

Eötvös Loránd University Faculty of Science Institute of Mathematics

BERGISCHE UNIVERSITÄT WUPPERTAL

Summer School on Positive Operator Semigroups

September 4 - 8, 2023

Exercise Sessions E–F: Positive Semigroups on Banach Lattices

Exercise 1. Let A be the generator of a positive C_0 -semigroup T on a Banach lattice E. Recall that there exist numbers $M \ge 1$ and $\omega \in \mathbb{R}$ such that $||T(t)||_{\mathcal{L}(E)} \le Me^{t\omega}$ for all $t \ge 0$. Hence, for all $\lambda \in (\omega, \infty)$ the resolvent $\mathcal{R}(\lambda, A) \coloneqq (\lambda I - A)^{-1}$ exists and satisfies $||\mathcal{R}(\lambda, A)||_{\mathcal{L}(E)} \le \frac{M}{\lambda - \omega}$.

- (a) Deduce that $f = \lim_{\lambda \to \infty} \lambda \mathcal{R}(\lambda, A) f$ for all $f \in E$.
- (b) Set $D(A)_+ \coloneqq D(A) \cap E_+$. Show that $D(A) = D(A)_+ D(A)_+$.
- (c) Show that $\overline{D(A)_+} = E_+$.

(d) Show the positive minimum principle: if $0 \le f \in D(A)$ and $0 \le \varphi \in E'$ satisfy $\langle \varphi, f \rangle = 0$, then $\langle \varphi, Af \rangle \ge 0$.

(e) Assume that $Af \ge 0$ for all $f \in D(A)_+$. Show that D(A) = E. Hints for (e): Let $f \in D(A)_+$. Show the following things:

1. For every $\mu \in \rho(A)$ one has

$$A\mathcal{R}(\mu, A)f = \mu^2 \mathcal{R}(\mu, A)f - \mu f - Af.$$

- 2. One has $||Af||_E \le c ||f||_E$ for an *f*-independent number $c \ge 0$.
- 3. One has $\|(\mu \mathcal{R}(\mu, A) I)f\|_E \leq \frac{c}{\mu} \|f\|_E$ for all $\mu > \omega$.
- 4. One has $\|\mu \mathcal{R}(\mu, A) I\|_{\mathcal{L}(E)} < 1$ for all sufficiently large $\mu > \omega$.
- 5. For μ as in Step 4., the mapping $\mu \mathcal{R}(\mu, A)$ is surjective from E to E.

Recall that a linear operator $A: E \supseteq D(A) \to E$ on a Banach lattice E is called *dispersive* if for all $u \in D(A)$ there exists $0 \leq \varphi \in E'$ such that $\|\varphi\| \leq 1$, $\langle \varphi, u \rangle = \|u^+\|$, and $\langle \varphi, Au \rangle \leq 0$. Also recall the following result:

Theorem 1. For a linear operator $A: E \supseteq D(A) \to E$ on a Banach lattice E the following assertions are equivalent:

- (i) The operator A generates of positive contractive C_0 -semigroup on E.
- (ii) The operator A is dispersive and satisfies $\overline{D(A)} = E$, and there exists a number $\lambda > 0$ such that ran $(\lambda I A) = E$.

Exercise 2. Let $A: E \supseteq D(A) \to E$ be a linear operator on a Banach lattice E. (a) Assume that A is dissipative and that one has $u^+ \in D(A)$ for each $u \in D(A)$. Assume moreover that A satisfies the *positive minimum principle* (see Exercise 1(d)). Show that A is dispersive.

(b) Let $A \in \mathcal{L}(E)$ and assume that A satisfies the positive minimum principle. Show that $e^{tA} \ge 0$ for each $t \ge 0$.

Hint: Observe that A - ||A|| I is dissipative.

(c) Let $E = L^2(\Omega, \mu)$ for a measure space (Ω, μ) . Show that A is dispersive if and only if $(Au|u^+) \leq 0$ for all $u \in D(A)$.

For the following exercises we need Sobolev spaces on intervals. Let $I \subseteq \mathbb{R}$ be a non-empty open interval. Let $\mathcal{D}(I) := C_c^{\infty}(I)$ denote the space of all infinitely differentiable scalar-valued functions on I that have compact support in I. We define

$$H^{1}(I) \coloneqq \left\{ u \in L^{2}(I) \mid \exists u' \in L^{2}(I) \; \forall \varphi \in \mathcal{D}(I) : \; \int_{I} u' \varphi = -\int_{I} u \frac{\mathrm{d}}{\mathrm{d}x} \varphi \right\}.$$

Note that u' in this definition is uniquely determined if it exsits since $\mathcal{D}(I)$ is dense in $L^2(I)$. For instance, every function $u \in C^1(\overline{I}) \cap L^2(I)$ is in $H^1(I)$ and satisfies $\frac{\mathrm{d}}{\mathrm{d}x}u = u'$.

The space $H^1(I)$ is a Hilbert space with respect to the inner product given by

$$(u|v)_{H^{1}(I)} \coloneqq (u|v)_{L^{2}(I)} + (u'|v')_{L^{2}(I)}$$

for all $u, v \in H^1(I)$. The following theorem collects important properties of Sobolev spaces in one dimension over bounded intervals:

Theorem 2. Let $-\infty < a < b < \infty$. We use the abbreviation $H^1(a, b) \coloneqq H^1((a, b))$.

- (a) One has $H^1(a,b) \subseteq C[a,b]$.
- (b) For all $u, v \in H^1(a, b)$ one has

$$\int_{a}^{b} u'v = -\int_{a}^{b} uv' + u(b)v(b) - u(a)v(a).$$

(c) For every $u \in H^1(a, b)$ one has $u^+ \in H^1(a, b)$ and

$$(u^+)' = \mathbb{1}_{u>0} u'.$$

(d) Let $H_0^1(a, b)$ denote the closure of $\mathcal{D}(a, b)$ with respect to the H^1 -norm. Then $H_0^1(a, b) = \{ u \in H^1(a, b) | u(a) = u(b) = 0 \}.$

Exercise 3. Let $-\infty < a < b < \infty$.

(a) Prove part (c) of Theorem 2 for the special case of a function $u \in C^1[a, b]$ that vanishes at precisely one point.

(b) Let $u \in H^1(a, b)$. Show that $u \in C^1[a, b]$ if and only if $u' \in C[a, b]$.

(c) Let $u \in H^1(a, b)$ and define

$$H^{2}(a,b) \coloneqq \left\{ u \in H^{1}(a,b) \middle| u' \in H^{1}(a,b) \right\}.$$

Show that $H^2(a,b) \subseteq C^1[a,b]$ and that a function $u \in H^2(a,b)$ satisfies $u \in C^2[a,b]$ if and only if $u'' \in C[a,b]$.

For the rest of the exercise we let, for the sake of simplicity, a = 0 and b = 1. (d) Let $f \in L^2(0, 1)$. Show that there exists a unique $u \in H^2(0, 1)$ such that

$$u - u'' = f$$
 and $u'(0) = u'(1) = 0.$

Show moreover that $u \in C^2[0, 1]$ if and only if $f \in C[0, 1]$. *Hint:* Use the Riesz–Fréchet representation theorem in the Hilbert space $H^1(0, 1)$ to find a $u \in H^1(0, 1)$ that satisfies $\int_0^1 fv = \int_0^1 uv + \int_0^1 u'v'$ for all $v \in H^1(0, 1)$.

(e) Define the operator A on $L^2(0,1)$ by

$$D(A) := \left\{ u \in H^2(0,1) \middle| u'(0) = u'(1) = 0 \right\},\$$

$$Au := u''.$$

The operator A is called the Neumann Laplacian on $L^2(0,1)$. Show that A generates a contractive positive C_0 -semigroup on $L^2(0,1)$.

Exercise 4 (The Neumann Laplacian on the space of continuous functions).

Define the operator $B: C[0,1] \supseteq D(B) \to C[0,1]$ by

$$D(B) \coloneqq \left\{ u \in C^2[0,1] \middle| u'(0) = u'(1) = 0 \right\},\Bu \coloneqq u''.$$

(a) Show that B is dispersive.

Hint: For $u \in D(B)$ choose $x_0 \in [0, 1]$ such that $u(x_0) = ||u^+||_{\infty}$ and consider the point evaluation map at x_0 .

(b) Show that D(B) is dense in C[0, 1].

Hint: Use the Stone–Weierstraß approximation theorem.

(c) Show that B generates a contractive positive C_0 -semigroup S on C[0, 1].

(d) Let A denote the operator on $L^2(0,1)$ from Exercise 3(e). Show that $\mathcal{R}(\lambda, A)C[0,1] \subseteq C[0,1]$ and $\mathcal{R}(\lambda, A)|_{C[0,1]} = \mathcal{R}(\lambda, B)$ and each $\lambda > 0$.

(e) Let T denote the semigroup on $L^2(0,1)$ generated by A. Show that $T(t)C[0,1] \subseteq C[0,1]$ and $T(t)|_{C[0,1]} = S(t)$ for each $t \ge 0$.

For the following exercise, recall that the dual operator A' of a linear operator A has the same spectrum as A and that $\mathcal{R}(\lambda, A)' = \mathcal{R}(\lambda, A')$ for all $\lambda \in \rho(A) = \rho(A')$. Also recall that a vector u in a Banach lattice E is positive if and only if $\langle \varphi, u \rangle \ge 0$ for all $0 \le \varphi \in E'$.

Exercise 5. Let A be the generator of a positive C_0 -semigroup T on a Banach lattice E and let $u \in E$. Assume that $\langle \varphi, u \rangle \ge 0$ for all $0 \le \varphi \in D(A')$. Show that $u \ge 0$.

Exercise 6. Let A be the generator of a C_0 -semigroup T on a Banach space E, let $u \in \ker A$ and $\varphi \in \ker A'$ and let $\langle \varphi, u \rangle = 1$. Define an operator $P \in \mathcal{L}(E)$ by

$$Pf \coloneqq \langle \varphi, f \rangle u$$

for all $f \in E$. Show that P is a projection and that T(t)P = PT(t) = P for all $t \ge 0$.

Exercise 7. Let T be a positive C_0 -semigroup with generator A on a Banach lattice E. One can prove that, due to the positivity,

$$\mathcal{R}(\lambda, A)u = \lim_{T \to \infty} \int_0^T e^{-\lambda t} T(t) u \, \mathrm{d}t =: \int_0^\infty e^{-\lambda t} T(t) u \, \mathrm{d}t$$

for each $u \in E$ and each complex number λ that satisfies $\operatorname{Re} \lambda > s(A)$.

(a) Show that $\mathcal{R}(\lambda, A) \ge 0$ for each real number $\lambda > s(A)$.

(b) Show that $|\mathcal{R}(\lambda, A)u| \leq \mathcal{R}(\operatorname{Re} \lambda, A) |u|$ for all $u \in E$ and all λ that satisfy $\operatorname{Re} \lambda > s(A)$.

(c) Let $\lambda_0 \in \mathbb{C}$ and let (λ_n) be a sequence in the resolvent set $\rho(A)$ that converges to λ_0 . Show that if $\sup_{n \in \mathbb{N}} ||\mathcal{R}(\lambda_n, A)|| < \infty$, then $\lambda_0 \in \rho(A)$.

Hint: Use the classical resolvent estimate $dist(\lambda, \sigma(A)) \ge \frac{1}{\|\mathcal{R}(\lambda, A)\|}$ that holds for all $\lambda \in \rho(A)$.

(d) Show that there exists a sequence (λ_n) in \mathbb{C} such that $\operatorname{Re} \lambda_n \downarrow s(A)$ and such that $\sup_{n \in \mathbb{N}} \|\mathcal{R}(\lambda_n, A)\| = \infty$.

Hint: Use the same resolvent estimate as in the hint of part (c).

(e) Assume that $s(A) > -\infty$. Show that $s(A) \in \sigma(A)$.