
Summer School on Positive Operator Semigroups
September 4 – 8, 2023

Exercise Sessions E–F:
Positive Semigroups on Banach Lattices

Exercise 1. Let A be the generator of a positive C0-semigroup T on a Banach lattice
E. Recall that there exist numbers M ≥ 1 and ω ∈ R such that ∥T (t)∥L(E) ≤ Metω

for all t ≥ 0. Hence, for all λ ∈ (ω,∞) the resolvent R(λ,A) := (λI − A)−1 exists
and satisfies ∥R(λ,A)∥L(E) ≤

M
λ−ω .

(a) Deduce that f = limλ→∞ λR(λ,A)f for all f ∈ E.

(b) Set D(A)+ := D(A) ∩ E+. Show that D(A) = D(A)+ −D(A)+.

(c) Show that D(A)+ = E+.

(d) Show the positive minimum principle: if 0 ≤ f ∈ D(A) and 0 ≤ φ ∈ E′ satisfy
⟨φ, f⟩ = 0, then ⟨φ,Af⟩ ≥ 0.

(e) Assume that Af ≥ 0 for all f ∈ D(A)+. Show that D(A) = E.
Hints for (e): Let f ∈ D(A)+. Show the following things:

1. For every µ ∈ ρ(A) one has

AR(µ,A)f = µ2R(µ,A)f − µf −Af.

2. One has ∥Af∥E ≤ c ∥f∥E for an f -independent number c ≥ 0.

3. One has ∥(µR(µ,A)− I)f∥E ≤ c
µ ∥f∥E for all µ > ω.

4. One has ∥µR(µ,A)− I∥L(E) < 1 for all sufficiently large µ > ω.

5. For µ as in Step 4., the mapping µR(µ,A) is surjective from E to E.

Recall that a linear operator A : E ⊇ D(A) → E on a Banach lattice E is called
dispersive if for all u ∈ D(A) there exists 0 ≤ φ ∈ E′ such that ∥φ∥ ≤ 1, ⟨φ, u⟩ =
∥u+∥, and ⟨φ,Au⟩ ≤ 0. Also recall the following result:

Theorem 1. For a linear operator A : E ⊇ D(A) → E on a Banach lattice E the
following assertions are equivalent:

(i) The operator A generates of positive contractive C0-semigroup on E.

(ii) The operator A is dispersive and satisfies D(A) = E, and there exists a number
λ > 0 such that ran(λI −A) = E.

Wolfgang Arendt Page 1 of 4



Exercise 2. Let A : E ⊇ D(A) → E be a linear operator on a Banach lattice E.
(a) Assume that A is dissipative and that one has u+ ∈ D(A) for each u ∈ D(A).
Assume moreover that A satisfies the positive minimum principle (see Exercise 1(d)).
Show that A is dispersive.

(b) Let A ∈ L(E) and assume that A satisfies the positive minimum principle. Show
that etA ≥ 0 for each t ≥ 0.
Hint: Observe that A− ∥A∥ I is dissipative.

(c) Let E = L2(Ω, µ) for a measure space (Ω, µ). Show that A is dispersive if and
only if

(
Au

∣∣u+) ≤ 0 for all u ∈ D(A).

For the following exercises we need Sobolev spaces on intervals. Let I ⊆ R be
a non-empty open interval. Let D(I) := C∞

c (I) denote the space of all infinitely
differentiable scalar-valued functions on I that have compact support in I. We
define

H1(I) :=
{
u ∈ L2(I)

∣∣ ∃u′ ∈ L2(I) ∀φ ∈ D(I) :

∫
I
u′φ = −

∫
I
u
d

dx
φ
}
.

Note that u′ in this definition is uniquely determined if it exsits since D(I) is dense
in L2(I). For instance, every function u ∈ C1(I) ∩ L2(I) is in H1(I) and satisfies
d
dxu = u′.
The space H1(I) is a Hilbert space with respect to the inner product given by(

u
∣∣v)

H1(I)
:=

(
u
∣∣v)

L2(I)
+
(
u′
∣∣v′)

L2(I)

for all u, v ∈ H1(I). The following theorem collects important properties of Sobolev
spaces in one dimension over bounded intervals:

Theorem 2. Let −∞ < a < b < ∞. We use the abbreviation H1(a, b) := H1
(
(a, b)

)
.

(a) One has H1(a, b) ⊆ C[a, b].

(b) For all u, v ∈ H1(a, b) one has∫ b

a
u′v = −

∫ b

a
uv′ + u(b)v(b)− u(a)v(a).

(c) For every u ∈ H1(a, b) one has u+ ∈ H1(a, b) and

(u+)′ = 1u>0 u
′.

(d) Let H1
0 (a, b) denote the closure of D(a, b) with respect to the H1-norm. Then

H1
0 (a, b) =

{
u ∈ H1(a, b)

∣∣ u(a) = u(b) = 0
}
.

Exercise 3. Let −∞ < a < b < ∞.
(a) Prove part (c) of Theorem 2 for the special case of a function u ∈ C1[a, b] that
vanishes at precisely one point.

(b) Let u ∈ H1(a, b). Show that u ∈ C1[a, b] if and only if u′ ∈ C[a, b].
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(c) Let u ∈ H1(a, b) and define

H2(a, b) :=
{
u ∈ H1(a, b)

∣∣ u′ ∈ H1(a, b)
}
.

Show that H2(a, b) ⊆ C1[a, b] and that a function u ∈ H2(a, b) satisfies u ∈ C2[a, b]
if and only if u′′ ∈ C[a, b].
For the rest of the exercise we let, for the sake of simplicity, a = 0 and b = 1.
(d) Let f ∈ L2(0, 1). Show that there exists a unique u ∈ H2(0, 1) such that

u− u′′ = f and u′(0) = u′(1) = 0.

Show moreover that u ∈ C2[0, 1] if and only if f ∈ C[0, 1].
Hint: Use the Riesz–Fréchet representation theorem in the Hilbert space H1(0, 1) to
find a u ∈ H1(0, 1) that satisfies

∫ 1
0 fv =

∫ 1
0 uv +

∫ 1
0 u′v′ for all v ∈ H1(0, 1).

(e) Define the operator A on L2(0, 1) by

D(A) :=
{
u ∈ H2(0, 1)

∣∣u′(0) = u′(1) = 0
}
,

Au := u′′.

The operator A is called the Neumann Laplacian on L2(0, 1).
Show that A generates a contractive positive C0-semigroup on L2(0, 1).

Exercise 4 (The Neumann Laplacian on the space of continuous func-
tions).
Define the operator B : C[0, 1] ⊇ D(B) → C[0, 1] by

D(B) :=
{
u ∈ C2[0, 1]

∣∣ u′(0) = u′(1) = 0
}
,

Bu := u′′.

(a) Show that B is dispersive.
Hint: For u ∈ D(B) choose x0 ∈ [0, 1] such that u(x0) = ∥u+∥∞ and consider the
point evaluation map at x0.

(b) Show that D(B) is dense in C[0, 1].
Hint: Use the Stone–Weierstraß approximation theorem.

(c) Show that B generates a contractive positive C0-semigroup S on C[0, 1].

(d) Let A denote the operator on L2(0, 1) from Exercise 3(e). Show that R(λ,A)C[0, 1] ⊆
C[0, 1] and R(λ,A)|C[0,1] = R(λ,B) and each λ > 0.

(e) Let T denote the semigroup on L2(0, 1) generated by A. Show that T (t)C[0, 1] ⊆
C[0, 1] and T (t)|C[0,1] = S(t) for each t ≥ 0.

For the following exercise, recall that the dual operator A′ of a linear operator A has
the same spectrum as A and that R(λ,A)′ = R(λ,A′) for all λ ∈ ρ(A) = ρ(A′).
Also recall that a vector u in a Banach lattice E is positive if and only if ⟨φ, u⟩ ≥ 0
for all 0 ≤ φ ∈ E′.

Exercise 5. Let A be the generator of a positive C0-semigroup T on a Banach lattice
E and let u ∈ E. Assume that ⟨φ, u⟩ ≥ 0 for all 0 ≤ φ ∈ D(A′). Show that u ≥ 0.
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Exercise 6. Let A be the generator of a C0-semigroup T on a Banach space E, let
u ∈ kerA and φ ∈ kerA′ and let ⟨φ, u⟩ = 1. Define an operator P ∈ L(E) by

Pf := ⟨φ, f⟩u

for all f ∈ E. Show that P is a projection and that T (t)P = PT (t) = P for all
t ≥ 0.

Exercise 7. Let T be a positive C0-semigroup with generator A on a Banach lattice
E. One can prove that, due to the positivity,

R(λ,A)u = lim
T→∞

∫ T

0
e−λtT (t)udt =:

∫ ∞

0
e−λtT (t)udt

for each u ∈ E and each complex number λ that satisfies Reλ > s(A).
(a) Show that R(λ,A) ≥ 0 for each real number λ > s(A).

(b) Show that |R(λ,A)u| ≤ R(Reλ,A) |u| for all u ∈ E and all λ that satisfy
Reλ > s(A).

(c) Let λ0 ∈ C and let (λn) be a sequence in the resolvent set ρ(A) that converges
to λ0. Show that if supn∈N ∥R(λn, A)∥ < ∞, then λ0 ∈ ρ(A).
Hint: Use the classical resolvent estimate dist(λ, σ(A)) ≥ 1

∥R(λ,A)∥ that holds for all
λ ∈ ρ(A).

(d) Show that there exists a sequence (λn) in C such that Reλn ↓ s(A) and such
that supn∈N ∥R(λn, A)∥ = ∞.
Hint: Use the same resolvent estimate as in the hint of part (c).

(e) Assume that s(A) > −∞. Show that s(A) ∈ σ(A).
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