

Eötvös Loránd University Faculty of Science Institute of Mathematics



BERGISCHE UNIVERSITÄT WUPPERTAL

Summer School on Positive Operator Semigroups

September 4 - 8, 2023

## Exercise Sessions A–D: The Finite-Dimensional Case and Introduction to Infinite-Dimensional Banach Lattices

**Exercise 1.** Let A be a  $n \times n$  diagonalisable matrix with m distinct eigenvalues  $\lambda_1, \ldots, \lambda_m$ . Prove that in this case its spectral projections are of the form

$$P_i = \prod_{j \neq i} \frac{A - \lambda_j}{\lambda_i - \lambda_j}, \quad i = 1, \dots, m.$$

**Exercise 2.** Prove that if  $|A| \leq B$ , then the following inequalities hold

$$\|A\| \leq \|B\| \quad \text{and} \quad \mathbf{r}(A) \leq \mathbf{r}(|A|) \leq \mathbf{r}(B).$$

**Exercise 3.** Show that if there exists an operator norm  $\|\cdot\|$  on  $M_n(\mathbb{C})$  such that  $\|T\| < 1$ , then the sequence  $(T^k)$  is stable.

**Exercise 4.** Describe the asymptotic behavior of sequence  $(T^k)$  for the following special classes of matrices  $T \in M_n(\mathbb{R})$ .

- (a) T is idempotent (or involutary), i.e.,  $T^2 = I$ .
- (b) T is nilpotent, i.e.,  $T^q = 0$  for some  $q \in \mathbb{N}$ .
- (c) T is unipotent, i.e., T I is nilpotent.
- (d) T is orthogonal, i.e.,  $T^{\top}T = TT^{\top} = I$ .

**Exercise 5.** For each of the following matrices determine whether its powers are convergent or Cesàro summable. Evaluate the limit of each convergent matrix and the Cesàro limit of each summable matrix.

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad A_3 = \frac{1}{2} \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & -2 & 1 \end{pmatrix}.$$

**Exercise 6.** Let  $T \ge 0$ . Prove that, for  $\mu \in \rho(T)$ ,

 $R(\mu, T) \ge 0$  implies  $\mu > r(T)$ .

**Exercise 7.** Show that, if  $a_1, \ldots, a_n \in \mathbb{C}$  are all non-zero, then the following matrix is irreducible:

| $0  0  a_2  \dots  0$                                                                     |  |
|-------------------------------------------------------------------------------------------|--|
|                                                                                           |  |
|                                                                                           |  |
| $\begin{bmatrix} 0 & 0 & \ddots & 0 & a_{m-1} \end{bmatrix}$                              |  |
| $ \begin{pmatrix} 0 & 0 & \ddots & 0 & a_{n-1} \\ a_n & 0 & \dots & 0 & 0 \end{pmatrix} $ |  |

**Exercise 8.** Show that  $T \ge 0$  is irreducible if and only if the eigenspaces of T and of  $T^{\top}$  belonging to  $\mathbf{r}(T) = \mathbf{r}(T^{\top})$  are one dimensional and spanned by a strictly positive vector.

**Exercise 9.** Let T be a positive irreducible matrix. Prove that, if the trace tr T > 0, then T is primitive.

**Exercise 10.** Verify irreducibility and imprimitivity of the matrices  $T_i$ , i = 1, 2, below and discuss the asymptotic behavior of the sequence  $((T_i/r(T_i))^k)$ .

$$T_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad T_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercise 11 (Matrix exponential function).

- (a) Characterize those matrices  $A \in M_n(\mathbb{C})$  for which  $e^{tA}$  is positive for all  $t \in \mathbb{R}$ .
- (b) Find all positive periodic matrix semigroups, and all positive, periodic, irreducible matrix semigroups.

Exercise 12. Consider the Competitive Markets Model given by

$$p(t) = p^0 + e^{tKA}c, \quad t \ge 0, \text{ where } c = p(0) - p^0,$$

where  $p^0$  are equilibrium prices, p(0) initial prices,  $K = \text{diag}(k_1, \ldots, k_n)$  a diagonal matrix of positive adjustment speeds while for the coefficients of the matrix  $A = (a_{ij})$  we have

$$a_{ij} \geq 0$$
 for  $i \neq j$  and  $a_{ii} < 0$ .

List the conditions for the matrix A under which the prices will behave periodically.

**Exercise 13.** Assume that we have a group of individuals who are arranged in the vertices of a graph and the disease can spread along the edges according to the differential equation

$$\dot{y}(t) = (\eta G - \mu I)y(t),$$

where G is the (weighted) adjacency matrix of the graph. Each individual can recover from he illness with a rate of  $\mu = 1/4$ . Discuss the role of the infection rate  $\eta$ , if he graph is

- (a) a complete graph with 4 vertices,
- (b) a cycle of length 5 (regular pentagon),
- (c) a cube (8 vertices),
- (d) the graph in Figure 1.

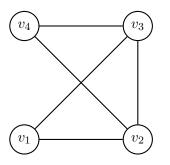


Figure 1: The graph in Exercise 13.

**Exercise 14 (Properties of vector lattices).** Let E be a vector lattice and  $x, y, z \in E$ . Prove

- (a)  $x \vee y = \frac{1}{2}(x+y+|x-y|)$ , and  $x \wedge y = \frac{1}{2}(x+y-|x-y|)$ .
- (b)  $|x| \vee |y| = \frac{1}{2}(|x+y| + |x-y|)$  and deduce that

$$|x| \wedge |y| = \frac{1}{2}(|x+y| - |x-y|).$$

- (c) Deduce that  $x \perp y$  is equivalent to |x y| = |x + y|.
- (d) The triangle inequality:  $||x| |y|| \le |x + y| \le |x| + |y|$ .
- (e) Deduce that  $x \perp y$  is equivalent to  $|x| \lor |y| = |x| + |y|$  and in this case ||x| |y|| = |x + y| = |x| + |y|.
- (f) Birkhoff's inequalities:  $|x \vee z y \vee z| \le |x y|$  and  $|x \wedge z y \wedge z| \le |x y|$ .

**Exercise 15.** Let us consider the Banach space  $E := C^1[0, 1]$  of continuously differentiable functions on [0, 1] with the norm

$$||f|| = \max_{s \in [0,1]} |f(s)| + \max_{s \in [0,1]} |f'(s)|$$

and the natural order  $f \ge 0$  if  $f(s) \ge 0$  for all  $s \in [0, 1]$ . Prove that E is not a vector lattice.

**Exercise 16.** Consider  $C^{1}[0, 1]$  equipped with the norm

$$||f|| = \max_{s \in [0,1]} |f'(s)| + |f(0)|$$

and the order  $f \ge 0$  whenever  $f(0) \ge 0$  and  $f' \ge 0$ . Show that  $E := (C^1[0, 1], \ge, \|\cdot\|)$  is a Banach lattice.

**Exercise 17.** Let E be a Banach lattice. Then,

- (a) the lattice operations are continuous,
- (b) the positive cone  $E_+$  is closed, and
- (c) order intervals are closed and bounded.

**Exercise 18 (Properties of ideals).** Prove that a subspace I of a Banach lattice is an ideal if and only if

$$[x \in I, |y| \le |x|] \Longrightarrow y \in I.$$

**Exercise 19.** Show that an operator is positive, i.e.,  $TE_+ \subset F_+$ , if and only if  $|Tx| \leq T|x|$  holds for all  $x \in X$ .

**Exercise 20.** Consider the Banach lattice given in Exercise 16 and define the operator

$$(Tf)(t) := \int_0^t g(s)f(s)ds$$

with a given  $g \in C[0, 1]$ . Calculate ||T||. For which g is T positive?

**Exercise 21.** Show that: if E is a Banach lattice and  $S,T: E \to E$  positive operators, then

$$r(S+T) \ge \max\{r(S), r(T)\}.$$

**Exercise 22.** Give an example of a Banach lattice E, a positive operator T, and an invariant ideal  $J \subset E$  such that there is  $\lambda \in \rho(T)$  for which J is not  $R(\lambda, T)$ -invariant.