

Summer term 2023

11. Exercise Sheet in Ordered Banach Spaces and Positive Operators

lered Banach Spaces and Positive Operato

For the exercise classes on June 27 and 28, 2023

Exercise 1 (Projection bands). Endow \mathbb{R}^4 with the cone

$$\mathbb{R}^{4}_{+} \coloneqq \left\{ x \in \mathbb{R}^{4} \mid x_{2} \ge 0 \text{ and } x_{1} \ge |x_{3}| + |x_{4}| \right\}$$

Write \mathbb{R}^4 as the direct sum of two non-trivial projection bands.

Exercise 2 (Order units). Consider the function $u : [-1, 1] \to \mathbb{R}$, $t \mapsto 1 - t^2$. In which of the following ordered Banach spaces (each of them endowed with the pointwise order) is u an order unit?

(a) C ([-1,1])
(b) C¹ ([-1,1])
(c)
$$E := \left\{ f \in C ([-1,1]) \mid f(-1) = f(1) = 0 \right\}$$

(d) $F := \left\{ f \in C^1 ([-1,1]) \mid f(-1) = f(1) = 0 \right\}$

Exercise 3 (Order unit in the spaces of self-adjoint compact operators?). Let H be an infinite-dimensional separable complex Hilbert space and endow the space $\mathcal{K}(H)_{sa}$ of self-adjoint compact linear operators on H with the Loewner order. Show that there does not exist an order unit in $\mathcal{K}(H)_{sa}$.

Exercise 4 (Interior points in an infinite-dimensional ice cream cone). Endow ℓ^2 with the ice cream cone

$$\ell_{+}^{2} \coloneqq \{ x \in \ell^{2} \mid x_{1} \ge 0 \text{ and } x_{1}^{2} \ge \sum_{k=2}^{\infty} x_{k}^{2} \}.$$

Does ℓ^2_+ have an interior point?

Exercise 5 (And now something completely different). Endow the space $E := \{f \in C^1([-1,1]) \mid f(0) = 0\}$ with the pointwise order. Is the positive cone generating?¹

 $^{^1\}mathrm{In}$ case that you are wondering how this is related to the current contents of the lecture: it isn't.