int_{\Omega} \rho(x) \left( \frac{\partial}{\partial t} w(t,x) \right)^2 \mathrm{d}x, \qquad t \geq 0.$ |
| • The model                                                                                                                                        | Taking the strain and the linear momentum                                                                                                                                                                                                                                                                |
| Structure-preserving discretization     Interface     References                                                                                   | $lpha_q := \mathrm{grad}(w), \qquad lpha_p := rac{\partial}{\partial t}w,$                                                                                                                                                                                                                              |
|                                                                                                                                                    | as energy variables, the Hamiltonian rewrites                                                                                                                                                                                                                                                            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          |

### 1 Introduction

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

### 3 Thermodynamics

- Short recall
- Lyapunov functional as Hamiltonian

4 Heat - Wave PDE system coupled through the boundary

5 Extensions & applications of PFEM?

## Thermodynamics

### Space domain and physical parameters:

- $\Omega \subset \mathbb{R}^{n \ge 1}$  is a bounded open connected set;
- $\vec{n}$  is the outward unit normal on the boundary  $\partial \Omega$ ;
- $\rho(\vec{x})$  is the mass density;
- **a**  $\overline{\overline{\lambda}}(\vec{x})$  is the conductivity tensor (symmetric, positive definite)

### Thermodynamics

### Space domain and physical parameters:

- $\Omega \subset \mathbb{R}^{n \ge 1}$  is a bounded open connected set;
- $\vec{n}$  is the outward unit normal on the boundary  $\partial \Omega$ ;
- $\rho(\overrightarrow{x})$  is the mass density;
- **a**  $\overline{\lambda}(\vec{x})$  is the conductivity tensor (symmetric, positive definite)

### Notations:

- $\blacksquare$  T is the local temperature;
- $\beta := \frac{1}{T}$  is the reciprocal temperature;
- *u* is the internal energy density;
- s is the entropy density;
- **J**  $\vec{J}_Q$  is the heat flux;
- $\vec{J}_S := \beta \vec{J}_Q$  is the entropy flux;
- $C_V := \left(\frac{\mathrm{d}u}{\mathrm{d}T}\right)_V$  is the isochoric heat capacity.

### Thermodynamics

- "Context & Axioms":
  - Medium: rigid body without chemical reaction;
  - 1st law of thermodynamics:

$$\boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}})\partial_t u(t,\overrightarrow{\boldsymbol{x}}) = -\mathrm{div}\left(\overrightarrow{\boldsymbol{J}}_Q(t,\overrightarrow{\boldsymbol{x}})\right);$$

Gibbs' relation:

$$dU = T \, dS, \implies \partial_t u(t, \overrightarrow{x}) = T(t, \overrightarrow{x}) \partial_t s(t, \overrightarrow{x});$$

Entropy evolution:

$$\rho(\overrightarrow{x})\partial_t s(t,\overrightarrow{x}) = -\operatorname{div}\left(\overrightarrow{J}_S(t,\overrightarrow{x})\right) + \sigma(t,\overrightarrow{x}),$$

with  $\sigma := \overrightarrow{\mathbf{grad}}(\beta) \cdot \overrightarrow{J}_Q$  is the *irreversible entropy production*, with  $\sigma \ge 0$ .
## Thermodynamics

- "Context & Axioms":
  - Medium: rigid body without chemical reaction;
  - 1st law of thermodynamics:

$$\boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}})\partial_t u(t,\overrightarrow{\boldsymbol{x}}) = -\mathrm{div}\left(\overrightarrow{\boldsymbol{J}}_Q(t,\overrightarrow{\boldsymbol{x}})\right);$$

Gibbs' relation:

$$dU = T \, dS, \implies \partial_t u(t, \overrightarrow{x}) = T(t, \overrightarrow{x}) \partial_t s(t, \overrightarrow{x});$$

Entropy evolution:

$$\rho(\overrightarrow{x})\partial_t s(t,\overrightarrow{x}) = -\operatorname{div}\left(\overrightarrow{J}_S(t,\overrightarrow{x})\right) + \sigma(t,\overrightarrow{x}),$$

with  $\sigma := \overrightarrow{\mathbf{grad}}(\beta) \cdot \overrightarrow{J}_Q$  is the *irreversible entropy production*, with  $\sigma \ge 0$ .

- "Laws":
  - Fourier's law:

$$\overrightarrow{\boldsymbol{J}}_Q(t,\overrightarrow{\boldsymbol{x}}) = -\overline{\overline{\boldsymbol{\lambda}}}(t,\overrightarrow{\boldsymbol{x}})\cdot\overrightarrow{\mathbf{grad}}\left(T(t,\overrightarrow{\boldsymbol{x}})\right);$$

Dulong-Petit's law:

$$u(t, \overrightarrow{x}) = C_V(\overrightarrow{x})T(t, \overrightarrow{x}).$$

## Three useful Hamiltonian functionals

• Lyapunov functional:  $\boldsymbol{\nu} := T$  and  $\boldsymbol{y} := \overrightarrow{J}_Q \cdot \overrightarrow{n}$  (or the other way),  $\mathcal{H}(T(t, \overrightarrow{x})) := \int_{\Omega} \rho(\overrightarrow{x}) C_V(\overrightarrow{x}) (T(t, \overrightarrow{x}))^2 d\overrightarrow{x}$ ,

Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} := -\int_{\Omega} \overrightarrow{\boldsymbol{f}}_{Q} \cdot \overline{\boldsymbol{\lambda}} \cdot \overrightarrow{\boldsymbol{f}}_{Q} + \langle \boldsymbol{y}, \boldsymbol{\nu} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} := -\underline{f}_{Q} \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\boldsymbol{\lambda}}} \cdot \underline{f}_{Q} + \underline{\boldsymbol{\nu}}^{\top} \cdot M_{\partial} \cdot \underline{\boldsymbol{y}}.$$

## Three useful Hamiltonian functionals

• Lyapunov functional:  $\boldsymbol{\nu} := T$  and  $\boldsymbol{y} := \overrightarrow{J}_Q \cdot \overrightarrow{n}$  (or the other way),  $\mathcal{H}(T(t, \overrightarrow{x})) := \int_{\Omega} \rho(\overrightarrow{x}) C_V(\overrightarrow{x}) (T(t, \overrightarrow{x}))^2 d\overrightarrow{x}$ ,

Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} := -\int_{\Omega} \overrightarrow{f}_Q \cdot \overline{\overrightarrow{\lambda}} \cdot \overrightarrow{f}_Q + \langle \boldsymbol{y}, \boldsymbol{\nu} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} := -\underline{f}_Q \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\lambda}}} \cdot \underline{f}_Q + \underline{\boldsymbol{\nu}}^{\top} \cdot M_\partial \cdot \underline{\boldsymbol{y}}.$$

• Internal energy:  $\boldsymbol{\nu} := T$ , and  $\boldsymbol{y} := \overrightarrow{\boldsymbol{J}}_S \cdot \overrightarrow{\boldsymbol{n}}$ ,  $\mathcal{U}(s(t, \overrightarrow{\boldsymbol{x}})) := \int_{\Omega} \boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}}) u(s(t, \overrightarrow{\boldsymbol{x}})) \ \mathrm{d}\overrightarrow{\boldsymbol{x}}$ ,

Lossless Power Balance (first law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}(s) = \langle \boldsymbol{y}, \boldsymbol{\nu} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}_{d}(\overline{s}) = \underline{\boldsymbol{\nu}}^{\top} \cdot M_{\partial} \cdot \underline{\boldsymbol{y}}.$$

## Three useful Hamiltonian functionals

• Lyapunov functional:  $\boldsymbol{\nu} := T$  and  $\boldsymbol{y} := \overrightarrow{J}_Q \cdot \overrightarrow{n}$  (or the other way),  $\mathcal{H}(T(t, \overrightarrow{x})) := \int_{\Omega} \rho(\overrightarrow{x}) C_V(\overrightarrow{x}) (T(t, \overrightarrow{x}))^2 d\overrightarrow{x}$ ,

Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} := -\int_{\Omega} \overrightarrow{\boldsymbol{f}}_{Q} \cdot \overline{\boldsymbol{\lambda}} \cdot \overrightarrow{\boldsymbol{f}}_{Q} + \langle \boldsymbol{y}, \boldsymbol{\nu} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} := -\underline{f}_{Q} \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\boldsymbol{\lambda}}} \cdot \underline{f}_{Q} + \underline{\boldsymbol{\nu}}^{\top} \cdot M_{\partial} \cdot \underline{\boldsymbol{y}}.$$

Internal energy:  $\boldsymbol{\nu} := T$ , and  $\boldsymbol{y} := \overrightarrow{\boldsymbol{J}}_S \cdot \overrightarrow{\boldsymbol{n}}$ ,  $\mathcal{U}(s(t, \overrightarrow{\boldsymbol{x}})) := \int_{\Omega} \boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}}) u(s(t, \overrightarrow{\boldsymbol{x}})) \ \mathrm{d}\overrightarrow{\boldsymbol{x}}$ ,

### Lossless Power Balance (first law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}(s) = \langle \boldsymbol{y}, \boldsymbol{\nu} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}_{d}(\overline{s}) = \underline{\boldsymbol{\nu}}^{\top} \cdot M_{\partial} \cdot \underline{\boldsymbol{y}}.$$

• Entropy: 
$$\boldsymbol{\nu} := \overrightarrow{\boldsymbol{J}}_Q \cdot \overrightarrow{\boldsymbol{n}}, \ \boldsymbol{y} := \frac{1}{T}, \ \mathcal{S}(u(t, \overrightarrow{\boldsymbol{x}})) := \int_{\Omega} \rho(\overrightarrow{\boldsymbol{x}}) s(u(t, \overrightarrow{\boldsymbol{x}})) \ \mathrm{d}\overrightarrow{\boldsymbol{x}},$$

Accretive **Power Balance** (second law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S}(u) = \int_{\Omega} \sigma + \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S}_{d}(\overline{u}) = \underline{\sigma}^{\top} \cdot M \cdot \underline{\mathbf{1}} + \underline{\boldsymbol{y}}^{\top} \cdot M_{\partial} \cdot \underline{\boldsymbol{\nu}}.$$

### 1 Introduction

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

### 3 Thermodynamics

Short recall

Lyapunov functional as Hamiltonian

4 Heat - Wave PDE system coupled through the boundary

5 Extensions & applications of PFEM?

Quadratic Hamiltonian: Lyapunov Functional

$$\mathcal{H}(\rho(\vec{x})u(t,\vec{x})) := \frac{1}{2} \int_{\Omega} \rho(\vec{x}) \frac{(u(t,\vec{x}))^2}{C_V(\vec{x})} \, \mathrm{d}\vec{x}$$
$$= \int_{\Omega} \rho(\vec{x}) C_V(\vec{x}) \left(T(t,\vec{x})\right)^2 \, \mathrm{d}\vec{x},$$

Energy variable :  $\alpha_u := \rho u$ , co-energy variable :  $e_u := \delta_{\alpha_u} \mathcal{H} = T$ .

This is the usual functional used in the mathematics community...

Quadratic Hamiltonian: Lyapunov Functional

$$\begin{aligned} \mathcal{H}(\boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}})\boldsymbol{u}(t,\overrightarrow{\boldsymbol{x}})) &:= \frac{1}{2} \int_{\Omega} \boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}}) \frac{\left(\boldsymbol{u}(t,\overrightarrow{\boldsymbol{x}})\right)^{2}}{C_{V}(\overrightarrow{\boldsymbol{x}})} \ \mathrm{d}\overrightarrow{\boldsymbol{x}} \\ &= \int_{\Omega} \boldsymbol{\rho}(\overrightarrow{\boldsymbol{x}}) C_{V}(\overrightarrow{\boldsymbol{x}}) \left(T(t,\overrightarrow{\boldsymbol{x}})\right)^{2} \ \mathrm{d}\overrightarrow{\boldsymbol{x}}, \end{aligned}$$

Energy variable :  $\alpha_u := \rho u$ , co-energy variable :  $e_u := \delta_{\alpha_u} \mathcal{H} = T$ .

This is the usual functional used in the mathematics community...

### **Power Balance**

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} = \int_{\Omega} \overrightarrow{\boldsymbol{J}}_{Q} \cdot \overrightarrow{\mathbf{grad}}(T) - \left\langle \overrightarrow{\boldsymbol{J}}_{Q} \cdot \overrightarrow{\boldsymbol{n}}, T \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

#### Quadratic Hamiltonian: Lyapunov Functional

$$\mathcal{H}(\boldsymbol{\rho}(\vec{\boldsymbol{x}})u(t,\vec{\boldsymbol{x}})) := \frac{1}{2} \int_{\Omega} \boldsymbol{\rho}(\vec{\boldsymbol{x}}) \frac{\left(u(t,\vec{\boldsymbol{x}})\right)^{2}}{C_{V}(\vec{\boldsymbol{x}})} \, \mathrm{d}\vec{\boldsymbol{x}}$$
$$= \int_{\Omega} \boldsymbol{\rho}(\vec{\boldsymbol{x}}) C_{V}(\vec{\boldsymbol{x}}) \left(T(t,\vec{\boldsymbol{x}})\right)^{2} \, \mathrm{d}\vec{\boldsymbol{x}},$$

Energy variable :  $\alpha_u := \rho u$ , co-energy variable :  $e_u := \delta_{\alpha_u} \mathcal{H} = T$ .

This is the usual functional used in the mathematics community...

### **Power Balance**

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} = \int_{\Omega} \overrightarrow{\boldsymbol{J}}_{Q} \cdot \overrightarrow{\mathbf{grad}}(T) - \left\langle \overrightarrow{\boldsymbol{J}}_{Q} \cdot \overrightarrow{\boldsymbol{n}}, T \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

Defining  $f_u := \partial_t \alpha_u = \rho \partial_t u$ ,  $e_u = T$ ,  $\overrightarrow{f}_Q := -\overrightarrow{\mathbf{grad}}(T)$ , and  $\overrightarrow{e}_Q := \overrightarrow{J}_Q$ , we get

$$\begin{pmatrix} f_u \\ \vec{f}_Q \end{pmatrix} = \begin{pmatrix} 0 & -\text{div} \\ -\mathbf{grad} & 0 \end{pmatrix} \begin{pmatrix} e_u \\ \vec{e}_Q \end{pmatrix}, \quad \text{with constitutive relation: } \vec{e}_Q = \overline{\overline{\lambda}} \vec{f}_Q.$$

At least two choices for boundary control:  $e_u$  or  $\overrightarrow{e}_Q \cdot \overrightarrow{n}$ . With *inward* heat flux  $\nu = -\overrightarrow{e}_Q \cdot \overrightarrow{n}$ , the output is  $y = e_u$ , *i.e.* the boundary temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{e}}_{u} \\ \underline{\boldsymbol{e}}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix},$$
 with  $\widetilde{D} := -\int_{\Omega} \overrightarrow{\mathbf{grad}} \left( \phi_{p} \right)^{\top} \cdot \overrightarrow{\boldsymbol{\Phi}}_{q}, \qquad \widetilde{B} := \int_{\partial\Omega} \phi_{p} \cdot \boldsymbol{\Psi}^{\top}.$ 

At least two choices for boundary control:  $e_u$  or  $\overrightarrow{e}_Q \cdot \overrightarrow{n}$ . With *inward* heat flux  $\nu = -\overrightarrow{e}_Q \cdot \overrightarrow{n}$ , the output is  $y = e_u$ , *i.e.* the boundary temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_{u} \\ \underline{e}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix},$$
with  $\widetilde{D} := -\int_{\Omega} \overrightarrow{\operatorname{\mathbf{grad}}} (\phi_{p})^{\top} \cdot \overrightarrow{\boldsymbol{\Phi}}_{q}, \qquad \widetilde{B} := \int_{\partial\Omega} \phi_{p} \cdot \boldsymbol{\Psi}^{\top}.$ 
Constitutive relations:  $M_{\rho C_{V}} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{e}_{u} = M \cdot \underline{f}_{u} \qquad \& \qquad \overrightarrow{\boldsymbol{M}} \cdot \underline{e}_{Q} = \overrightarrow{\boldsymbol{M}}_{\overline{\boldsymbol{\lambda}}} \cdot \underline{f}_{Q};$ 

At least two choices for boundary control:  $e_u$  or  $\overrightarrow{e}_Q \cdot \overrightarrow{n}$ . With *inward* heat flux  $\nu = -\overrightarrow{e}_Q \cdot \overrightarrow{n}$ , the output is  $y = e_u$ , *i.e.* the boundary temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_{u} \\ \underline{e}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix},$$
with  $\widetilde{D} := -\int_{\Omega} \overrightarrow{\operatorname{grad}} (\phi_{p})^{\top} \cdot \overrightarrow{\boldsymbol{\Phi}}_{q}, \qquad \widetilde{B} := \int_{\partial\Omega} \phi_{p} \cdot \Psi^{\top}.$ 
Constitutive relations:
$$M_{\rho C_{V}} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{e}_{u} = M \cdot \underline{f}_{u} \qquad \& \qquad \overrightarrow{\boldsymbol{M}} \cdot \underline{e}_{Q} = \overrightarrow{\boldsymbol{M}}_{\overline{\boldsymbol{\lambda}}} \cdot \underline{f}_{Q}.$$
Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} = -\int_{\Omega} \overrightarrow{\boldsymbol{f}}_{Q} \cdot \overline{\overrightarrow{\boldsymbol{\lambda}}} \cdot \overrightarrow{\boldsymbol{f}}_{Q} + \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \leq \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

At least two choices for boundary control:  $e_u$  or  $\vec{e}_Q \cdot \vec{n}$ . With *inward* heat flux  $\nu = -\vec{e}_Q \cdot \vec{n}$ , the output is  $y = e_u$ , *i.e.* the boundary temperature, and the discretized system is:

/

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{M} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{y} \end{pmatrix} = \begin{pmatrix} 0 & D & B \\ -\overrightarrow{D^{\top}} & 0 & 0 \\ -\overrightarrow{B^{\top}} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_{u} \\ \underline{e}_{Q} \\ \underline{\nu} \end{pmatrix},$$
with  $\widetilde{D} := -\int_{\Omega} \overrightarrow{\operatorname{grad}} (\phi_{p})^{\top} \cdot \overrightarrow{\Phi}_{q}, \qquad \widetilde{B} := \int_{\partial\Omega} \phi_{p} \cdot \Psi^{\top}.$ 
Constitutive relations:  $M_{\rho C_{V}} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{e}_{u} = M \cdot \underline{f}_{u} \qquad \& \qquad \overrightarrow{M} \cdot \underline{e}_{Q} = \overrightarrow{M}_{\overline{\overline{\lambda}}} \cdot \underline{f}_{Q}.$ 

### Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} = -\int_{\Omega} \overrightarrow{\boldsymbol{f}}_{Q} \cdot \overline{\overrightarrow{\boldsymbol{\lambda}}} \cdot \overrightarrow{\boldsymbol{f}}_{Q} + \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \leq \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

### Discrete Lossy Power Balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{d} = -\underline{\underline{f}}_{Q}\cdot\overrightarrow{\boldsymbol{M}}_{\overline{\underline{\lambda}}}\cdot\underline{\underline{f}}_{Q} + \underline{\underline{\nu}}^{\top}\cdot M_{\partial}\cdot\underline{\underline{y}} \leq \underline{\underline{\nu}}^{\top}\cdot M_{\partial}\cdot\underline{\underline{y}}.$$



Matignon (ISAE-SUPAERO)

### 1 Introduction

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

### 3 Thermodynamics

### 4 Heat - Wave PDE system coupled through the boundary

- The simplified, linearised fluid-structure model
- Coupled pHs model at the discrete level
- Simulation results

### 5 Extensions & applications of PFEM?













### Geometric Control Condition (GCC):

All characteristics of the wave equation must encounter  $\Omega_1$  in finite time.

## Known decays

## Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction **Zhang X. and Enrique Z.**

Archive for Rational Mechanics and Analysis, 184(1):49–120, (2007)

### Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

## Known decays

# Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction Zhang X. and Enrique Z.

Archive for Rational Mechanics and Analysis, 184(1):49–120, (2007)

### Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

### Strong stability (Zhang and Zuazua 2007)

- Every solution is strongly stable (to zero if  $\Gamma_2$  is non-empty, to a constant solution otherwise).
- The rate of decay is never exponential nor uniform;
- If the GCC holds: the decay is polynomial;
- If the GCC fails: the decay is logarithmic.

## Known decays

# Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction Zhang X. and Enrique Z.

Archive for Rational Mechanics and Analysis, 184(1):49–120, (2007)

### Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

### Strong stability (Zhang and Zuazua 2007)

- Every solution is strongly stable (to zero if  $\Gamma_2$  is non-empty, to a constant solution otherwise).
- The rate of decay is never exponential nor uniform;
- If the GCC holds: the decay is polynomial;
- If the GCC fails: the decay is logarithmic.

#### Remark

In our numerical simulations, the initial data are such that the constant solution is the null solution.

## Coupled model with transmission condition

Gyrator interconnection on  $\Gamma_{int}$ :

$$\boldsymbol{u}_1(t,\overrightarrow{\boldsymbol{x}}) = -\boldsymbol{y}_2(t,\overrightarrow{\boldsymbol{x}}), \qquad \boldsymbol{u}_2(t,\overrightarrow{\boldsymbol{x}}) = \boldsymbol{y}_1(t,\overrightarrow{\boldsymbol{x}}), \quad \forall t > 0, \ \overrightarrow{\boldsymbol{x}} \in \Gamma_{\mathrm{int}}.$$

## Coupled model with transmission condition

Gyrator interconnection on  $\Gamma_{int}$ :

$$\boldsymbol{u}_1(t,\overrightarrow{\boldsymbol{x}}) = -\boldsymbol{y}_2(t,\overrightarrow{\boldsymbol{x}}), \qquad \boldsymbol{u}_2(t,\overrightarrow{\boldsymbol{x}}) = \boldsymbol{y}_1(t,\overrightarrow{\boldsymbol{x}}), \quad \forall t > 0, \ \overrightarrow{\boldsymbol{x}} \in \Gamma_{\mathrm{int}}.$$

The total Hamiltonian of the coupled Heat-Wave system is given by:

$$\mathcal{H}(T,\partial_t w, \overrightarrow{\mathbf{grad}}w) := \underbrace{\frac{1}{2} \int_{\Omega_1} T(t, \overrightarrow{x})^2 \, \mathrm{d}\overrightarrow{x}}_{\mathcal{H}_T} + \underbrace{\frac{1}{2} \int_{\Omega_2} \partial_t w(t, \overrightarrow{x})^2 + \left\| \overrightarrow{\mathbf{grad}}w(t, \overrightarrow{x}) \right\|^2 \, \mathrm{d}\overrightarrow{x}}_{\mathcal{H}_w}.$$

## Coupled model with transmission condition

Gyrator interconnection on  $\Gamma_{int}$ :

$$\boldsymbol{u}_1(t,\overrightarrow{\boldsymbol{x}}) = -\boldsymbol{y}_2(t,\overrightarrow{\boldsymbol{x}}), \qquad \boldsymbol{u}_2(t,\overrightarrow{\boldsymbol{x}}) = \boldsymbol{y}_1(t,\overrightarrow{\boldsymbol{x}}), \quad \forall t > 0, \ \overrightarrow{\boldsymbol{x}} \in \Gamma_{\mathrm{int}}.$$

The total Hamiltonian of the coupled Heat-Wave system is given by:

$$\mathcal{H}(T,\partial_t w, \overrightarrow{\mathbf{grad}}w) := \underbrace{\frac{1}{2} \int_{\Omega_1} T(t, \overrightarrow{x})^2 \, \mathrm{d}\overrightarrow{x}}_{\mathcal{H}_T} + \underbrace{\frac{1}{2} \int_{\Omega_2} \partial_t w(t, \overrightarrow{x})^2 + \left\| \overrightarrow{\mathbf{grad}}w(t, \overrightarrow{x}) \right\|^2 \, \mathrm{d}\overrightarrow{x}}_{\mathcal{H}_w}.$$

### Dissipative Power Balance

$$\begin{array}{rcl} \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} &=& \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{T} + \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}_{w} \\ &=& -\int_{\Omega_{1}} \|\overrightarrow{J}_{Q}\|^{2} + \langle \boldsymbol{u}_{1}, \boldsymbol{y}_{1} \rangle_{H^{-\frac{1}{2}}(\Gamma_{\mathrm{int}}), H^{\frac{1}{2}}(\Gamma_{\mathrm{int}})} + \langle \boldsymbol{y}_{2}, \boldsymbol{u}_{2} \rangle_{H^{-\frac{1}{2}}(\Gamma_{\mathrm{int}}), H^{\frac{1}{2}}(\Gamma_{\mathrm{int}})} \\ &=& -\int_{\Omega_{1}} \|\overrightarrow{J}_{Q}\|^{2} - \langle \boldsymbol{y}_{2}, \boldsymbol{y}_{1} \rangle_{H^{-\frac{1}{2}}(\Gamma_{\mathrm{int}}), H^{\frac{1}{2}}(\Gamma_{\mathrm{int}})} + \langle \boldsymbol{y}_{2}, \boldsymbol{y}_{1} \rangle_{H^{-\frac{1}{2}}(\Gamma_{\mathrm{int}}), H^{\frac{1}{2}}(\Gamma_{\mathrm{int}})} \\ &=& -\int_{\Omega_{1}} \|\overrightarrow{J}_{Q}\|^{2}. \end{array}$$

### 1 Introduction

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

### 3 Thermodynamics

### 4 Heat - Wave PDE system coupled through the boundary

- The simplified, linearised fluid-structure model
- Coupled pHs model at the discrete level
- Simulation results

### 5 Extensions & applications of PFEM?

## Coupled model at the discrete level

Let  $C := B_{1,\text{int}} M_{\text{int}}^{-1} B_{2,\text{int}}^{\top}$  the gyrator interconnection matrix.

$$\operatorname{Diag}\begin{pmatrix} M_{1} \\ \overline{M}_{1} \\ M_{2} \\ \overline{M}_{2} \\ M_{bnd,1} \\ M_{bnd,2} \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \underline{T} \\ J_{Q} \\ \frac{\mathrm{d}}{\mathrm{d}t} \underline{\partial}_{t} w \\ \frac{\mathrm{d}}{\mathrm{d}t} \underline{\partial}_{t} w \\ \frac{\mathrm{d}}{\mathrm{d}t} \underline{\mathbf{grad}} w \\ \underline{0} \\ -\underline{y}_{w} \end{pmatrix} = \begin{pmatrix} 0 & D_{1} & 0 & -C & B_{1} & 0 \\ -D_{1}^{\top} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{2} & 0 & 0 \\ 0 & 0 & 0 & D_{2} & 0 & 0 \\ C^{\top} & 0 & -D_{2}^{\top} & 0 & 0 & B_{2} \\ -B_{1}^{\top} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -B_{2}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{T} \\ J_{Q} \\ \underline{\partial}_{t} w \\ \underline{\mathbf{grad}} w \\ \underline{\mathbf{y}}_{T} \\ \underline{0} \end{pmatrix}$$

## Coupled model at the discrete level

Let  $C := B_{1,\text{int}} M_{\text{int}}^{-1} B_{2,\text{int}}^{\top}$  the gyrator interconnection matrix.

$$\operatorname{Diag}\begin{pmatrix} M_{1} \\ \overline{M}_{1} \\ M_{2} \\ \overline{M}_{2} \\ \overline{M}_{2} \\ M_{bnd,1} \\ M_{bnd,2} \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \underline{T} \\ J_{Q} \\ \frac{\mathrm{d}}{\mathrm{d}t} \overline{\partial_{t}} w \\ \frac{\mathrm{d}}{\mathrm{d}t} \overline{\mathbf{grad}} w \\ \frac{\mathrm{d}}{\mathrm{d}t} \overline{\mathbf{grad}} w \\ \frac{\mathrm{d}}{\mathrm{d}t} \overline{\mathbf{grad}} w \\ - \underline{y}_{w} \end{pmatrix} = \begin{pmatrix} 0 & D_{1} & 0 & -C & B_{1} & 0 \\ -D_{1}^{\top} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{2} & 0 & 0 \\ C^{\top} & 0 & -D_{2}^{\top} & 0 & 0 & B_{2} \\ -B_{1}^{\top} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -B_{2}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \overline{T} \\ J_{Q} \\ \overline{\partial_{t}} w \\ \overline{\mathbf{grad}} w \\ \overline{\mathbf{grad}} w \\ \overline{y} T \\ \underline{0} \end{pmatrix}$$

#### **Discrete Lossy Power Balance**

The discrete Hamiltonian  $\mathcal{H}^d$  is defined as the continuous Hamiltonian  $\mathcal{H}$  evaluated in the *approximated solution*.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H}^d(\underline{T},\underline{\partial_t w},\underline{\mathbf{grad}w}) = -\underline{J_Q}^\top \overrightarrow{\boldsymbol{M}}_1 \underline{J_Q}.$$

### 1 Introduction

2 Linear Wave equations: towards PH-DAEs and PH-ODEs

### 3 Thermodynamics

### 4 Heat - Wave PDE system coupled through the boundary

- The simplified, linearised fluid-structure model
- Coupled pHs model at the discrete level
- Simulation results

### 5 Extensions & applications of PFEM?

## Numerical simulations: configurations



Switching  $\Omega_1$  and  $\Omega_2$ , four cases are covered.

## Hamiltonian decays



## -GCC holds, $\Gamma_1 eq \emptyset$ and $\Gamma_2 = \emptyset$

## For GCC fails, $\Gamma_1 = \emptyset$ and $\Gamma_2 \neq \emptyset$

## -GCC holds, $\Gamma_1 \neq \emptyset$ and $\Gamma_2 \neq \emptyset$

## - GCC fails, $\Gamma_1 eq \emptyset$ and $\Gamma_2 eq \emptyset$


#### 1 Introduction

- 2 Linear Wave equations: towards PH-DAEs and PH-ODEs
- 3 Thermodynamics
- 4 Heat Wave PDE system coupled through the boundary
- 5 Extensions & applications of PFEM?

**Timoshenko beam:** 
$$J := \begin{pmatrix} 0 & 0 & 0 & \partial_x \\ 0 & 0 & \partial_x & 1 \\ 0 & \partial_x & 0 & 0 \\ \partial_x & -1 & 0 & 0 \end{pmatrix};$$

Timoshenko beam: 
$$J := \begin{pmatrix} 0 & 0 & 0 & \partial_x \\ 0 & 0 & \partial_x & 1 \\ 0 & \partial_x & 0 & 0 \\ \partial_x & -1 & 0 & 0 \end{pmatrix};$$
Euler–Bernoulli beam:  $J := \begin{pmatrix} 0 & -\partial_{xx}^2 \\ \partial_{xx}^2 & 0 \end{pmatrix};$ 

Timoshenko beam: 
$$J := \begin{pmatrix} 0 & 0 & 0 & \partial_x \\ 0 & 0 & \partial_x & 1 \\ 0 & \partial_x & 0 & 0 \\ \partial_x & -1 & 0 & 0 \end{pmatrix};$$
Euler–Bernoulli beam:  $J := \begin{pmatrix} 0 & -\partial_{xx}^2 \\ \partial_{xx}^2 & 0 \end{pmatrix};$ 
Reissner-Mindlin plate:  $J := \begin{pmatrix} 0 & \text{Div} \\ \text{Grad} & 0 \end{pmatrix};$ 

Timoshenko beam: 
$$J := \begin{pmatrix} 0 & 0 & 0 & \partial_x \\ 0 & 0 & \partial_x & 1 \\ 0 & \partial_x & 0 & 0 \\ \partial_x & -1 & 0 & 0 \end{pmatrix};$$
Euler–Bernoulli beam:  $J := \begin{pmatrix} 0 & -\partial_{xx}^2 \\ \partial_{xx}^2 & 0 \end{pmatrix};$ 
Reissner-Mindlin plate:  $J := \begin{pmatrix} 0 & \text{Div} \\ \text{Grad } & 0 \end{pmatrix};$ 
Kirchhoff-Love plate:  $J := \begin{pmatrix} 0 & -\text{div} \circ \text{Div} \\ \text{Grad} & 0 \end{pmatrix};$ 

Timoshenko beam: 
$$J := \begin{pmatrix} 0 & 0 & 0 & \partial_x \\ 0 & 0 & \partial_x & 1 \\ 0 & \partial_x & 0 & 0 \\ \partial_x & -1 & 0 & 0 \end{pmatrix};$$
Euler-Bernoulli beam:  $J := \begin{pmatrix} 0 & -\partial_{xx}^2 \\ \partial_{xx}^2 & 0 \end{pmatrix};$ 
Reissner-Mindlin plate:  $J := \begin{pmatrix} 0 & \text{Div} \\ \text{Grad } & 0 \end{pmatrix};$ 
Kirchhoff-Love plate:  $J := \begin{pmatrix} 0 & \text{Div} \\ \text{Grad } \circ \text{grad } & 0 \end{pmatrix};$ 
the full von-Kármán plate  $J := \begin{bmatrix} 0 & \text{Div} & 0 & 0 \\ \text{Grad } \circ \text{grad } & 0 \end{pmatrix};$ 
where  $\mathcal{C}(w)(T) = \operatorname{div}(T \overrightarrow{\text{grad}}w)$ 

**2D** Incompressible Navier Stokes equation: with vorticity  $\omega$  and stream function  $\psi$ .

$$J := \operatorname{curl}_{2\mathsf{D}}(G(\omega) \overrightarrow{\mathbf{grad}}^{\perp}), \text{ where } G(\omega) = \omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

**2D** Incompressible Navier Stokes equation: with vorticity  $\omega$  and stream function  $\psi$ .

$$J := \operatorname{curl}_{2\mathsf{D}}(G(\omega) \overrightarrow{\mathbf{grad}}^{\perp}), \text{ where } G(\omega) = \omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$
  
**2D Maxwell's equation:** 
$$J := \begin{pmatrix} 0 & \operatorname{curl}_{2\mathsf{D}} \\ -\overrightarrow{\mathbf{grad}}^{\perp} & 0 \end{pmatrix}.$$

**2D** Incompressible Navier Stokes equation: with vorticity  $\omega$  and stream function  $\psi$ .

$$J := \operatorname{curl}_{2\mathsf{D}}(G(\omega) \overrightarrow{\operatorname{\mathbf{grad}}}^{\perp}), \text{ where } G(\omega) = \omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$
  
**2D Maxwell's equation:** 
$$J := \begin{pmatrix} 0 & \operatorname{curl}_{2\mathsf{D}} \\ -\overrightarrow{\operatorname{\mathbf{grad}}}^{\perp} & 0 \end{pmatrix}.$$
  
**3D Maxwell's equation:** 
$$J := \begin{pmatrix} 0 & \overrightarrow{\operatorname{curl}} \\ -\overrightarrow{\operatorname{curl}} & 0 \end{pmatrix}.$$

**2D** Incompressible Navier Stokes equation: with vorticity  $\omega$  and stream function  $\psi$ .

.

$$J := \operatorname{curl}_{2\mathsf{D}}(G(\omega) \overrightarrow{\mathbf{grad}}^{\perp}), \text{ where } G(\omega) = \omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
  
**2D Maxwell's equation:** 
$$J := \begin{pmatrix} 0 & \operatorname{curl}_{2\mathsf{D}} \\ -\overrightarrow{\mathbf{grad}}^{\perp} & 0 \end{pmatrix}.$$
  
**3D Maxwell's equation:** 
$$J := \begin{pmatrix} 0 & \overrightarrow{\mathbf{curl}} \\ -\overrightarrow{\mathbf{curl}} & 0 \end{pmatrix}.$$

Constitutive relations are postponed! Dissipation **is not** a drawback!

#### Make your own pHs simulations using SCRIMP!



# References (on PFEM)

A structure-preserving Partitioned Finite Element Method for the 2D wave equation Cardoso-Ribeiro F.L., Matignon D., Lefèvre L. IFAC-PapersOnLine, vol.51(3), pp.119–124 (2018), LHMNC 2018

Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations Serhani A., Matignon D., Haine G. IFAC-Papers OnLine, vol. 52(2), pp.96-101 (2019), CPDE 2019

Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. Cardoso-Ribeiro, F.L., Brugnoli, A., Matignon, Denis, Lefè vre, L. 2019 IEEE 58th Conference on Decision and Control (CDC), CDC 2019

Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates Brugnoli A., Alazard D., Pommier-Budinger V., Matignon D. Applied Mathematical Modelling, vol.75, pp.940–960 (2019)

Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates Brugnoli A., Alazard D., Pommier-Budinger V., Matignon D. Applied Mathematical Modelling, vol.75, pp.961–981 (2019)

Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system Serhani A., Haine G., Matignon D. IFAC-Papers/Online, vol.52(7), pp.51-56 (2019), TFMST 2019

Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization Serhani A., Haine G., Matignon D. IFAC-PaperSonLine, vol.52(7), pp.57-62 (2019), TFMST 2019

A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control Serhani A., Matignon D., Haine G. Lecture Notes in Computer Science (GSI 2019). Springer Verlag. pp.549–558

Modelling and structure-preserving discretization of Maxwell's equations as port-Hamiltonian system

Payen G., Matignon D., Haine G. IFAC-PapersOnLine, vol.53(2), pp.7671–7676 (2020), IFAC WC 2020

A Partitioned Finite-Element Method (PFEM) for power-preserving discretization of open systems of conservation laws

Cardoso-Ribeiro F.L., Matignon D., Lefèvre L. IMA J. Mathematics of Control and Information, vol.38(2), pp. 493–533 (2021)

# References (on PFEM)

Partitioned finite element method for structured discretization with mixed boundary conditions Brugnoli, A. and Cardoso-Ribeiro, F. L. and Haine, G. and Kotyczka, P. IFAC-PapersOnLine, vol.53(2), pp. 7557-7562 (2020), IFAC WC 2020

Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic partial differential equations Brugnoli A., Haine G., Serhani A., Vasseur X. Journal of Anolied Mathematics and Physics vol 09(06). np. 1278-1321 (2021)

Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation

Haine, G. and Matignon, D. IFAC-PapersOnLine, vol.54(19), pp. 161–166 (2021), IFAC LHMNLC 2021

Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems Haine G., Matignon D. Lecture Notes in Computer Science (GSI 2021), Springer Verlag, pp.191–199

Long-time behavior of a coupled heat-wave system using structure-preserving finite element method Haine G., Matignon D., Monteghetti F. Mathematical Reports, vol. 22(1-2), pp. 187-215 (2022).

Structure-preserving discretization of a coupled Allen-Cahn and heat equation system Bendimerad-Hohl A., Haine G., Matignon D., Maschke B. IFAC-PaperSonLine, 55 (2022), pp. 99–104. TFMST 2022

Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control Brugnoli A., Haine G., Matignon D. IFAC-Papers Coll ing 55(30) on 418-423 MTNS 2022 invited session

Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian system Haine G., Matignon D., Monteghetti F. IFAC-PapersOnline. 55(30). pp. 424-429. MTNS 2022. invited session

Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system Haine G., Matignon D., Serhani A. Int. J. of Numerical Analysis and Modeling. Vol. 20(1), pp 92–133. (2023)

Data-driven identification of a 2D wave equation model with a port-Hamiltonian structure Poussot-Vassal C., Matignon D., Haine G., Vuillemin P. Proc. European Control Conference (ECC), pp. 1785–1790, June 2023, invited session.



### THANK YOU FOR YOUR ATTENTION!



### 6 Discretization in terms of co-energy variables: PH-ODEs

7 Entropy as Hamiltonian

8 Nonlinear wave equation: the 2D Shallow Water Equation

# Co-energy variables and PH-ODEs

In order to transform the PH-DAEs into PH-ODEs, in the linear case, the constitutive relations can be first inverted, second discretized.

$$\overrightarrow{\pmb{\alpha}}_q^{ap}(t,\overrightarrow{\pmb{x}}) = \overline{\overline{\pmb{T}}}^{-1} \cdot \overrightarrow{\pmb{e}}_q^{ap}(t,\overrightarrow{\pmb{x}}) \quad \text{and} \quad \alpha_p^{ap}(t,\overrightarrow{\pmb{x}}) = \rho \, e_p^{ap}(t,\overrightarrow{\pmb{x}}).$$

# Co-energy variables and PH-ODEs

In order to transform the PH-DAEs into PH-ODEs, in the linear case, the constitutive relations can be first inverted, second discretized.

$$\overrightarrow{\pmb{\alpha}}_q^{ap}(t,\overrightarrow{\pmb{x}}) = \overline{\overline{\pmb{T}}}^{-1} \cdot \overrightarrow{\pmb{e}}_q^{ap}(t,\overrightarrow{\pmb{x}}) \quad \text{and} \quad \alpha_p^{ap}(t,\overrightarrow{\pmb{x}}) = \rho \, e_p^{ap}(t,\overrightarrow{\pmb{x}}).$$

The discretization in the same bases as previously gives:

$$\overrightarrow{M}_q \cdot \underline{\alpha}_q = \overrightarrow{M}_{\overline{\overline{T}}^{-1}} \cdot \underline{e}_q$$
 and  $M_p \cdot \underline{\alpha}_p = M_{\rho} \cdot \underline{e}_p$ ,

where new mass matrices, or spatial averages, have been defined:  $\overrightarrow{M}_{\overline{\overline{T}}^{-1}} := \int_{\Omega} \overrightarrow{\Phi}_{q} \cdot \overline{\overline{T}}^{-1} \cdot \overrightarrow{\Phi}_{q}^{\top} \qquad \& M_{\rho} := \int_{\Omega} \rho \, \phi_{p} \cdot \phi_{p}^{\top}.$ 

# **Co-energy variables and PH-ODEs**

In order to transform the PH-DAEs into PH-ODEs, in the linear case, the constitutive relations can be first inverted, second discretized.

$$\overrightarrow{\pmb{\alpha}}_q^{ap}(t,\overrightarrow{\pmb{x}}) = \overline{\overline{\pmb{T}}}^{-1} \cdot \overrightarrow{\pmb{e}}_q^{ap}(t,\overrightarrow{\pmb{x}}) \quad \text{and} \quad \alpha_p^{ap}(t,\overrightarrow{\pmb{x}}) = \rho \, e_p^{ap}(t,\overrightarrow{\pmb{x}}).$$

The discretization in the same bases as previously gives:

$$\overrightarrow{M}_q \cdot \underline{\alpha}_q = \overrightarrow{M}_{\overline{\overline{T}}^{-1}} \cdot \underline{e}_q$$
 and  $M_p \cdot \underline{\alpha}_p = M_{\rho} \cdot \underline{e}_p$ ,

where new mass matrices, or spatial averages, have been defined:  $\overrightarrow{M}_{\overline{\overline{T}}^{-1}} := \int_{\Omega} \overrightarrow{\Phi}_{q} \cdot \overline{\overline{T}}^{-1} \cdot \overrightarrow{\Phi}_{q}^{\top} \qquad \& M_{\rho} := \int_{\Omega} \rho \, \phi_{p} \cdot \phi_{p}^{\top}.$ 

#### The discretized system now is a PH-ODE:

$$\begin{split} \overrightarrow{\boldsymbol{M}}_{\overline{\underline{\boldsymbol{T}}}^{-1}} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\boldsymbol{e}}_{\boldsymbol{q}}(t) &= D \cdot \underline{\boldsymbol{e}}_{\boldsymbol{p}}(t) + B \cdot \underline{\boldsymbol{u}}(t), \\ M_{\rho} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \underline{\boldsymbol{e}}_{\boldsymbol{p}}(t) &= -D^{\top} \cdot \underline{\boldsymbol{e}}_{\boldsymbol{q}}(t), \\ M_{\partial} \cdot \underline{\boldsymbol{y}}(t) &= B^{\top} \cdot \underline{\boldsymbol{e}}_{\boldsymbol{q}}(t), \end{split}$$

and enjoys the same conservative power balance at the discrete level.

With the same definition the discrete Hamiltonian:

$$\tilde{\mathcal{H}}_d\left(\underline{e}_q,\underline{e}_p\right) := \mathcal{H}\left(\overrightarrow{\boldsymbol{\alpha}}_q^{ap}, \boldsymbol{\alpha}_p^{ap}\right) = \frac{1}{2}\left(\underline{e}_q^\top \cdot \overrightarrow{\boldsymbol{M}}_{\overline{\overline{\boldsymbol{r}}}^{-1}} \cdot \underline{e}_q + \underline{e}_p^\top \cdot M_{\boldsymbol{\rho}} \cdot \underline{e}_p\right),$$

we can easily compute its time derivative along the trajectories:

$$\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\mathcal{H}}_{d}\left(\underline{e}_{q},\underline{e}_{p}\right) = \left(\frac{\mathrm{d}}{\mathrm{d}t}\underline{e}_{q}\right)^{\top}\cdot\overrightarrow{M}_{\overline{\overline{T}}^{-1}}\cdot\underline{e}_{q} + \left(\frac{\mathrm{d}}{\mathrm{d}t}\underline{e}_{p}\right)^{\top}\cdot M_{\rho}\cdot\underline{e}_{p}, \\
= \left(\overrightarrow{M}_{\overline{\overline{T}}^{-1}}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\underline{e}_{q}\right)^{\top}\cdot\underline{e}_{q} + \left(M_{\rho}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\underline{e}_{p}\right)^{\top}\cdot\underline{e}_{p}, \\
= \left(D\cdot\underline{e}_{p}(t) + B\cdot\underline{u}(t)\right)^{\top}\cdot\underline{e}_{q} + \left(-D^{\top}\cdot\underline{e}_{q}(t)\right)^{\top}\cdot\underline{e}_{p}, \\
= \underline{u}(t)^{\top}\cdot B^{\top}\cdot\underline{e}_{q} \\
= \underline{u}(t)^{\top}\cdot M_{\partial}\cdot\underline{y}(t). \quad \Box$$

**Remark**: both definitions do coincide, i.e.  $\tilde{\mathcal{H}}_d(\underline{e}_q,\underline{e}_p) = \mathcal{H}_d(\underline{\alpha}_q,\underline{\alpha}_p)$ , since the discretization of the constitutive relations now provides:  $\overrightarrow{M}_q \cdot \underline{\alpha}_q = \overrightarrow{M}_{\overline{T}^{-1}} \cdot \underline{e}_q$  and  $M_p \cdot \underline{\alpha}_p = M_\rho \cdot \underline{e}_p$  (exercise).



### 6 Discretization in terms of co-energy variables: PH-ODEs

### 7 Entropy as Hamiltonian

8 Nonlinear wave equation: the 2D Shallow Water Equation



#### Hamiltonian: Entropy

$$\mathcal{S}(\rho(\overrightarrow{x})u(t,\overrightarrow{x})) := \int_{\Omega} \rho(\overrightarrow{x}) s(\rho(\overrightarrow{x})u(t,\overrightarrow{x})) \, \mathrm{d}\overrightarrow{x},$$

Energy variable :  $\alpha_u := \rho u$ , co-energy variable :  $e_u := \delta_{\alpha_u} S = \beta$ .

# Accretion: Entropy

#### Hamiltonian: Entropy

$$\mathcal{S}(\rho(\overrightarrow{\boldsymbol{x}})u(t,\overrightarrow{\boldsymbol{x}})) := \int_{\Omega} \rho(\overrightarrow{\boldsymbol{x}}) s(\rho(\overrightarrow{\boldsymbol{x}})u(t,\overrightarrow{\boldsymbol{x}})) \, \mathrm{d}\overrightarrow{\boldsymbol{x}},$$

Energy variable :  $\alpha_u := \rho u$ , co-energy variable :  $e_u := \delta_{\alpha_u} S = \beta$ .

#### Power Balance (second law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S} = \int_{\Omega} \sigma - \left\langle \overrightarrow{\boldsymbol{J}}_Q \cdot \overrightarrow{\boldsymbol{n}}, \beta \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

# Accretion: Entropy

#### Hamiltonian: Entropy

$$\mathcal{S}(\rho(\overrightarrow{x})u(t,\overrightarrow{x})) := \int_{\Omega} \rho(\overrightarrow{x}) s(\rho(\overrightarrow{x})u(t,\overrightarrow{x})) \, \mathrm{d}\overrightarrow{x},$$

Energy variable :  $\alpha_u := \rho u$ , co-energy variable :  $e_u := \delta_{\alpha_u} S = \beta$ .

#### Power Balance (second law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S} = \int_{\Omega} \sigma - \left\langle \overrightarrow{\boldsymbol{J}}_Q \cdot \overrightarrow{\boldsymbol{n}}, \beta \right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

Defining 
$$f_u := \partial_t \alpha_u = \rho \partial_t u$$
,  $e_u = \beta$ ,  $\overrightarrow{f}_Q := -\overrightarrow{\operatorname{grad}}(\beta)$ , and  $\overrightarrow{e}_Q := \overrightarrow{J}_Q$ 
$$\begin{pmatrix} f_u \\ \overrightarrow{f}_Q \end{pmatrix} = \begin{pmatrix} 0 & -\operatorname{div} \\ -\overrightarrow{\operatorname{grad}} & 0 \end{pmatrix} \begin{pmatrix} e_u \\ \overrightarrow{e}_Q \end{pmatrix}.$$

## -Accretion: Entropy

At least two choices for boundary control:  $e_u$  or  $\vec{e}_Q \cdot \vec{n}$ . With *inward* heat flux  $\nu = -\vec{e}_Q \cdot \vec{n}$ , the output is  $\boldsymbol{y} = e_u$ , *i.e.* the boundary reciprocal temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{e}_{u} \\ \underline{e}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix}.$$

## -Accretion: Entropy

At least two choices for boundary control:  $e_u$  or  $\vec{e}_Q \cdot \vec{n}$ . With *inward* heat flux  $\nu = -\vec{e}_Q \cdot \vec{n}$ , the output is  $\boldsymbol{y} = e_u$ , *i.e.* the boundary reciprocal temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{e}}_{u} \\ \underline{\boldsymbol{e}}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix}$$

*Non-linear* constitutive relations from:

$$ho C_V = lpha_u e_u$$

r

$$e_u^2 \overrightarrow{e}_Q = -\overline{\overline{T}} \cdot \overrightarrow{f}_Q.$$

## -Accretion: Entropy

At least two choices for boundary control:  $e_u$  or  $\vec{e}_Q \cdot \vec{n}$ . With *inward* heat flux  $\nu = -\vec{e}_Q \cdot \vec{n}$ , the output is  $\boldsymbol{y} = e_u$ , *i.e.* the boundary reciprocal temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{e}}_{u} \\ \underline{\boldsymbol{e}}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix}$$

**Non-linear** constitutive relations from:  $\rho C_V = \alpha_u e_u$  &  $e_u^2 \overrightarrow{e}_Q = -\overline{\overline{T}} \cdot \overrightarrow{f}_Q$ .

Accretive **Power Balance** (second law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S} = -\int_{\Omega} \overrightarrow{\boldsymbol{f}}_{Q} \cdot \overrightarrow{\boldsymbol{e}}_{Q} + \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \geq \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}$$

## **Accretion: Entropy**

At least two choices for boundary control:  $e_u$  or  $\vec{e}_Q \cdot \vec{n}$ . With *inward* heat flux  $\nu = -\vec{e}_Q \cdot \vec{n}$ , the output is  $\boldsymbol{y} = e_u$ , *i.e.* the boundary reciprocal temperature, and the discretized system is:

$$\begin{pmatrix} M & 0 & 0 \\ 0 & \overrightarrow{\boldsymbol{M}} & 0 \\ 0 & 0 & M_{\partial} \end{pmatrix} \begin{pmatrix} \underline{f}_{u} \\ \underline{f}_{Q} \\ -\underline{\boldsymbol{y}} \end{pmatrix} = \begin{pmatrix} 0 & \widetilde{D} & \widetilde{B} \\ -\widetilde{D}^{\top} & 0 & 0 \\ -\widetilde{B}^{\top} & 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{\boldsymbol{e}}_{u} \\ \underline{\boldsymbol{e}}_{Q} \\ \underline{\boldsymbol{\nu}} \end{pmatrix}$$

**Non-linear** constitutive relations from:  $\rho C_V = \alpha_u e_u$  &  $e_u^2 \overrightarrow{e}_Q = -\overline{\overline{T}} \cdot \overrightarrow{f}_Q$ .

Accretive **Power Balance** (second law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S} = -\int_{\Omega} \overrightarrow{\boldsymbol{f}}_{Q} \cdot \overrightarrow{\boldsymbol{e}}_{Q} + \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} \geq \langle \boldsymbol{\nu}, \boldsymbol{y} \rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}.$$

Discrete accretive **Power Balance** (second law of thermodynamics)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{S} = -\underline{f}_Q \cdot \overrightarrow{\boldsymbol{M}} \cdot \underline{\boldsymbol{e}}_Q + \underline{\boldsymbol{\nu}}^\top \cdot M_\partial \cdot \underline{\boldsymbol{y}} \geq \underline{\boldsymbol{\nu}}^\top \cdot M_\partial \cdot \underline{\boldsymbol{y}}.$$



6 Discretization in terms of co-energy variables: PH-ODEs

7 Entropy as Hamiltonian

8 Nonlinear wave equation: the 2D Shallow Water Equation

- Modelling: SWE as a pHs
- Numerics: PFEM in the polynomial case
- Application: Boundary Dissipation

\* Energy variables:  $\alpha_h$  the fluid height,  $\boldsymbol{\alpha}_v$  the linear momentum,

- \* Energy variables:  $lpha_h$  the fluid height,  $oldsymbol{lpha}_v$  the linear momentum,
- \* Non-quadratic and non-separable Hamiltonian functional:

$$H(\alpha_h, \boldsymbol{\alpha}_v) = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{\rho} \alpha_h \left\| \boldsymbol{\alpha}_v \right\|^2 + \rho g \alpha_h^2 \right\} \, \mathrm{d}\Omega.$$

- \* Energy variables:  $lpha_h$  the fluid height,  $oldsymbol{lpha}_v$  the linear momentum,
- \* Non-quadratic and non-separable Hamiltonian functional:

$$H(\alpha_h, \boldsymbol{\alpha}_v) = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{\rho} \alpha_h \left\| \boldsymbol{\alpha}_v \right\|^2 + \rho g \alpha_h^2 \right\} \, \mathrm{d}\Omega.$$

\* Dynamical system:

$$\begin{split} \frac{\partial}{\partial t} \begin{pmatrix} \alpha_h \\ \boldsymbol{\alpha}_v \end{pmatrix} &= \begin{bmatrix} 0 & -\operatorname{div} \\ -\operatorname{\mathbf{grad}} & \mathbf{0} \end{bmatrix} \begin{pmatrix} e_h \\ \mathbf{e}_v \end{pmatrix}, \quad (x,y) \in \Omega = \{x^2 + y^2 \le R\}, \\ \begin{pmatrix} e_h \\ \mathbf{e}_v \end{pmatrix} &= \begin{pmatrix} \delta_{\alpha_h} H \\ \delta_{\boldsymbol{\alpha}_v} H \end{pmatrix} = \begin{pmatrix} \frac{1}{2\rho} \|\boldsymbol{\alpha}_v\|^2 + \rho g \alpha_h \\ & \frac{1}{\rho} \alpha_h \boldsymbol{\alpha}_v \end{pmatrix}, \end{split}$$

- \* Energy variables:  $lpha_h$  the fluid height,  $oldsymbol{lpha}_v$  the linear momentum,
- \* Non-quadratic and non-separable Hamiltonian functional:

$$H(\alpha_h, \boldsymbol{\alpha}_v) = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{\rho} \alpha_h \|\boldsymbol{\alpha}_v\|^2 + \rho g \alpha_h^2 \right\} \, \mathrm{d}\Omega.$$

\* Dynamical system:

$$\begin{split} \frac{\partial}{\partial t} \begin{pmatrix} \alpha_h \\ \boldsymbol{\alpha}_v \end{pmatrix} &= \begin{bmatrix} 0 & -\operatorname{div} \\ -\operatorname{\mathbf{grad}} & \mathbf{0} \end{bmatrix} \begin{pmatrix} e_h \\ \mathbf{e}_v \end{pmatrix}, \qquad (x,y) \in \Omega = \{x^2 + y^2 \leq R\}, \\ \begin{pmatrix} e_h \\ \mathbf{e}_v \end{pmatrix} &= \begin{pmatrix} \delta_{\alpha_h} H \\ \delta_{\boldsymbol{\alpha}_v} H \end{pmatrix} = \begin{pmatrix} \frac{1}{2\rho} \|\boldsymbol{\alpha}_v\|^2 + \rho g \alpha_h \\ & \frac{1}{\rho} \alpha_h \boldsymbol{\alpha}_v \end{pmatrix}, \end{split}$$

\* Consider a uniform Neumann boundary control

$$u_{\partial} = -\mathbf{e}_{v} \cdot \mathbf{n}|_{\partial\Omega} = -\frac{1}{\rho} \alpha_{h} \boldsymbol{\alpha}_{v} \cdot \mathbf{n}|_{\partial\Omega}, \quad \text{Volumetric inflow rate.}$$

The corresponding output reads

$$y_{\partial} = e_h|_{\partial\Omega} = (\rho g \alpha_h + \frac{1}{2\rho} \|\boldsymbol{\alpha}_v\|^2)|_{\partial\Omega}.$$



6 Discretization in terms of co-energy variables: PH-ODEs

7 Entropy as Hamiltonian

8 Nonlinear wave equation: the 2D Shallow Water Equation
 Modelling: SWE as a pHs

• Numerics: PFEM in the polynomial case

Application: Boundary Dissipation

# Numerics: PFEM in the polynomial case

The difficulty lies in the non-linear nature of both constitutive relations. However, since they remain polynomial, off-line Finite Element computations can be performed, and makes possible the online computation of the discrete constitutive relations at each time step.

# Numerics: PFEM in the polynomial case

The difficulty lies in the non-linear nature of both constitutive relations. However, since they remain polynomial, off-line Finite Element computations can be performed, and makes possible the online computation of the discrete constitutive relations at each time step.

A general result

$$M_h \cdot \underline{e_h} := \nabla_{\alpha_h} \mathcal{H}_d(\underline{\alpha_h}, \underline{\alpha_v}), \text{ and } M_v \cdot \underline{e_v} := \nabla_{\alpha_v} \mathcal{H}_d(\underline{\alpha_h}, \underline{\alpha_v}).$$
## Numerics: PFEM in the polynomial case

The difficulty lies in the non-linear nature of both constitutive relations. However, since they remain polynomial, off-line Finite Element computations can be performed, and makes possible the online computation of the discrete constitutive relations at each time step.

#### A general result

$$M_h \cdot \underline{e_h} := \nabla_{\underline{\alpha}_h} \mathcal{H}_d(\underline{\alpha}_h, \underline{\alpha}_v), \text{ and } M_v \cdot \underline{e_v} := \nabla_{\underline{\alpha}_v} \mathcal{H}_d(\underline{\alpha}_h, \underline{\alpha}_v).$$

Here quadratic quantities have to be computed in the integrals, namely  $\underline{q_h} := \int_{\Omega} \phi_h \frac{1}{2\rho} \underline{\alpha_v}^{\top} \cdot \overrightarrow{\mathbf{\Phi}}_v \cdot \overrightarrow{\mathbf{\Phi}}_v^{\top} \cdot \underline{\alpha_v} \text{ and } \underline{q_v} := \int_{\Omega} \overrightarrow{\mathbf{\Phi}}_v \frac{1}{\rho} \underline{\alpha_h}^{\top} \cdot \phi_h \cdot \overrightarrow{\mathbf{\Phi}}_v^{\top} \cdot \underline{\alpha_v}.$   $\Rightarrow 1 \le i \le N_h, \quad q_h^i(t) = \underline{\alpha_v}(t)^{\top} \cdot \left(\int_{\Omega} \phi_h^i \frac{1}{2\rho} \overrightarrow{\mathbf{\Phi}}_v \cdot \overrightarrow{\mathbf{\Phi}}_v^{\top}\right) \cdot \underline{\alpha_v}(t),$   $\Rightarrow 1 \le k \le N_v, \quad q_v^k(t) = \underline{\alpha_h}(t)^{\top} \cdot \left(\int_{\Omega} \phi_h \frac{1}{\rho} \overrightarrow{\phi}_v^{\top} \cdot \overrightarrow{\mathbf{\Phi}}_v^{\top}\right) \cdot \underline{\alpha_v}(t).$ 

**Remark**: the sizes of the vectors and matrices do match as well (exercise).  $\implies$  Off-line computation proves possible!



## 6 Discretization in terms of co-energy variables: PH-ODEs

#### 7 Entropy as Hamiltonian

## 8 Nonlinear wave equation: the 2D Shallow Water Equation

- Modelling: SWE as a pHs
- Numerics: PFEM in the polynomial case
- Application: Boundary Dissipation

# Boundary stabilization of the 2D SWE

A simple proportional control stabilizes the system around the desired point  $h^{\text{des}}$ 

$$u_{\partial} = -k(y_{\partial} - y_{\partial}^{\mathsf{des}}), \qquad y_{\partial}^{\mathsf{des}} = \rho g h^{\mathsf{des}}, \quad k > 0.$$

This control law ensures that the Lyapunov functional

$$V = \frac{1}{2} \int_{\Omega} \left\{ \frac{1}{2} \rho g (\alpha_h - \alpha_h^{\mathsf{des}})^2 + \frac{1}{2\rho} \alpha_h \left\| \boldsymbol{\alpha}_v \right\|^2 \right\} \ \mathrm{d}\Omega \ge 0,$$

where  $\alpha_h^{\rm des}=h^{\rm des},$  has negative semi-definite time derivative

$$\dot{V} = -k \int_{\partial \Omega} \left( y_{\partial} - y_{\partial}^{\mathsf{des}} \right)^2 \, \mathrm{d}\Gamma \le 0.$$

# Simulation Results for the 2D SWE

# Simulation Results for the 2D SWE



#### Institut Supérieur de l'Aéronautique et de l'Espace

10 avenue Édouard Belin – BP 54032 31055 Toulouse Cedex 4 – France Phone: +33 5 61 33 80 80

#### www.isae-supaero.fr

