9. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on June 13 and 14, 2023 with Solutions

Exercise 1 (Non-disjointness in the Loewner order).

(a) Endow the space $\mathbb{C}_{\mathrm{sa}}^{2 \times 2}$ of self-adjoint 2×2-matrices with the Loewner order. Show that any two non-zero positive elements a, b in this space are not disjoint.
(b) Let X be an ordered vector space and let $V \subseteq X$ be a vector subspace which we endow with the order inherited from $X 1$ Let $v, w \in V$. Show that if v and w are disjoint within the ordered vector space X, then they are also disjoint within the ordered vector space V.
Conversely, give an example of spaces X and V and elements $v, w \in V$ such that v and w are disjoint within the space V but not within the space X.
(c) Let H be an infinite-dimensional seperable complex Hilbert space and endow the space $\mathcal{K}(H)_{\text {sa }}$ of compact self-adjoint operators on H with the Loewner order. Let $x, y \in H \backslash\{0\}$. Show that $x \otimes x$ and $y \otimes y$ are not disjoint.
Hint: Let $G \subseteq H$ denote the span of x and y and let $V \subseteq \mathcal{K}(H)_{\text {sa }}$ consist of those operators that leave G invariant and vanish on the orthogonal complement of G.
(d) In the setting of part (c), show that two non-zero elements of the positive cone are never disjoint.

Solution:

(a) It follows from the definition of the infimum that disjointness is preserved by order isomorphisms. Recall from Exercise 3 on Sheet 2 that the Loewner cone in $\mathbb{C}_{\mathrm{sa}}^{2 \times 2}$ is order isomorphic to the ice cream cone in \mathbb{R}^{3}. Hence, the statement follows immediately from Example 5.1.4 (b) (together with Exercise 3 (b) on Sheet 8).
(b) Claim. For any two elements $x, y \in V$ the set of upper bounds of x and y in V is the intersection of the set of upper bound in X with V.

Proof. If z is an upper bound of x and y in V, then it is clearly also an upper bound of x and y in X and $z \in V$. Conversely, if $z \in V$ and z is an upper bound of x and y, then z is clearly an upper bound of x and y in V.

Now let $v, w \in V$ be disjoint in X. Then by Proposition 5.1 .5 (i) \Rightarrow (ii) the set of upper bound in X of $v+w$ and $-v-w$ and the set of upper bound in X of $v-w$ and $w-v$ coincide. By intersecting both set with V, the above claim yields that the

[^0]set of upper bound in V of $v+w$ and $-v-w$ and the set of upper bound in V of $v-w$ and $w-v$ coincide. Now Proposition 5.1.5 (ii) \Rightarrow (i) yields that v and w are disjoint in V.

We now give the example. Let $X=\mathbb{R}^{3}$ endowed with the ice cream cone and $V=\left\{x \in \mathbb{R}^{3} \mid x_{3}=0\right\}$ endowed with the cone $V_{+}=X_{+} \cap V$. Then V is order isomorphic to \mathbb{R}^{2} endowed with the ice cream cone. By Exercise 3 (b) on Sheet 8 we know that any non-zero element $v, w \in \partial V_{+}$are not disjoint in X but are always disjoint in V.
(c) If x and y are linearly dependent, it follows easily that $x \otimes x$ and $y \otimes y$ are also linearly dependent. Hence, the operators are not disjoint.
So let $x, y \in H$ be linearly independent. Consider the mapping ${ }^{2}$

$$
i: \mathbb{C}_{\mathrm{sa}}^{2 \times 2} \rightarrow \mathcal{K}(H)_{\mathrm{sa}}, \quad\left(\begin{array}{cc}
a_{1} & a_{3} \\
a_{3}^{*} & a_{2}
\end{array}\right) \mapsto a_{1}(x \otimes x)+a_{2}(y \otimes y)+a_{3}(x \otimes y)+a_{3}^{*}(y \otimes x)
$$

It follows from

$$
\begin{aligned}
& \left(\left.\binom{(x \mid z)}{(y \mid z)}\left(\begin{array}{ll}
a_{1} & a_{3} \\
a_{3}^{*} & a_{2}
\end{array}\right) \right\rvert\,\binom{(x \mid z)}{(y \mid z)}\right) \\
& =\left(\left(a_{1}(x \otimes x)+a_{2}(y \otimes y)+a_{3}(x \otimes y)+a_{3}^{*}(y \otimes x)\right) z \mid z\right)
\end{aligned}
$$

which holds for all $z \in H$, and the fact that by linear independence of x and y the mapping

$$
H \rightarrow \mathbb{C}^{2}, \quad z \mapsto\binom{(x \mid z)}{(y \mid z)}
$$

is surjective, that the mapping i is bi-positive, and thus, injective (see Proposition 1.6.4). In particular it follows that we may view $\mathbb{C}_{\mathrm{sa}}^{2 \times 2}$ as an ordered subspace of $\mathcal{K}(H)_{\text {sa }}$ that contains the operators $x \otimes x$ and $y \otimes y$. Thus, the non-disjointness of these operator follows from (b) and (a).
(d) Let $A, B \in \mathcal{K}(H)_{\text {sa }} \backslash\{0\}$. Then by the spectral theorem for self-adjoint compact operators there exist two non-zero vectors $x, y \in H$ such that $A \geq x \otimes x \geq 0$ and $B \geq y \otimes y \geq 0$. By (c) the operators $x \otimes x$ and $y \otimes y$ are not disjoint. Hence, there exists a lower bound $C \leq x \otimes x, y \otimes y$ such that $C \not \leq 0$. But C is also a lower bound of A and B. Hence, A and B are not disjoint.

Exercise 2 (The space of test functions). Let $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ denote the real vector space of all infinitely differentiable functions $f:(0,1) \rightarrow \mathbb{R}$ whose support $\overline{\{x \in(0,1): f(x) \neq 0\}}$ is a compact subset of $(0,1)$ (i.e., $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ is the space of test functions on $(0,1))$. Endow $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ with the pointwise order.
(a) Show that the positive cone in $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ is generating. Is it Archimedean?
(b) When are two elements of $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ disjoint? When are two positive elements of $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ D-disjoint?

Solution:

${ }^{2}$ Recall that for $x, y \in H$ we have defined $(x \otimes y) z:=(y \mid z) x$ for all $z \in H$.
(a) Let $f \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ and let $0<a<b<1$ define an interval $(a, b) \subsetneq(0,1)$ that contains the support of f. Now choose any $g \in \mathrm{C}_{\mathrm{c}}^{\infty}(\mathbb{R})$ with $0 \leq g \leq 1$ and $\int_{0}^{1} g(x) \mathrm{d} x=1$ that is supported on $(-1,1)$. Then

$$
\tilde{g}(x):=\int_{a}^{b} \frac{1}{\delta} g\left(\frac{x-t}{\delta}\right) \mathrm{d} t=\int_{\frac{a}{\delta}}^{\frac{b}{\delta}} g\left(\frac{x}{\delta}-t\right) \mathrm{d} t
$$

for small $\delta>0$ is supported in a small neighborhood of (a, b) and satisfies $\tilde{g}=1$ on the support of f. Moreover, $\left.\tilde{g} \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)\right]^{3}$ Then the decomposition $f=f^{+}-f^{-}$is given by

$$
f^{+}=f+\|f\|_{\infty} g, \quad f^{-}=\|f\|_{\infty} g,
$$

where $f^{+}, f^{-} \geq 0$.
Let $f, g \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ with $f \geq 0$ and $g \leq \frac{1}{n} f$ for all $n \in \mathbb{N}$. Then pointwisely $g(x) \leq \frac{1}{n} f(x)$, and thus, $g(x) \leq 0$. It follows that $g \leq 0$ and that the positive cone is Archimedean.
(b) Claim. Two positive elements in $\mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ are disjoint if and only if they are D-disjoint.

Proof. By Proposition 5.1.3 it suffices to show that D-disjointness implies disjointness. Let f, g be D-disjoint and suppose there exists a lower bound $l \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ of f and g that does not satisfy $l \leq 0$. As the order is pointwise, there exists $x \in(0,1)$ such that $l(x)>0$. Hence, f and g are larger than 0 in a common open neighborhood of x. By a similar argument as in (a) we are able to find a non-zero function $0 \leq h \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ such that $h \leq f, g$. This contradicts the D-disjointness of f and g.

Claim. Two elements $f, g \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ are disjoint if and only if their open supports $\{x \in(0,1) \mid f(x) \neq 0\}$ and $\{x \in(0,1) \mid g(x) \neq 0\}$ are disjoint.

Proof. Suppose that U is a non-empty subset of the open supports of f and g. Then by Proposition 5.1.8 (i) and by potentially making U smaller, we may we may assume that $0<f(x)<g(x)$ for all $x \in U$. Let $0 \leq h \in \mathrm{C}_{\mathrm{c}}^{\infty}(0,1)$ be non-zero with support in U. Let $u \in\{f-g, g-f\}^{\text {ub }}$ and consider $\tilde{u}:=u-\lambda h$ for a choice of $\lambda>0$ such that \tilde{u} is still an upper bound of $f-g$ and $g-f$ and there exists $x \in U$ such that $g(x)<f(x) \tilde{u}(x)<g(x)$. Then, in particular, $\tilde{u} \notin\{f+g,-f-g\}^{u b}$. Hence, f and g are not disjoint.
Conversely, let f and g have disjoint open support. We show that f and g are disjoint. Let $u \in\{f+g,-f-g\}^{\text {ub }}$. Then $u \geq f+g$ and $u \geq-f-g$. In particular, $u(x) \geq|f(x)|$ for all x in the support of f and $u(x) \geq|g(x)|$ for all x in the support of g (and $u(x) \geq 0$ for all x outside of the support of f and g). So $u \geq f-g, g-f$, and thus, $u \in\{f-g, g-f\}^{\mathrm{ub}}$.
The converse inclusion now follows from the fact that f and $-g$ also have disjoint open support.

[^1]Exercise 3 (Holomorphic functions again). Let $E \subseteq \mathcal{H}^{\infty}(\mathbb{D})$ be the space from Exercise 4 on Sheet 6 , endowed with the order defined there.
(a) Let $n_{0} \geq 2$ be an integer. Show that there exists a function $h \in E$ that satisfies $h\left(\frac{1}{n_{0}}\right)=1$ but $h\left(\frac{1}{n}\right)<0$ for all integers $n \geq 2$ different from n_{0}.
(b) Let $f, g \in E_{+}$be non-zero. Show that there exists an integer $n_{0} \geq 2$ such that both functions f and g do not vanish at $\frac{1}{n_{0}}$.
(c) Let $f, g \in E_{+}$be non-zero. Show that f and g are not disjoint.

Solution:

(a) Consider the function

$$
h: \mathbb{D} \rightarrow \mathbb{C}, \quad z \mapsto-a\left(x-\frac{1}{n_{0}}\right)^{2}+1,
$$

where $a \in \mathbb{R}$ is to be determined. Then for the right choice of a the function h satisfies the desired properties. Indeed, $h\left(\frac{1}{n_{0}}\right)=1$ and has the zeros $x_{1,2}=\frac{1}{n_{0}} \pm \sqrt{1 / a}$, which lie in the interval $\left(\frac{1}{n_{0}+1}, \frac{1}{n_{0}-1}\right)$ for an appropriate choice of $a \in \mathbb{R}$.
(b) For every non-zero function $f \in \mathcal{H}^{\infty}(\mathbb{C})$ there exists an integer $n_{1} \geq 2$ such that $f\left(\frac{1}{n_{0}}\right) \neq 0$. Otherwise the identity theorem there exists a sequence converging to 0 on which the the function is 0 . By continuity the function is 0 in 0 . Hence, the identity theorem implies that $f=0$. Let $n_{1} \geq 2$ be the integer with this property for $f \in E_{+}$ and $n_{2} \geq 2$ be the integer with this property for $g \in E_{+}$. Set $n_{0}:=\max \left\{n_{1}, n_{2}\right\}$.
(c) Let $f, g \in E_{+}$be non-zero and let $n_{0} \geq 2$ be an integer for which f and g do not vanish at $\frac{1}{n_{0}}$. Let $0<\alpha:=\min \left\{f\left(\frac{1}{n_{0}}\right), g\left(\frac{1}{n_{0}}\right)\right\}$. Let h be a function with the properties listed in (a). Then αh is a lower bound of f and g. Indeed, for $n \in \mathbb{N} \backslash\left\{n_{0}\right\}$ we have $f\left(\frac{1}{n}\right), g\left(\frac{1}{n}\right) \geq 0$ and $h\left(\frac{1}{n}\right) \leq 0$, and $f\left(\frac{1}{n_{0}}\right), g\left(\frac{1}{n_{0}}\right)>\alpha=h\left(\frac{1}{n_{0}}\right)$. But $h \not \leq 0$. So 0 is not the infimum of $\{f, g\}$.

Exercise 4 (Anti-lattices). Let E be an ordered vector space whose cone is generating. The space E is called an anti-lattice if the following holds for all vectors x, y : if $\{x, y\}$ has a supremum in E, then $x \geq y$ or $y \geq x$.
Prove that E is an anti-lattice if and only if there is no pair of non-zero disjoint elements of $E_{+} 4^{1}$
Hints: To show " \Rightarrow ", prove that any two disjoint elements $x, y \in E_{+}$have supremum $x+y$. To show " \Leftarrow ", take two elements x, y which have a supremum and shift $-x$ and $-y$ such that you get two elements of E_{+}that have an infimum. Then subtract the infimum from both elements.

[^2]Solution: " \Rightarrow ": Suppose that there is a pair of non-zero disjoint elements $x, y \in E_{+}$. We show first that $x+y$ is the supremum of $\{x, y\}$. Clearly $x+y \geq x, y$. So $x+y$ is an upper bound of x and y. If u is an upper bound of x and y, then $u \geq x-y$ and $u \geq y-x$. Hence, by disjointness $u \geq x+y,-x-y$. Thus, $x+y$ is indeed the supremum of $\{x, y\}$.
However, we neither have $x \geq y$ nor $y \geq x$, since then the infimum of $\{x, y\}$ is would not equal 0 , which would contradict the disjointness of x and y.
" \Leftarrow ": Assume that E is not an anti-lattice. So there exist two elements $x, y \in E$ such that $\{x, y\}$ has the supremum $s \in E$ and neither $x \geq y$ nor $y \geq x$. Now the elements $s-y$ and $s-x$ are in E_{+}and non-zero, as otherwise we have $s=x$ or $s=y$ contradicting the assumption that neither $x \geq y$ nor $y \geq x$ holds. It suffices to show that $s-y$ and $s-x$ are disjoint, but this follows immediately from the fact that the infimum of the shifted set $\{-x+s,-y+s\}$ is 0 , since $-s$ is the infimum of $\{-x,-y\}$. This concludes the proof.

[^0]: ${ }^{1}$ In other words, $V_{+}=V \cap X_{+}$.

[^1]: ${ }^{3}$ The construction of \tilde{g} is a standard argument in the literature. There \tilde{g} is called a mollification of g. Mollifications are usually used to smoothen non-smooth functions. In our example we have smoothed the indicator function $\mathbb{1}_{(a, b)}$.

[^2]: ${ }^{4}$ So \mathbb{R}^{d} with the ice-cream cone is an anti-lattice if $d \geq 3$ or $d=1$ (Exercise $3(\mathrm{~b})$ on Sheet 8). Moreover, the self-adjoint compact operators on a complex Hilbert space form an anti-lattice with respect to the Loewner order (Exercise $1(\mathrm{~d})$ on the present sheet) and the space E in Exercise 3 is also an anti-lattice (part (c) of that Exercise).

