11. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on June 27 and 28, 2023

Exercise 1 (Projection bands). Endow \mathbb{R}^{4} with the cone

$$
\mathbb{R}_{+}^{4}:=\left\{x \in \mathbb{R}^{4} \mid x_{2} \geq 0 \text { and } x_{1} \geq\left|x_{3}\right|+\left|x_{4}\right|\right\} .
$$

Write \mathbb{R}^{4} as the direct sum of two non-trivial projection bands.
Solution: Clearly, \mathbb{R}_{+}^{4} is closed, so by Proposition 2.1.2, the cone is Archimedean. Hence, by Proposition 5.1.16 it suffices to find a non-trivial band projection P. Consider for example the projection

$$
P: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \quad\left(x_{1}, \ldots, x_{4}\right) \mapsto\left(0, x_{2}, 0,0\right)
$$

Then

$$
(I-P): \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, \quad\left(x_{1}, \ldots, x_{4}\right) \mapsto\left(x_{1}, 0, x_{3}, x_{4}\right)
$$

and both operator P and $I-P$ are positive. Now, by Proposition 5.1.16, the ranges $B_{1}:=P \mathbb{R}^{4}$ and $B_{2}:=(I-P) \mathbb{R}^{4}$ are non-trivial projection bands with $B_{1}+B_{2}=\mathbb{R}^{4}$.

Exercise 2 (Order units). Consider the function $u:[-1,1] \rightarrow \mathbb{R}, t \mapsto 1-t^{2}$. In which of the following ordered Banach spaces (each of them endowed with the pointwise order) is u an order unit?
(a) $\mathrm{C}([-1,1])$
(b) $\mathrm{C}^{1}([-1,1])$
(c) $E:=\{f \in \mathrm{C}([-1,1]) \mid f(-1)=f(1)=0\}$
(d) $F:=\left\{f \in \mathrm{C}^{1}([-1,1]) \mid f(-1)=f(1)=0\right\}$

Solution:

(a) By Theorem 6.1.2 every order unit is an interior point of the positive cone. Now let $\varepsilon>0$. Then $u-\varepsilon \cdot \mathbb{1}$ has values that are negative. So u is not in the interior of $\mathrm{C}([-1,1])_{+}$; and thus, u is no order unit.
(b) The same argument as in (a) applies, as $\|\mathbb{1}\|_{\mathrm{C}^{1}}=\|\mathbb{1}\|_{\infty}$.
(c) As before in (a) we show that u is not in the interior of the cone. Let $\varepsilon>0$ and $\delta>0$ small enough that $u(x)<\varepsilon$ for all $x \in[-1,-1+\delta]$. By Urysohn's lemma there is a continuous function $f:[-1,1] \rightarrow[0,1]$ that satisfies $f(-1)=f(1)=0$ and $f(-1+\delta)=1$. Then $u-\varepsilon f$ has a negative value at the point $-1+\delta$. Hence, u is not in the interior of $\mathrm{C}([-1,1])$; and thus, u is no order unit.
(d) We claim that u is an order unit for F. Indeed, let $f \in F$ with $\|f\|_{\mathrm{C}^{1}} \leq 1 / 2$, then $\|f\|_{\infty},\left\|f^{\prime}\right\|_{\infty} \leq 1 / 2$, and thus, for all $x \in[-1 / 2,1 / 2]$ we have $u(x)-f(x)=$ $1-x^{2}-f(x) \geq 1-1 / 4-1 / 2>0$ and for $x \in[-1,-1 / 2]$

$$
u(x)-f(x)=\int_{-1}^{x} \underbrace{-2 t-f^{\prime}(t)}_{\geq 1-1 / 2 \geq 0} \mathrm{~d} t \geq 0
$$

and similarly for $x \in[1 / 2,1]$

$$
u(x)-f(x)=\int_{1}^{x} \underbrace{-2 t-f^{\prime}(t)}_{\geq 1-1 / 2 \geq 0} \mathrm{~d} t=\int_{x}^{1} \underbrace{2 t+f^{\prime}(t)}_{\geq 1-1 / 2 \geq 0} \mathrm{~d} t \geq 0
$$

So it follows that $f \leq u$. Now Theorem 6.1.2 (iii) \Rightarrow (i) implies that u is an order unit.

Exercise 3 (Order unit in the spaces of self-adjoint compact operators?). Let H be an infinite-dimensional separable complex Hilbert space and endow the space $\mathcal{K}(H)_{\text {sa }}$ of self-adjoint compact linear operators on H with the Loewner order. Show that there does not exist an order unit in $\mathcal{K}(H)_{\text {sa }}$.

Solution: Suppose to show a contradiction that there is an order unit $0 \leq A \in$ $\mathcal{K}(H)_{\text {sa }}$. Then by a spectral decomposition there exists a null sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of nonnegative reals and an orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of H such that

$$
A=\sum_{n \in \mathbb{N}} \lambda_{n}\left(e_{n} \otimes e_{n}\right)
$$

We may suppose that $\lambda_{n}>0$ for all $n \in \mathbb{N}$, otherwise it is easily seen that $\varepsilon\left(e_{n} \otimes e_{n}\right) \not \approx$ A for all $\varepsilon>0$ and all $n \in \mathbb{N}$ with $\lambda_{n}=0$.
Now let $(\alpha)_{n \in \mathbb{N}}$ be a sequence of nonnegative real with $\alpha_{n} \rightarrow 0$ and $\alpha_{n} / \lambda_{n} \rightarrow \infty$. Then

$$
B:=\sum_{n \in \mathbb{N}} \alpha_{n}\left(e_{n} \otimes e_{n}\right)
$$

is a compact operator (as a operator norm limit of finite-dimensional operators) that satisfies $\varepsilon B \not \leq A$ for all $\varepsilon>0$. This contradicts the fact that A is an order unit.

Exercise 4 (Interior points in an infinite-dimensional ice cream cone).
Endow ℓ^{2} with the ice cream cone

$$
\ell_{+}^{2}:=\left\{x \in \ell^{2} \mid x_{1} \geq 0 \text { and } x_{1}^{2} \geq \sum_{k=2}^{\infty} x_{k}^{2}\right\}
$$

Does ℓ_{+}^{2} have an interior point?

Solution: Define $P x:=\left(0, x_{2}, x_{3}, \ldots\right)$ for all $x \in \ell^{2}$. Let $x \in \ell_{+}^{2}$ with $x_{1}>\|P x\|_{2}$ and set $\varepsilon:=x_{1}-\|P x\|$. Then for $y \in \ell^{2}$ with $\|x-y\|<\varepsilon / 3$ we have

$$
\left|x_{1}-y_{1}\right|<\varepsilon / 3 \quad \text { and } \quad\|P x-P y\|<\varepsilon / 3 .
$$

Hence,

$$
\begin{aligned}
y_{1} & \geq x_{1}-\left|x_{1}-y_{1}\right|>x_{1}-\frac{\varepsilon}{3}=\|P x\|+\frac{2 \varepsilon}{3} \\
& \geq\|P y\|-\|P y-P x\|+\frac{2 \varepsilon}{3}>\|P y\|+\frac{\varepsilon}{3}>\|P y\| .
\end{aligned}
$$

It follows that an open neighborhood of x is contained in ℓ_{+}^{2}. It follows that x is an interior point of ℓ_{+}^{2}.

Exercise 5 (And now something completely different). Endow the space $E:=\left\{f \in \mathrm{C}^{1}([-1,1]) \mid f(0)=0\right\}$ with the pointwise order. Is the positive cone generating? ${ }^{1}$

Solution: No, the cone is not generating. Consider the function $f:[-1,1] \rightarrow \mathbb{R}$, $x \mapsto x$ and suppose that there exist $f^{+}, f^{-} \in E_{+}$such that $f^{+}-f^{-}=f$. Then $f^{+}(x)=x+f^{-}(x) \geq x$ for all $x \in[-1,1]$. Hence, for $h>0$ we get

$$
\lim _{h \downarrow 0} \frac{f^{+}(h)-f^{+}(0)}{h} \geq \lim _{h \downarrow 0} \frac{h-0}{h}=1
$$

and in case $h<0$ we obtain

$$
\lim _{h \uparrow 0} \frac{f^{+}(h)-f^{+}(0)}{h} \leq \lim _{h \uparrow 0} \frac{0-0}{h}=0 .
$$

This is a contradiction to the assumption that $f^{+} \in E_{+}$.

[^0]
[^0]: ${ }^{1}$ In case that you are wondering how this is related to the current contents of the lecture: it isn't.

