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Goal of the presentation and a few references

m Goal: the underlying structure of physical systems must be preserved by numerical methods at
the discrete level, i.e. from infinite dimension to finite dimension (but still in continuous time).

m Applications: the 2D wave PDE, and the 2D heat PDE with collocated boundary control and
observation.

m Proof of concept: the heat-wave coupling and refined asymptotics can be recovered at the
discrete level.
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A recent reference on distributed port-Hamiltonian systems

Twenty years of distributed port-Hamiltonian systems: a literature review
Rashad, R., Califano, F., van der Schaft, A.J. and Stramigioli, S.

IMA J. Mathematics of Control and Information,
vol.37 (4), pp. 1400-1422 (2020)

—> More than 170 up-to-date references on:
m Theoretical Framework
m Modeling
m Analysis and Control

m Discretization
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and more specifically

m Numerical Methods for Distributed Parameter Port-Hamiltonian Systems  Kotyczka P. TUM
University Press, Munich (2019),

m Structure preserving approximation of dissipative evolution problems  Egger H.  Numerische
Mathematik vol. 143(1), pp. 85-106 (2019)

m A Partitioned Finite-Element Method for power-preserving discretization of open systems of
conservation laws, Cardoso-Ribeiro F.L., Matignon D., Lefévre L. IMA J. Mathematics
of Control and Information, vol. 38(2), pp. 493-533 (2021)

m Long-time behavior of a coupled heat-wave system using a structure-preserving finite element
method, Haine G., Matignon D., Monteghetti F.  Mathematical Reports, vol. 22(1-2),
pp. 187-215 (2022).
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PFEM 4 pHs? the team!

m Origin of the method:

F. L. Cardoso-Ribeiro, D. Matignon, and L. Leféevre. A structure-preserving Partitioned Finite
Element Method for the 2D wave equation. In 6th IFAC Workshop on Lagrangian and
Hamiltonian Methods for Nonlinear Control (LHMNLC), Valparaiso, Chile, 2018.
IFAC-PapersOnLine, Vol. 51, Issue 3, 2018, pp. 119-124
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PFEM 4 pHs? the team!

m Origin of the method:

F. L. Cardoso-Ribeiro, D. Matignon, and L. Leféevre. A structure-preserving Partitioned Finite
Element Method for the 2D wave equation. In 6th IFAC Workshop on Lagrangian and
Hamiltonian Methods for Nonlinear Control (LHMNLC), Valparaiso, Chile, 2018.
IFAC-PapersOnLine, Vol. 51, Issue 3, 2018, pp. 119-124

m Collaborators on the PFEM 4 pHs project since then:

m Anass SERHANI

Andrea BRUGNOLI

Ghislain HAINE

Valérie POMMIER - BUDINGER
Daniel ALAZARD

Michel SALAUN

Xavier VASSEUR

Florian MONTEGHETTI
Michel FOURNIE

Giuseppe FERRARO

Antoine BENDIMERAD-HOHL
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Introduction
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Matignon (ISAE-SUPAERO) PFEM 4 PHS Online seminar on port-Hamiltonian systems (pHOne)



Main Objective

Simulate complex open physical systems by ensuring the conservation of the power balance for a
chosen functional: the Hamiltonian.
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Main Objective

Simulate complex open physical systems by ensuring the conservation of the power balance for a
chosen functional: the Hamiltonian.

m Finite Element Method:
— Complex geometries are allowed.
— A wide range of implementation tools are available.
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Main Objective

Simulate complex open physical systems by ensuring the conservation of the power balance for a
chosen functional: the Hamiltonian.

m Finite Element Method:
— Complex geometries are allowed.
— A wide range of implementation tools are available.

m Port-Hamiltonian Systems (PHS):
— Model “energy” exchanges between simpler open subsystems.
— The power balance is encoded in a Stokes-Dirac structure.
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Main Objective

Simulate complex open physical systems by ensuring the conservation of the power balance for a
chosen functional: the Hamiltonian.

m Finite Element Method:
— Complex geometries are allowed.
— A wide range of implementation tools are available.

m Port-Hamiltonian Systems (PHS):
— Model “energy” exchanges between simpler open subsystems.
— The power balance is encoded in a Stokes-Dirac structure.

m Partitioned Finite Element Method (PFEM):
— It approximates the Stokes-Dirac structure into a Dirac structure.
— The discrete Hamiltonian satisfies a “discrete” power balance.

A Partitioned Finite-Element Method for power-preserving discretization of open systems of conservation laws
Cardoso-Ribeiro F.L., Matignon D., Leféevre L.
IMA J. Mathematics of Control and Information, vol.38(2) , pp. 493-533 (2021)
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Change of paradigm?

8 Conservation of mass Rigid body 7 iers law D=4y,

‘T . _

2 “Context and Axioms" & “Definitions and Laws”
o Constant temperature Ener, H Hooke's law

Discretization
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Change of paradigm?

8 Conservation of mass Rigid body Fourier's law Pi=my

E, “Context and Axioms" & “Definitions and Laws”
e Constant temperatyre ‘ ’I\E/\n/\e/[g'\‘(‘% ‘ Hooke's law
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D

t'wg Well-proven & Robust v/ Known Hg v & DAE
a How does H,4 evolve? Designed for control v/

Control?  Coupling? Well-suited for coupling v/
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Port-Hamiltonian Systems (PHS

m The energy variables o (vector field);
m The Hamiltonian 7{( (t)) (positive functional);
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Port-Hamiltonian Systems (PHS

m The energy variables & (vector field);

m The Hamiltonian 7{( (t)) (positive functional);

= The co-energy variables € = := 627 (vector field),
~~ the variational derivative of H w.r.t 3;
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Port-Hamiltonian Systems (PHS

The energy variables o (vector field);
The Hamiltonian 7{(d (t)) (positive functional);
= The co-energy variables € = := 627 (vector field),
~~ the variational derivative of H w.r.t 3;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
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Port-Hamiltonian Systems (PHS

The energy variables o (vector field);
The Hamiltonian 7{(d (t)) (positive functional);
The co-energy variables € = := 6 H (vector field),
~~ the variational derivative of H w.r.t 3;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary fields);
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Port-Hamiltonian Systems (PHS

m The energy variables & (vector field);
The Hamiltonian 7{(d (t)) (positive functional);
The co-energy variables € = := 6 H (vector field),
~~ the variational derivative of H w.r.t 3;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary fields);
The dynamical system:
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Port-Hamiltonian Systems (PHS

m The energy variables & (vector field);
The Hamiltonian 7{(d (t)) (positive functional);
The co-energy variables € = := 6 H (vector field),
~~ the variational derivative of H w.r.t 3;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary fields);
The dynamical system:

{ ad(t) = (J - ) @x(t) + Bu(t),
y(t) = B 2= (t).

Lossy Power Balance

FHEW) = —(Rega(t), €z (), + (), y®)p < (u(t),y()p-

Although the underlying geometry is well-determined with the above equality, constitutive relations
between & and E)ag are also needed to solve the system!
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Linear Wave equations: towards PH-DAEs and PH-ODEs
m Discretization in terms of energy and co-energy variables: PH-DAEs
m Application: Boundary Dissipation
m Case of mixed boundary control: PH-DAEs again
m Convergence of PFEM
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .

m p the mass density of the medium and T the Young modulus tensor;

m o, = pdyw the linear momentum and a>q = graa (w) the strain;
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .

p the mass density of the medium and T the Young modulus tensor;

ap = p Oyw the linear momentum and a>q = graa (w) the strain;

@, =06z, H="T-d,the stress;

ep i=0n, " = % = 0,w the deflection velocity and u := e,;
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .

p the mass density of the medium and T the Young modulus tensor;

ap = p Oyw the linear momentum and a>q = graa (w) the strain;

@, =06z, H="T-d,the stress;

ep i=0n, " = % = 0,w the deflection velocity and u := e,;

my = ?q -7 the output normal stress.
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .

m p the mass density of the medium and T the Young modulus tensor;
m o, = pdyw the linear momentum and a>q = gﬁ (w) the strain;
e, = oz, M= T. d, the stress;

B, i=0,,H= % = 0,w the deflection velocity and u := e,;

my = ?q -7 the output normal stress.

pOZw = div (? . graé (w)) ,
u = Gtw,

y = (7 grad@)- .
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .

m p the mass density of the medium and T the Young modulus tensor;
m o, = pdyw the linear momentum and a>q = gﬁ (w) the strain;
e, = oz, M= T. d, the stress;

B, i=0,,H= % = 0,w the deflection velocity and u := e,;

my = ?q -7 the output normal stress.

pOZw = div (? . graé (w)) ,

. a S A
y = (7 eradw) 7. v 7). “
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Conservative System: Wave as PH-DAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(aq,ap) = 5/9 (Eq ST aﬂ, + /)ai) .

p the mass density of the medium and T the Young modulus tensor;

ap = p Oyw the linear momentum and a>q = graa (w) the strain;

@, =06z, H="T-d,the stress;

ep i=0n, " = % = 0,w the deflection velocity and u := e,;

my = ?q -7 the output normal stress.

pOZw = div (? . graé (w)) ,

od, = grag (ep) u =e
=0 q P/ & P
v e <:>{ 8t()zp = div (?q s Yy = q" ﬁ

y = <% . grag (w)) .
Lossless Power Balance
%
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the Finite Element Method in 1D: a short reminder

Example of a IF’l Lagrange mass matrix

Discretization:  a® Zk o Pr(x (;5 a, with IV unknown coeff. «, N shape functions:
Yo P2 ¥3
Y
| I ]
20 =0 r$21$3‘<—>‘ "2g =1
Mass matrix:

Tr41

1 9
M; ; :/ j(x)pi(x)dr = Z/ pj(x)pi(x)dr. = sparsity
0 k=0 %k

£0=i,j=k,k+1

Elementary matrix:

Tr41
(Mdt) ij = / wj(z)pi(x) do € R?*2, i,j =k k+1.

Tk

Assembly algorithm (pseudo-code): for k& in (0,9); do M[k : k+ 1,k : k + 1] = M,
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Conservative System: PFEM strategy
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Conservative System: PFEM strategy

Write the weak formulation;
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Conservative System: PFEM strategy

Write the weak formulation;
Apply an appropriate Stokes (Green) identity (such that w “appears”);
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Conservative System: PFEM strategy

Write the weak formulation;
Apply an appropriate Stokes (Green) identity (such that w “appears”);
Project on a finite-dimensional space thanks to FEM.
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Conservative System: PFEM strategy

Write the weak formulation;
Apply an appropriate Stokes (Green) identity (such that w “appears”);

Project on a finite-dimensional space thanks to FEM.

For all test functions ¥, v, and vy (smooth enough):
<5t_> 4 >L2 = <grag (ep)77q> )
(Orarp, vp) 2 = (div ) ’UP>L2 )

(Y,v0) -4 4 <eq V9) o ph
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Conservative System: PFEM strategy

Write the weak formulation;
Apply an appropriate Stokes (Green) identity (such that w “appears”);
Project on a finite-dimensional space thanks to FEM.

For all test functions ¥, v, and vy (smooth enough):

<ata>qv 7¢1>L2 = <gm (619) ) 7q>L2 5

(Orap, vp) 2 = <div ?q) ’UP>L2 ,

<y7va>H’%,H% = (g7, H % HE"
Applying Green's formula on the 1st line and using the definition of w:

<ata>qv 7q>L2‘ = —(ep, div (7Q)>L2 + <7q ' ﬁ’“>

1 1.
H™2,H2
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Conservative System: PFEM strategy

Write the weak formulation;
Apply an appropriate Stokes (Green) identity (such that w “appears”);
Project on a finite-dimensional space thanks to FEM.

For all test functions ¥, v, and vy (smooth enough):

<ata>qv 7¢1>L2 = <gm (619) ) 7q>L2 5

(Orap, vp) 2 = <div ?q) ’UP>L2 ,

<y7va>H’%,H% = (g7, H % HE"
Applying Green's formula on the 1st line and using the definition of w:

<ata>qv 7q>L2‘ = —(ep, div (7Q)>L2 + <7q ' ﬁ’“>

1 1.
H™2,H2

Green's formula applied on the 2nd line would lead to normal stress control u = ?q 7. The
energy variables are partitioned accordingly.
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Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are discretized by using the
same bases, either scalar- or vector-valued:

QU F) = Y0 BT )ak(t) = BT - a,(b),

) q

with gq an Ny x 2 matrix,
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Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are discretized by using the
same bases, either scalar- or vector-valued:

Sor(t, @) = 0 L@ )ak(t) = B a,(t), Cw(tT)=B] e

q

with gq an Ny x 2 matrix,
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Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are discretized by using the
same bases, either scalar- or vector—valued'

AL, D) = Ze LD 37 a,t), Ew(t,T)= $T €
aeP(t,T) = S0 1s0p(?) ():¢p ap() ‘;”(t,?) ep()

with gq an Ny X 2 matrix, ¢, an N, x 1 matrix
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Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are discretized by using the
same bases, either scalar- or vector—valued'

a>gp(t7?) ZE 1 q
AP (t, F) = Zk 1sap(?) ():
u®(t,d) =0, 1/}’”(?) ™ (t)

with gq an Ny X 2 matrix, ¢, an N, x 1 matrix and ¥ an Ny X 1 matrix.

=B 0,(t), QW T)= $T e, (D),
o7 a,(t), et F) =0 ¢,
=W ut), yrEtF)= ‘I’T y
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Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are discretized by using the
same bases, either scalar- or vector—valued'

a>gp(t7?) ZE 1 q
AP (t, F) = Zk 1sap(?) ():
(1, 7Y = Y00 g (Y1)

with gq an Ny X 2 matrix, ¢, an N, x 1 matrix and ¥ an Ny X 1 matrix.

=B 0,(t), QW T)= $T e, (D),
o7 a,(t), et F) =0 ¢,
=W ut), yrEtF)= ‘I’T y

The discretized system (giving the structure) then reads:
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Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are discretized by using the
same bases, either scalar- or vector—valued'

a>gp(t7?) ZE 1 q
AP (t, F) = Zk 1sap(?) ():
(1, 7Y = Y00 g (Y1)

with gq an Ny X 2 matrix, ¢, an N, x 1 matrix and ¥ an Ny X 1 matrix.

=B 0,(t), QW T)= $T e, (D),
o7 a,(t), et F) =0 ¢,
=W ut), yrEtF)= ‘I’T y

The discretized system (giving the structure) then reads:

where:
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Conservative System: Power Balance

Finite-Dimensional extended structure operator

0O D B
Ja=[-DT 0 o0
-BT 0 0
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Conservative System: Power Balance

Finite-Dimensional extended structure operator

0O D B
Ja=[-DT 0 o0
-BT 0 0

The inner product on RNa, R¥» and R™M2 has to be taken w.r.t. the mass matrices ﬁq, M, and

Ma: e.g. <71’72>N7 = 7;—ﬁq '71.
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Conservative System: Power Balance

Finite-Dimensional extended structure operator

0O D B
Ja=[-DT 0 o0
-BT 0 0

The inner product on R™e, R¥» and RY? has to be taken w.r.t. the mass matrices ﬁ M, and

Ma: e.g. <71,?2> = 71— ﬁ 71

Discrete Hamlltonlan
Ha(gra,) =H (@gP,0?) =1 (a] ‘Mz, +0a] My -a,),

—q’ q P
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Conservative System: Power Balance

Finite-Dimensional extended structure operator

0O D B
Ja=[-DT 0 o0
-BT 0 0

The inner product on RNa, R¥» and R™M2 has to be taken w.r.t. the mass matrices ﬁq, M, and

Ma: e.g. <71’?2>N7 = 7;—ﬁq '71.

Discrete Hamiltonian

. T, :
T ta, M gp),
R 1 T
,'_fﬂﬁ('bp'q")p'
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Conservative System: Power Balance

Finite-Dimensional extended structure operator

0O D B
Ja=[-DT 0 o0
-BT 0 0

The inner product on RNa, R¥» and R™M2 has to be taken w.r.t. the mass matrices ﬁq, M, and

Ma: e.g. <71’?2>N7 = 7;—ﬁq '71.

Ha (ag,0p) = H (A2, 02?) = § (af - My -0, +0] M1 -q,),
ﬁ%:: Q¥q~f~¥; & L e Lo .
Constitutive relations: ﬁ . 1-q, vV
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Conservative System: Power Balance

Finite-Dimensional extended structure operator
Ja=|-D" 0 0
-BT 0 0

The inner product on R™e, R¥» and RY? has to be taken w.r.t. the mass matrices ﬁ M, and

Ma: e.g. <71,?2> = 7 ﬁ 71
Ha (a, ) =H(d (af M- -a,+a] - M, -a,),

7 0pr) =
ﬁ Jo®, T-B] & Mi=[,l¢, 4.

Constitutive relations: ﬁq ey = ﬁ, o, & My-e,= M; e

HH ““
N[ =
NIH

o=

=
T T
Denote f:= ($a,, 4o, —y) ande:= (g, ¢, u) ,then:

vV

Discrete Lossless Power Balance
aita (g a,) =u’ ‘Y.
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A Proof of the Discrete Power Balance

Since by definition the discrete Hamiltonian reads:

Ha (a a)=%<g;-ﬁ;gq+g;-M%-gp),

—q’=p

we can compute its time derivative along the trajectories:

d d d
e lape) = (Fa)" Mz a,+(30)" My a,
d d
- (E%)T 'ﬁq@q—'—(&gp)—r My - ey,
d d
- (ﬁq . &QQ)T gt (MP ’ &QP)T “Epo
= (D-g,(t)+B-u(t) e+ (=D -¢,() - ¢,
= u t)T BT €
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PFEM for pHs gives rise to PH-DAEs

Summarizing the main steps: discretization of the structure and of the constitutive relations are made

separately.

The discretized system is a PH-DAE:
q'gg() ep(t) + B - u(t),
MP CarSp t) _DT q( )7
My -y(t) =BT - ¢,(t),

together with

= in general, PFEM for pHs gives rise to finite-dimensional PH-DAEs, for which efficient numerical

methods can be used.
Remark: in the linear case only, an alternative implementation of PFEM gives rise to PH-ODEs in

terms of the co-energy variables only.
16 /54
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Linear Wave equations: towards PH-DAEs and PH-ODEs

m Application: Boundary Dissipation
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Impedance Boundary Condition (IBC

The Impedance Boundary Condition, with Z > 0 on 92, and v as new control, is considered:

U:eerZ?lfﬁ@Vz@tw+2<?~gm(w))~ﬁ.
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Impedance Boundary Condition (IBC

The Impedance Boundary Condition, With Z > 0on 0, and v as new control, is considered:
v=ce,+ Z?q Hev=0w+7 (T . graa (w)) 7. This kind of dissipation does not easily fit

in the “J — R framework".
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Impedance Boundary Condition (IBC

The Impedance Boundary Condition, with Z > 0 on 92, and v as new control, is considered:
v=ce,+ Z?q Hev=0w+7 (? . gm (w)) 7. This kind of dissipation does not easily fit
in the “J — R framework”.

It can be seen as an output feedback law uw = —Zy + v in the previous case.

Lossy Power Balance
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Impedance Boundary Condition (IBC

The Impedance Boundary Condition, with Z > 0 on 92, and v as new control, is considered:
v=ce,+ Z?q Hev=0w+7 (? . gm (w)) 7. This kind of dissipation does not easily fit
in the “J — R framework”.

It can be seen as an output feedback law uw = —Zy + v in the previous case.

Lossy Power Balance

|

Mg ap) == (U, 2y) oy iy H WUV g g

3

Add impedance ports (f;,e;) and dissipative constitutive relation e; = 7 f;,
and approximate f; and e; in the boundary FEM basis W:

M, o 0o o o0 La (1) 0 D -B B\ [e®
> M 00 dow)_[-p7 0 0 o) [ew
0 0 0 My 0 P (t) B0 0 0 (1)
0 0 0 0 M, —y(®) -BT 0 0 0 v(t)
and My -e; = (7)- [, with (Z) := [,, Z% - ¥ > 0.
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Impedance Boundary Condition (IBC

The Impedance Boundary Condition, with Z > 0 on 92, and v as new control, is considered:
v=ce,+ Z?q Hev=0w+7 (? . gm (w)) 7. This kind of dissipation does not easily fit
in the “J — R framework”.

It can be seen as an output feedback law uw = —Zy + v in the previous case.

Lossy Power Balance

|

Mg ap) == (U, 2y) oy iy H WUV g g

3

Add impedance ports (f;,e;) and dissipative constitutive relation e; = 7 f;,
and approximate f; and e; in the boundary FEM basis W:

M, o 0o o o0 La (1) 0 D -B B\ [e®
> M 00 dow)_[-p7 0 0 o) [ew
0 0 0 My 0 P (t) B0 0 0 (1)
0 0 0 0 M, —y(®) -BT 0 0 0 v(t)
and My -e; = (7)- [, with (Z) := [,, Z% - ¥ > 0.

Discrete Lossy Power Balance
siHa (Qq’ap) =-y' (Z)-y+tv' My y.
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' Boundary Dissipation: Simulations

(0,1) 2,1)
m Heteregenous (p # constant); S : A AN VAW AV VA
m Anisotropic (tensor T # constant); Lpe “ - N f S
mc=0; ‘ ‘ A‘ A 2N . . “ra <> ‘
mZ#£0fort>2; A “A,“‘A “ o “.‘,
m Raviart-Thomas FEM for g-variables; Yt AVAY L1
m Lagrange FEM for p-variables; DAY IR WAR ANS FARRY S
m Lagrange FEM for J-variables; 10.0) - iy

s Dofof® + Dofof @ n  Dofofw
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Linear Wave equations: towards PH-DAEs and PH-ODEs

m Case of mixed boundary control: PH-DAEs again
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Mixed boundary control: principle

The basic idea is: Q0 =T'p UT'x and faQ = fFD JrfFN.

Where the control is not known, a Lagrange multiplier A is introduced instead + a constraint is
added to the system, an extended skew-symmetric J. matrix is obtained.

= a PH-DAE is readily obtained, with a Lagrange multiplier of very small dimension.

This method is detailed in one early reference,
Brugnoli, A., Cardoso-Ribeiro, F.L., Haine, G., and Kotyczka, P. Partitioned finite element
method for structured discretization with mixed boundary conditions In
IFAC-PapersOnLine, volume 53(2), 7557-7562. (2020),
but several other possibilities have been explored since then.

a PH-ODE can be obtained, taking advantage of the Hellinger-Reissner principle, see e.g.
Brugnoli, A., Haine, G., and Matignon, D. Explicit structure-preserving discretization of
port-Hamiltonian systems with mixed boundary control In /FAC-PapersOnLine, volume
55(30), 418-423. (2022).
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Linear Wave equations: towards PH-DAEs and PH-ODEs

m Convergence of PFEM
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Convergence rate: theory

Theorem (Haine, Matignon & Serhani, 2023)

Let k > 1 be an integer, and T" > 0.

Let (3%) €2, = <€ 9) - Eiiﬁﬁi] u € C2([0, 00); H<1(302)).

Oép 0 P

_>ap
Let (aq (O)) u® be their interpolations with (IP’“)N x P¢ x P™.

agP(0)
a a T
Let E(t) := H (@q—B@)®), (ap—a)()) ‘ o
_)
3Cy > 0, independent of (‘;‘QO), and w: for all h and all ¢ € [0, 7]
0}
miesksmy (||
E(t) < Cpp™mtissm q) + ||| oo :
(t) < Cr H(“p P lleell oo (0,77 41 (092))

The optimal order is «, when k =k, £ = k and m = k.
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Convergence rate: theory

Theorem (Haine, Matignon & Serhani, 2023)

Let k > 1 be an integer, and T" > 0.

Let (3%) €2, = <€ 9) - Eiiﬁﬁi] u € C2([0, 00); H<1(302)).

Oép 0 P

—ap
Let (aq (O)) u® be their interpolations with (IP’“)N x Pf x P,

agP(0)
a a T
Let E(t) := H (@q—B@)®), (ap—a)()) ‘ o
_)
3Cy > 0, independent of (‘;‘QO), and w: for all h and all ¢ € [0, 7]
0}
miesksmy (||
E(t) < Cpp™mtissm q) + ||| oo :
(t) < Cr H(“p P lleell oo (0,77 41 (092))

The optimal order is «, when k =k, £ = k and m = k.

RT,_1 x P x P~ BDM, xP~* xP* BDFM, x P* x P~
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Convergence rate: numerics

Absolute error

10

107

107

Convergence with the optimal choice (log scale)
T T T T T

== P1-P1-P1-P1. rate ~ 1.54
== P2-P2-P2-P2, rate ~ 1.99
P3-P3-P3-P3, rate ~ 3.16
=—3%—RTO0-P1-P1, rate ~1.55
=@ RT1-P2-P2, rate ~1.98
RT2-P3-P3, rate ~ 3.25
== BDM1-P1-P1, rate ~ 1.33

= = =oin') PE
== =on?) SeT
== =or’) PE
- -
= - hal 4
- -7
3
0.06 0.08 0.1 0.12 014 016 0.18
Mesh size
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A map for choosing the appropriate conforming finite elements

Periodic Table of the Finite Elements
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Make your own 2D membrane simulations using the pHs benchmark!

Ae W e in (25 ifac20 “ Op

github.io/Porti

B ¢ | Q Rechercher

B 23c

® Re

PortHamiltonianBenchmarkSystems

Home
Contribution
Benchmark Systems.
Single MSD Chain
Poroelastic Network Model
RCL Ladder Network
Damped Wave Net
Planar Elasticity (Work in Progress)

Heat equation with Neumann
boundary control

The lossless wave equation with
Neumann boundary control

° The model

© Structure-preserving discretization
° Interface

© References

Benchmark Systems / The lossless wave equation with Neumann boundary control © Edit on GitHub &%

The lossless wave equation with Neumann boundary
control

The model

Let us consider the vertical deflection from equilibrium w of a 2D membrane £ C 2. Denoting p the mass density
and T the Young modulus of the membrane, a positive definite tensor, leads to the following well-known wave
equation

5 )
P(@) g (t:2) - div (T(2) - grad (w(t,2)) =0, t>0,z€Q,
together with Neumann boundary control

(T(x) - grad (w(t,2))) - n = up(t,z), t> 0,z €00,

where nuis the outward normal to £2.

The Hamiltonian is the total mechanical energy, given as the sum of potential and kinetic energies

H(t) = %/ﬂ(grad(w(t.z)))’-T(z)grad(m(t,z))dm%/Qp(z) (%w(tz)) dz,  t>0.

Taking the strain and the linear momentum

grad (.

as energy variables, the Hamiltonian rewrites

n (ISAE-SUPAERO)
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Thermodynamics
m Short recall
m Lyapunov functional as Hamiltonian
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Thermodynamics

m Space domain and physical parameters:
m QO C R™! is a bounded open connected set;
m 71 is the outward unit normal on the boundary 0€2;
m () is the mass density;
] i(?) is the conductivity tensor (symmetric, positive definite)
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Thermodynamics

m Space domain and physical parameters:
m QO C R™! is a bounded open connected set;
m 71 is the outward unit normal on the boundary 0€2;
m () is the mass density;
] i(?) is the conductivity tensor (symmetric, positive definite)

= Notations:

m T is the local temperature;
8= % is the reciprocal temperature;

u is the internal energy density;
s is the entropy density;
7@ is the heat flux;

5 := BJ q is the entropy flux;

d
Cy = (—u> is the isochoric heat capacity.
dT /v
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Thermodynamics

m “Context & Axioms”:

® Medium: rigid body without chemical reaction;
m 1st law of thermodynamics:

2(@)deult, ) = —div (7Q(t, ?)) :

m Gibbs’ relation:
AU =T dS, = Ow(t, @) =T(t, @)s(t, T);
m Entropy evolution:

2(@)ds(t, T) = —div (7S(t, ?)) Yot @),

with o := graa> 8) - 7@ is the irreversible entropy production, with o > 0.
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Thermodynamics

“Context & Axioms”:

® Medium: rigid body without chemical reaction;
m 1st law of thermodynamics:

o(@)u(t, @) = —div (7Q(t, ?)) ;
m Gibbs’ relation:
AU =T dS, = Ow(t, @) =T(t, @)s(t, T);
m Entropy evolution:
2(@)ds(t, T) = —div (7S(t, ?)) Yot @),
with o := graa> 8) - 7@ is the irreversible entropy production, with o > 0.

“Laws”:
m Fourier’s law:

Tot, @) = -A(t, 7) - grad (T(t, 7)) ;

m Dulong-Petit’s law:

u(t, @) = Cv(Z)T(t, @).
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Three useful Hamiltonian functionals

m Lyapunov functional: v :=T and y := 7Q -7 (or the other way),

H(T(t,B)) = [, (@) () (T(t, T))” dZ,
Lossy Power Balance

d = d T
EH.Z—/Q?Q~>\-?Q+<ZJ,V>H_%H% éaH':_iQ.ﬁ:.iQ—i—g - My - y.

’
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Three useful Hamiltonian functionals

m Lyapunov functional: v :=T and y := 7Q -7 (or the other way),

H(T(t,B)) = [, (@) () (T(t, T))” dZ,

Lossy Power Balance

_/?Q'i'?Q+<yay> ——H2:>dH_ f ﬁ f +V Mag

m Internal energy: v :=T, and y : _7 ST, U(s(t,®)) fQ/) s(t, @)) d,

Lossless Power Balance (first law of thermodynamics)

d d -
U6 = Wv) g g3 = FUG) =v Mo y.
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Three useful Hamiltonian functionals

m Lyapunov functional: v :=T and y := 7Q -7 (or the other way),

H(T(t,B)) = [, (@) () (T(t, T))” dZ,

Lossy Power Balance

d = d T
ik ::—/97@*762“%%1—%,}1% = GHi= ~fo M5 [+ M-y,

m Internal energy: v :=T, and y := 75 S, U(s(t, D)) = Jo p(@)u(st, 2)) dZ,

Lossless Power Balance (first law of thermodynamics)

d d _
TUE) =W v) g gy = GUaE) =" Moy,

m Entropy: v = J g -, y = L, S(u(t, D)) = [, (T)s(ult, 7)) 4,

Accretive Power Balance (second law of thermodynamics)
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Thermodynamics

m Lyapunov functional as Hamiltonian
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Diffusion: Lyapunov Functional

Quadratic Hamiltonian: Lyapunov Functional

L[ (@)
H((@ult, B)) = 5 /Q (@) dF
- [ i@0ov(@) (1. 2)" a2,

Energy variable : o, := pu, co-energy variable : ¢, :=d,, H ="T.

This is the usual functional used in the mathematics community...
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Diffusion: Lyapunov Functional

Quadratic Hamiltonian: Lyapunov Functional

u(t, 7))’
H(p(®)u(t, X)) = % /Q ,)(?)(é—i(z% dz

2
- [ 1@)cv(@) (12, ))* 4z,
Q
Energy variable : o, := pu, co-energy variable : ¢, :=d,, H ="T.

This is the usual functional used in the mathematics community...

Power Balance

%H = /QjQ 'gAr;g(T) - <7Q ' R’T>H—% H?

)
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Diffusion: Lyapunov Functional

Quadratic Hamiltonian: Lyapunov Functional

u(t, 7))’
H(p(®)u(t, X)) = % /Q ,)(?)(é—i(z% dz

2
- [ 1@)cv(@) (12, ))* 4z,
Q
Energy variable : o, := pu, co-energy variable : ¢, :=d,, H ="T.

This is the usual functional used in the mathematics community...

Power Balance

%H=A7Q'§;§(T)—<?Q'W7T>H L gt

T2 H2

Defining f, := Oyvy = pOsu, ey =T, ?Q = fgraa (T), and ?Q = 7Q, we get

u 0 —di o =
(?Q) = (—gr:)l 01V> (§”Q> , with constitutive reIation:E}Q = /\?Q.
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Diffusion: Lyapunov Functional

At least two choices for boundary control: e, or ?Q 7.
With inward heat flux v = —?Q . ﬁ, the output is y = e, i.e. the boundary temperature, and the
discretized system is:

M 0 0\ /], 0 D B\ [e,
0 ﬁ 0 iQ = *QT 0 0 o >
0 0 My \~y -BT 0 0 v

with D := —fﬂgr?i ((ZSP)T : 3(17 Bi= Joa @ - v’
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Diffusion: Lyapunov Functional

At least two choices for boundary control: e, or ?Q 7.
With inward heat flux v = —?Q . ﬁ, the output is y = e, i.e. the boundary temperature, and the
discretized system is:

M 0 0\ /f, 0 D B\ /e,
0o M o |[l]=|-D" 0 of(e]
0 0 M) \~y -BT 0 0]\
. ~ T D
with D := — [, gra(_i (¢) - gqv B = [p0¢p- v
Constitutive relations: M,c, - %Qu =M-f, & M. o= Mi 'iQ'
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Diffusion: Lyapunov Functional

At least two choices for boundary control: e, or ?Q 7.
With inward heat flux v = —?Q . ﬁ, the output is y = e, i.e. the boundary temperature, and the
discretized system is:

L

0 0 I, D e,
0 ﬁ 0 iQ = *QT 0 0 o >
0 0 My/ \~y -BT 0 0 v

with D := —fﬂgm ((;SP)T . 3

ituti ions: d, _
Constitutive relations: M,cy, - 1. =M - f &

Lossy Power Balance

4l =
EH:_/Q?Q')“?Q+<V71U>H7%7H% < WY1y
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Diffusion: Lyapunov Functional

At least two choices for boundary control: e, or ?Q 7.

With inward heat flux v = —?Q . ﬁ, the output is y = e, i.e. the boundary temperature, and the
discretized system is:

M 0 0\ /], 0 D e
0 ﬁ 0 iQ = *QT 0 0 o >
0 0 My/ \~y -BT 0 0 v
L p— T
with D := — [, grad (¢,) - gq, B:= [, ¢, o'
Constitutive relations: My, - %e, =M- L &

Lossy Power Balance

d =
EH:_/Q?Q')“?Q+<V71U>H7%7H% < (VY1
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Make your own 2D heat simulations using the pHs benchmark!

Ae W e in (25 ifac20 “ Op

github.io/Porti jl/HeatModel/

® Re

B ¢ | Q Rechercher

PortHamiltonianBenchmarkSystems

Home
Contribution
Benchmark Systems.

Single MSD Chain

Poroelastic Network Model

RCL Ladder Network

Damped Wave Net

Planar Elasticity (Work in Progress)

Heat equation with Neumann
boundary control

= Description

° Interface

 References

The lossless wave equation with
Neumann boundary control

Benchmark Systems | Heat equation with Neumann boundary control

Heat equation with Neumann boundary control

Description
This example considers the temperature T of a 2D domain Q2 C 2. Denoting C, the heat capacity (at constant

volume), p the mass density and X the heat conductivity, a positive definite tensor, leads to the following well-
known heat equation

)
P(@)Co(@) 5 T(t,7) - div(A@) - grad (T(t,2))) =0, ¢>0,z€9,
together with Neumann boundary control

— (A() - grad (T(t,2))) - m

u(t,z), t>0,zcdQ,
where nuis the outward normal to £2.

The Hamiltonian is taken as the usual L functional, despite its lack of thermodynamical meaning

H(t) - l/p(z)c,(z)(T(t.z)fdz, t>0.

Taking the internal energy density o, := u = C,T as energy variable (with Dulong-Petit model), the Hamiltonian

rewrites

1 a2(t,z)
H(t) = H(au(t,") = = ) dz.
O =t ) = 5 [ @GS
The co-energy variable is the variational derivatives of the Hamiltonian, with respect to the weighted L2-product
with weight p

© Editon GitHub ¢

n (ISAE-SUPAERO)
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Heat - Wave PDE system coupled through the boundary
m The simplified, linearised fluid-structure model
m Coupled pHs model at the discrete level
m Simulation results

29 /54
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System and configurations

I
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System and configurations

Z) = 0, e,
Z) = 0, @ely,
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System and configurations
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System and configurations

Heat: {atT(t7?)—AT(t,?) = 0, TeO,

Tt,Z) = 0, T ely,
_ Opw(t, @) — Aw(t, ) = 0, T e,
Wave: { wit, @) = 0, Zely,

o T(t,Z) = ow(t, @), 2 e,
Transmission: {831T(t,?) B 787710(157?)’ ?61},,1,
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System and configurations

. T, ®)—AT(t,Z) = 0, e
Heat: { Tt,2Z) = 0, Zely,

_ Opw(t, @) — Aw(t, ) = 0, T e,
Wave: { wit,F) = 0, Bely,

o T(t,2) = duw(t, @), e,
Transmission: {831T(t,?) B 787210(157?)’ ?61},,1,

T, %) = To(®), Z e,
Initial data: w(0, %) = we(Z), Te,
ow(0, ) = w(Z), X e
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System and configurations

. 0, @€,
Heat: 0. 7 e I,
_ 0, 2 e,
Wave: 0, z e,
Transmission: @ e Lt
ansmission: 05 T(t, @) = -0 w(t, @), @ el
T, %) = To(®), Z e,
Initial data: w(0,Z) = wo(Z), T e,
ow(0, ) = w(Z), X e

Geometric Control Condition (GCC):

All characteristics of the wave equation must encounter ) in finite time.
Matignon (ISAE-SUPAERO)

PFEM 4 PHS

Online seminar on port-Hamiltonian systems (pHOne)



Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Enrique Z.
Archive for Rational Mechanics and Analysis, 184(1):49-120, (2007)

Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.
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Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Enrique Z.
Archive for Rational Mechanics and Analysis, 184(1):49-120, (2007)

Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

Strong stability (Zhang and Zuazua 2007)

m Every solution is strongly stable (to zero if I'; is non-empty, to a constant solution otherwise).
m The rate of decay is never exponential nor uniform;

m If the GCC holds: the decay is polynomial;

m If the GCC fails: the decay is logarithmic.
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Known decays

Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Enrique Z.
Archive for Rational Mechanics and Analysis, 184(1):49-120, (2007)

Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

Strong stability (Zhang and Zuazua 2007)

m Every solution is strongly stable (to zero if I'; is non-empty, to a constant solution otherwise).
m The rate of decay is never exponential nor uniform;

m If the GCC holds: the decay is polynomial;

m If the GCC fails: the decay is logarithmic.

Remark

In our numerical simulations, the initial data are such that the constant solution is the null solution.
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Coupled model with transmission condition

Gyrator interconnection on [';;:

wi(t, @) = —ya(t, @), up(t, ) =y (6, ), VE>0, 7 €.
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Coupled model with transmission condition

Gyrator interconnection on [';;:
w (6, ) = —yo(t,®),  ug(t, @)=y (t, T), Vi>0, 7 €.

The total Hamiltonian of the coupled Heat-Wave system is given by:

H(T, yw, graduw) = %/ T, 7)? di@%[m daw(t, @)? + Hgﬁiw(t,?)’f a7 .

o}

Hr Haw
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Coupled model with transmission condition

Gyrator interconnection on [';;:
w (6, ) = —yo(t,®),  ug(t, @)=y (t, T), Vi>0, 7 €.

The total Hamiltonian of the coupled Heat-Wave system is given by:

H(T, Byw, gradw) := %/) T(t, @) di*%[, duw(t, @) + ng?iw(t,?)’r aa .

Hr Haw

Dissipative Power Balance

%H = (;it’HTJ%(ft'H
_fq ||7Q|| +<u1,y1> ( \)H2( )+<y2’u2>H‘%(m)H%(r N
— Jo, 1 al? = (y2,y1) - i ‘“‘),Hj(l,l'”)—&-(yg,yﬁ SV JU

— Jo 1T Q12
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Heat - Wave PDE system coupled through the boundary

m Coupled pHs model at the discrete level
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Coupled model at the discrete level

Let €' := By ing A\li;% l};im the gyrator interconnection matrix.
My a7 0O D, 0 —C By 0 T
M, Jo Dy 0 0 0 0 0 Jo
Ding Mo Lo |0 0 0 Dy 0 0 dpw
ﬁg %gﬁw ¢t 0 -DJ 0 0 Bs gradw
Mppa, 0 -B{ 0 0 0 U yr
Mpna,2 ~Yw 0 0 0 ~Byg 0 0 0
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Coupled model at the discrete level

Let €' := By ing A\li;% l};im the gyrator interconnection matrix.

M a7 0O D, 0 —C By 0 T

M, Jo -Df 0 0 0 0 0 Jo
. Mo 49,w 0 0 0 Dy 0 0 Oyw

Dia, dt = )
’ M, argradw ¢ 0 =Dy 0 0 Bz [gradw
Mynas 0 -B] 0 0 0 0 0 ur
Mpnd,2 —Yw 0 0 0 ~Byg 0 0 0

Discrete Lossy Power Balance

The discrete Hamiltonian 7% is defined as the continuous Hamiltonian 7 evaluated in the
approximated solution.

d
—HUT, B, gradw) = —Jo M1 Jq.
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Heat - Wave PDE system coupled through the boundary

m Simulation results
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umerical simulations: configurations
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Hamiltonian decays

Hamiltonian vs time (log-log), Circles Hamiltonian vs time (log-log), L-shape
105 T,—0 ] 1o —— 2, with GCC
- - - . Decay rate = -2.7256 - = = Decay rate = -0.74071
Iy — ) . —— @, without GCC
= [ 10
8 [1+]
€ 10° =
2 £
E E 10°
1] [1+]
T 100 *
1072
10710 107
10t 10° 10! 10°

Time Time
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GCC fai # () and
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Extensions & applications of PFEM?
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PFEM applies to many more models (1/2

As soon as J is formally skew-symmetric...
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PFEM applies to many more models (1/2

As soon as J is formally skew-symmetric...

0O 0 0 0,
] ... 10 0 0, 1

m Timoshenko beam: J := 0 a9, 0 ol
g, -1 0 0
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PFEM applies to many more models (1/2

As soon as J is formally skew-symmetric...

0 0 0 O,
_ oo 0 a8 1
m Timoshenko beam: J := 0 a9, 0 ol
o, -1 0 0
. 0 -0?
m Euler-Bernoulli beam: J := 52 Om ;
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PFEM applies to many more models (1/2

As soon as J is formally skew-symmetric...

0O 0 0 0,
] ... 10 0 0, 1

m Timoshenko beam: J := 0 a9, 0 ol
g, -1 0 0

. 0 -0?
m Euler-Bernoulli beam: J := 52 Om ;

. o 0 Div
m Reissner-Mindlin plate: J := (Grad 0 )
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PFEM applies to many more models (1/2

As soon as J is formally skew-symmetric...

0O 0 0 0,
] . [0 0 o9, 1

m Timoshenko beam: J := 0 a9, 0 ol
g, -1 0 0

. 0 -0?
m Euler-Bernoulli beam: J := 52 Om ;

m Reissner-Mindlin plate: J := ( 0 DIV);

Grad O
0 —div o Di
m Kirchhoff-Love plate: J := <Grad — lvoo 1v);
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PFEM applies to many more models (1/2

As soon as J is formally skew-symmetric...

0O 0 0 0,
] . [0 0 o9, 1

m Timoshenko beam: J := 0 a9, 0 ol
g, -1 0 0

. 0 -0?
m Euler-Bernoulli beam: J := 52 Om ;

m Reissner-Mindlin plate: J := ( 0 DIV);

Grad O
0 —div o Di
m Kirchhoff-Love plate: J := <Grad — lvoo 1v);
® the full von-Karman plate /= f)a C(w) ) —_divDiv| Where

0
0 0 Gradgrad 0
C(w)(T) = div(Tgradw)
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PFEM applies to many more models (2/2

m 2D Incompressible Navier Stokes equation: with vorticity w and stream function .

J = curlyp (G(w) gT'ﬁL), where G(w) = w <(1) _01>
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PFEM applies to many more models (2/2

m 2D Incompressible Navier Stokes equation: with vorticity w and stream function .

J = curlyp (G(w) gT'ﬁL), where G(w) = w <(1) _01>

0 I
m 2D Maxwell’s equation: J := (gra(_i>l CUBZD)
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PFEM applies to many more models (2/2

m 2D Incompressible Navier Stokes equation: with vorticity w and stream function .

J = curlyp (G(w) gT'ﬁL), where G(w) = w (? _01>

0 I
m 2D Maxwell’s equation: J := (graa>l CUBZD)

0 m)

m 3D Maxwell's equation: J :=
q (—curi 0
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PFEM applies to many more models (2/2

m 2D Incompressible Navier Stokes equation: with vorticity w and stream function .

J = curlyp (G(w) gT'ﬁL), where G(w) = w (? _01>

| 2D IVIaXVVe" q t - ﬁ
S equation: J . .

0 m)

m 3D Maxwell's equation: J :=
q (—curi 0

Constitutive relations are postponed!
Dissipation is not a drawback!
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SCRIMP

Simulation and ContRol of Interactions in Multi-Physics
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What is SCRIMP?

SCRIMP (Simulation and ContRol of Interactions in Multi-Physics) is a python collection, namely a
package, of methods and classes for the structure-preserving discretization and simulation of multi-
physics models, using the formalism of port-Hamiltonian systems (van der Schaft and Maschke
(2002)).

SCRIMP aims at speeding the coding process of the Partitioned Finite Element Method on a wide
range of (multi-)physical systems (Brugnoli “et al.” (2021)), and scrimp and save time!

Table of Contents
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The End

THANK YOU FOR YOUR ATTENTION!
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I[@ Discretization in terms of co-energy variables: PH-ODEs
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Co-energy variables and PH-ODEs

In order to transform the PH-DAEs into PH-ODEs, in the linear case, the constitutive relations can be
first inverted, second discretized.

QAW T) =T - @1, 7)) and (L, F) = ped?(t, D).
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Co-energy variables and PH-ODEs

In order to transform the PH-DAEs into PH-ODEs, in the linear case, the constitutive relations can be
first inverted, second discretized.
QAW T) =T - @1, 7)) and (L, F) = ped?(t, D).

The discretization in the same bases as previously gives:

ﬁq~gq:M%_l e, and M,-a,=M, ¢,

where new mass matrices, or spatial averages, have been defined: M?_l = o ¥q T-1. 3; &
T
M/) = fQ /)d)p : ¢p .
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Co-energy variables and PH-ODEs

In order to transform the PH-DAEs into PH-ODEs, in the linear case, the constitutive relations can be
first inverted, second discretized.
QAW T) =T - @1, 7)) and (L, F) = ped?(t, D).

The discretization in the same bases as previously gives:

ﬁq~gq:M%_l e, and M,-a,=M, ¢,

where new mass matrices, or spatial averages, have been defined: M?_l = o ¥q T-1. 3; &
T
M/) = fQ /)d)p : ¢p .

The discretized system now is a PH-ODE:

and enjoys the same conservative power balance at the discrete level.
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Another Proof of the Discrete Power Balance

With the same definition the discrete Hamiltonian:

/}:[d(e e):ZH(c_)Zap Oégp):%<§;'M$71'gq"_g;)r'M/)'Qp)v

;q77p q )

we can easily compute its time derivative along the trajectories:

d - d d
&Hd (egrep) = (&Qq)T : ﬁ%fl Gt (gﬁp)T M, -
d d
= (M%—l ) &Qq)—r Cq T (M, - &QP)T “Eps
= (D-g,(t)+B-u®) e, +(=DT-¢,(t)" - ¢,,

|
I

(t)T .BT.
)" My-y(t). O
Remark: both definitions do coincide, i.e. Hg4 (gq,gp) =Hgq (gq,gp), since the discretization of the

constitutive relations now provides: Mq ra, =M~ ¢, and My, -a, =M, -¢, (exercise).

[
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Entropy as Hamiltonian
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Accretion: Entropy

Hamiltonian: Entropy

S((@)ult, @) = / o(@)s((@)u(t, @) 4T,

Q

Energy variable : o, := pu, co-energy variable : ¢, :=9d,,S = .

Matignon (ISAE-SUPAERO) PFEM 4 PHS Online seminar on port-Hamiltonian systems (pHOne) 48 /54



Accretion: Entropy

Hamiltonian: Entropy

S((@)ult, @) = / o(@)s((@)u(t, @) 4T,

Q

Energy variable : o, := pu, co-energy variable : ¢, :=9d,,S = .

%S:/Qa_<7Q.W’B>H—% I’
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Accretion: Entropy

Hamiltonian: Entropy

S((@)ult, @) = / o(@)s((@)u(t, @) 4T,

Q

Energy variable : o, := pu, co-energy variable : ¢, :=9d,,S = .

Power Balance (second law of thermodynamics)
d
5= /Qa— <7Q.ﬁ,5>H_% iy

Defining f, := Opvyy = pOsu, €y = 3, ?Q = —grag (8), and ?Q = 7Q

(7))~ Cama o) (&)
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Accretion: Entropy

At least two choices for boundary control: ¢, or ?Q 7.
With inward heat flux v = f?Q -7, the output is y = e, i.e. the boundary reciprocal temperature,
and the discretized system is:

M 0 0 I, 0 D B\ /e,
0o M o |[l]=[-D" 0 o]eo
0 0 M) \~y BT 0 o) \z

Online seminar on port-Hamiltonian systems (pHOne) 49 /54

Matignon (ISAE-SUPAERO) PFEM 4 PHS



Accretion: Entropy

At least two choices for boundary control: ¢, or ?Q 7.
With inward heat flux v = f?Q -7, the output is y = e, i.e. the boundary reciprocal temperature,
and the discretized system is:

M 0 0 I, 0 D B\ /e,
o M o ||fy]=[-D" 0 ofleo
0 0 My \~y -BT 0 0 v
Non-linear constitutive relations from: pCyv = aey & ei?Q —_T. ?Q.
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Accretion: Entropy

At least two choices for boundary control: ¢, or ?Q 7.

With inward heat flux v = f?Q -7, the output is y = e, i.e. the boundary reciprocal temperature,
and the discretized system is:

M 0 0 I, 0 D B\ /e,

0o M o |[l]=[-D" 0 o]eo

0 0 My \~y -BT 0 0 v
Non-linear constitutive relations from: pCyv = aey &

Accretive Power Balance (second law of thermodynamics)

d -
&S:_/Q?Q. €Qt MYyt ut 2 MUyt gt

)
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Accretion: Entropy

At least two choices for boundary control: ¢, or ?Q 7.

With inward heat flux v = f?Q -7, the output is y = e, i.e. the boundary reciprocal temperature,
and the discretized system is:

M 0 0 I, 0 D B\ /e,

0o M o |[l]=[-D" 0 o]eo

0 0 My \~y -BT 0 0 v
Non-linear constitutive relations from: pCyv = aey &

Accretive Power Balance (second law of thermodynamics)

d -
&S:_/Q?Q. €Qt MYyt ut 2 MUyt gt

)

Discrete accretive Power Balance (second law of thermodynamics)
d
dt
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B Nonlinear wave equation: the 2D Shallow Water Equation

m Modelling: SWE as a pHs
m Numerics: PFEM in the polynomial case
m Application: Boundary Dissipation

49 /54
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The irrotational shallow water equations

* Energy variables: ay, the fluid height, o, the linear momentum,
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The irrotational shallow water equations

* Energy variables: ay, the fluid height, o, the linear momentum,
* Non-quadratic and non-separable Hamiltonian functional:

1 1
Hlnan) =5 [ {Sanllonl® + pgat | ao.
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The irrotational shallow water equations

* Energy variables: ay, the fluid height, o, the linear momentum,
* Non-quadratic and non-separable Hamiltonian functional:

1 1
Hlnan) =5 [ {Sanllonl® + pgat | ao.

* Dynamical system:
0 (ap 0 —div| (e 22

€h\ _ Oan, H _ ﬁ”avW‘f’Pgah
€y 5avH %ahav ’
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The irrotational shallow water equations

* Energy variables: ay, the fluid height, o, the linear momentum,
* Non-quadratic and non-separable Hamiltonian functional:

1 1
Hlnan) =5 [ {Sanllonl® + pgat | ao.

* Dynamical system:
8 ap 0 —le €en 2 2
a,. = ) ) S Q = < R )
ot (%) [—grag 0 ey (@) e +y <R
2
€h\ _ ooy H _ ﬁ oo™ + pgan
€y 5o¢vH %ahav ’
* Consider a uniform Neumann boundary control
1 o
Uy = —€y - N|go = ——apay, - n|so, Volumetric inflow rate.
P
The corresponding output reads

1
Yo = enloa = (pgon + % ||av||2)|8ﬂ~
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B Nonlinear wave equation: the 2D Shallow Water Equation

m Numerics: PFEM in the polynomial case
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Numerics: PFEM in the polynomial case

The difficulty lies in the non-linear nature of both constitutive relations. However, since they remain
polynomial, off-line Finite Element computations can be performed, and makes possible the online
computation of the discrete constitutive relations at each time step.
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Numerics: PFEM in the polynomial case

The difficulty lies in the non-linear nature of both constitutive relations. However, since they remain
polynomial, off-line Finite Element computations can be performed, and makes possible the online
computation of the discrete constitutive relations at each time step.

A general result

My, - ep = Va_h’Hd(%, ), and M, - e, = va_de(%; ).
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Numerics: PFEM in the polynomial case

The difficulty lies in the non-linear nature of both constitutive relations. However, since they remain
polynomial, off-line Finite Element computations can be performed, and makes possible the online
computation of the discrete constitutive relations at each time step.

A general result

My, - ep = Va_h’Hd(%, ), and M, - e, = va_de(%; ).

Here quadratic quantities have to be computed in the integrals, namely
@= [y dngsonT By B 0y and gy = [, BolonT By B -,

> 1<i< Ny, gi(t) = ()’ (/‘bhl3 gT)

1<k Na () = an)T - (/me’fﬁl) (1)

Remark: the sizes of the vectors and matrices do match as well (exercise).
— Off-line computation proves possible!
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B Nonlinear wave equation: the 2D Shallow Water Equation

m Application: Boundary Dissipation
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Boundary stabilization of the 2D SWE

A simple proportional control stabilizes the system around the desired point hds
— —k _,des des __ hdes k>0
up (o —v5™), Yo~ = pgh®=, :

This control law ensures that the Lyapunov functional

1 [ (1 o1 )
V= [ {esten ot + ot} a0

where a§¢s = h9s, has negative semi-definite time derivative

V=—k (ya — yg‘*)Q dI" <0.
o0
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Simulation Results for the 2D SWE
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Simulation Results for the 2D SWE

Hamiltonian Lyapunov function
164001 20 1
162001 =
= § 151
' 5
5§ 16000 °
S Z
£ 158001 > 104
E 2
[} =]
T 156001 g
=59
154001
01
15200 1— : : : : : : : : : : : : :
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s] Time [s]

Matignon (ISAE-SUPAERO) PFEM 4 PHS

Online seminar on port-Hamiltonian systems (pHOne)



Institut Supérieur de I’Aéronautique et de I'Espace

www.isae-supaero.fr

1538 >

Institut Supérieur de I'Aéronautique et de 'Espace

SUPAERO



	Introduction
	Goal of the presentation and a few references
	Main objective of PFEM

	Linear Wave equations: towards PH-DAEs and PH-ODEs
	Discretization in terms of energy and co-energy variables: PH-DAEs
	Application: Boundary Dissipation
	Case of mixed boundary control: PH-DAEs again
	Convergence of PFEM

	Thermodynamics
	Short recall
	Lyapunov functional as Hamiltonian

	Heat - Wave PDE system coupled through the boundary
	The simplified, linearised fluid-structure model
	Coupled pHs model at the discrete level
	Simulation results

	Extensions & applications of PFEM? 
	Appendix
	Discretization in terms of co-energy variables: PH-ODEs
	Entropy as Hamiltonian
	Nonlinear wave equation: the 2D Shallow Water Equation
	Modelling: SWE as a pHs
	Numerics: PFEM in the polynomial case
	Application: Boundary Dissipation



