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Exercise 1 (Non-disjointness in the Loewner order).
(a) Endow the space C2×2

sa of self-adjoint 2 × 2-matrices with the Loewner order.
Show that any two non-zero positive elements a, b in this space are not disjoint.

(b) Let X be an ordered vector space and let V ⊆ X be a vector subspace which
we endow with the order inherited from X.1 Let v, w ∈ V . Show that if v and w
are disjoint within the ordered vector space X, then they are also disjoint within the
ordered vector space V .
Conversely, give an example of spaces X and V and elements v, w ∈ V such that v
and w are disjoint within the space V but not within the space X.

(c) Let H be an infinite-dimensional seperable complex Hilbert space and endow the
space K(H)sa of compact self-adjoint operators on H with the Loewner order. Let
x, y ∈ H \ {0}. Show that x⊗ x and y ⊗ y are not disjoint.
Hint: Let G ⊆ H denote the span of x and y and let V ⊆ K(H)sa consist of those
operators that leave G invariant and vanish on the orthogonal complement of G.

(d) In the setting of part (c), show that two non-zero elements of the positive cone
are never disjoint.

Solution:

(a) It follows from the definition of the infimum that disjointness is preserved by
order isomorphisms. Recall from Exercise 3 on Sheet 2 that the Loewner cone in
C2×2
sa is order isomorphic to the ice cream cone in R3. Hence, the statement follows

immediately from Example 5.1.4 (b) (together with Exercise 3 (b) on Sheet 8).

(b) Claim. For any two elements x, y ∈ V the set of upper bounds of x and y in V
is the intersection of the set of upper bound in X with V .

Proof. If z is an upper bound of x and y in V , then it is clearly also an upper bound
of x and y in X and z ∈ V . Conversely, if z ∈ V and z is an upper bound of x and
y, then z is clearly an upper bound of x and y in V .

Now let v, w ∈ V be disjoint in X. Then by Proposition 5.1.5 (i) ⇒ (ii) the set of
upper bound in X of v + w and −v − w and the set of upper bound in X of v − w
and w− v coincide. By intersecting both set with V , the above claim yields that the

1In other words, V+ = V ∩X+.
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set of upper bound in V of v + w and −v − w and the set of upper bound in V of
v − w and w − v coincide. Now Proposition 5.1.5 (ii) ⇒ (i) yields that v and w are
disjoint in V .

We now give the example. Let X = R3 endowed with the ice cream cone and
V = {x ∈ R3 | x3 = 0} endowed with the cone V+ = X+ ∩ V . Then V is order
isomorphic to R2 endowed with the ice cream cone. By Exercise 3 (b) on Sheet 8
we know that any non-zero element v, w ∈ ∂V+ are not disjoint in X but are always
disjoint in V .

(c) If x and y are linearly dependent, it follows easily that x⊗ x and y ⊗ y are also
linearly dependent. Hence, the operators are not disjoint.

So let x, y ∈ H be linearly independent. Consider the mapping2

i : C2×2
sa → K(H)sa,

(
a1 a3
a∗3 a2

)
7→ a1(x⊗ x) + a2(y ⊗ y) + a3(x⊗ y) + a∗3(y ⊗ x).

It follows from((
(x | z)
(y | z)

)(
a1 a3
a∗3 a2

)∣∣∣∣((x | z)
(y | z)

))
=

(
(a1(x⊗ x) + a2(y ⊗ y) + a3(x⊗ y) + a∗3(y ⊗ x))z

∣∣z),
which holds for all z ∈ H, and the fact that by linear independence of x and y the
mapping

H → C2, z 7→
(
(x | z)
(y | z)

)
is surjective, that the mapping i is bi-positive, and thus, injective (see Proposi-
tion 1.6.4). In particular it follows that we may view C2×2

sa as an ordered subspace
of K(H)sa that contains the operators x ⊗ x and y ⊗ y. Thus, the non-disjointness
of these operator follows from (b) and (a).

(d) Let A,B ∈ K(H)sa \ {0}. Then by the spectral theorem for self-adjoint compact
operators there exist two non-zero vectors x, y ∈ H such that A ≥ x ⊗ x ≥ 0 and
B ≥ y ⊗ y ≥ 0. By (c) the operators x⊗ x and y ⊗ y are not disjoint. Hence, there
exists a lower bound C ≤ x⊗ x, y⊗ y such that C ≰ 0. But C is also a lower bound
of A and B. Hence, A and B are not disjoint.

Exercise 2 (The space of test functions). Let C∞
c (0, 1) denote the real vec-

tor space of all infinitely differentiable functions f : (0, 1) → R whose support
{x ∈ (0, 1) : f(x) ̸= 0} is a compact subset of (0, 1) (i.e., C∞

c (0, 1) is the space of
test functions on (0, 1)). Endow C∞

c (0, 1) with the pointwise order.
(a) Show that the positive cone in C∞

c (0, 1) is generating. Is it Archimedean?

(b) When are two elements of C∞
c (0, 1) disjoint? When are two positive elements of

C∞
c (0, 1) D-disjoint?

Solution:
2Recall that for x, y ∈ H we have defined (x⊗ y)z := (y | z)x for all z ∈ H.
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(a) Let f ∈ C∞
c (0, 1) and let 0 < a < b < 1 define an interval (a, b) ⊊ (0, 1)

that contains the support of f . Now choose any g ∈ C∞
c (R) with 0 ≤ g ≤ 1 and∫ 1

0 g(x) dx = 1 that is supported on (−1, 1). Then

g̃(x) :=

∫ b

a

1

δ
g

(
x− t

δ

)
dt =

∫ b
δ

a
δ

g
(
x
δ − t

)
dt

for small δ > 0 is supported in a small neighborhood of (a, b) and satisfies g̃ = 1 on
the support of f . Moreover, g̃ ∈ C∞

c (0, 1).3 Then the decomposition f = f+ − f− is
given by

f+ = f + ∥f∥∞ g, f− = ∥f∥∞ g,

where f+, f− ≥ 0.

Let f, g ∈ C∞
c (0, 1) with f ≥ 0 and g ≤ 1

nf for all n ∈ N. Then pointwisely
g(x) ≤ 1

nf(x), and thus, g(x) ≤ 0. It follows that g ≤ 0 and that the positive cone
is Archimedean.

(b) Claim. Two positive elements in C∞
c (0, 1) are disjoint if and only if they are

D-disjoint.

Proof. By Proposition 5.1.3 it suffices to show that D-disjointness implies disjoint-
ness. Let f, g be D-disjoint and suppose there exists a lower bound l ∈ C∞

c (0, 1) of
f and g that does not satisfy l ≤ 0. As the order is pointwise, there exists x ∈ (0, 1)
such that l(x) > 0. Hence, f and g are larger than 0 in a common open neighbor-
hood of x. By a similar argument as in (a) we are able to find a non-zero function
0 ≤ h ∈ C∞

c (0, 1) such that h ≤ f, g. This contradicts the D-disjointness of f and
g.

Claim. Two elements f, g ∈ C∞
c (0, 1) are disjoint if and only if their open supports

{x ∈ (0, 1) | f(x) ̸= 0} and {x ∈ (0, 1) | g(x) ̸= 0} are disjoint.

Proof. Suppose that U is a non-empty subset of the open supports of f and g. Then
by Proposition 5.1.8 (i) and by potentially making U smaller, we may we may assume
that 0 < f(x) < g(x) for all x ∈ U . Let 0 ≤ h ∈ C∞

c (0, 1) be non-zero with support
in U . Let u ∈ {f − g, g − f}ub and consider ũ := u− λh for a choice of λ > 0 such
that ũ is still an upper bound of f − g and g − f and there exists x ∈ U such that
g(x) < f(x)ũ(x) < g(x). Then, in particular, ũ ̸∈ {f + g,−f − g}ub. Hence, f and
g are not disjoint.

Conversely, let f and g have disjoint open support. We show that f and g are
disjoint. Let u ∈ {f + g,−f − g}ub. Then u ≥ f + g and u ≥ −f − g. In particular,
u(x) ≥ |f(x)| for all x in the support of f and u(x) ≥ |g(x)| for all x in the support
of g (and u(x) ≥ 0 for all x outside of the support of f and g). So u ≥ f − g, g − f ,
and thus, u ∈ {f − g, g − f}ub.
The converse inclusion now follows from the fact that f and −g also have disjoint
open support.

3The construction of g̃ is a standard argument in the literature. There g̃ is called a mollification
of g. Mollifications are usually used to smoothen non-smooth functions. In our example we have
smoothed the indicator function 1(a,b).
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Exercise 3 (Holomorphic functions again). Let E ⊆ H∞(D) be the space from
Exercise 4 on Sheet 6, endowed with the order defined there.
(a) Let n0 ≥ 2 be an integer. Show that there exists a function h ∈ E that satisfies
h( 1

n0
) = 1 but h( 1n) < 0 for all integers n ≥ 2 different from n0.

(b) Let f, g ∈ E+ be non-zero. Show that there exists an integer n0 ≥ 2 such that
both functions f and g do not vanish at 1

n0
.

(c) Let f, g ∈ E+ be non-zero. Show that f and g are not disjoint.

Solution:

(a) Consider the function

h : D → C, z 7→ −a(x− 1
n0
)2 + 1,

where a ∈ R is to be determined. Then for the right choice of a the function h satisfies
the desired properties. Indeed, h( 1

n0
) = 1 and has the zeros x1,2 = 1

n0
±
√

1/a, which
lie in the interval ( 1

n0+1 ,
1

n0−1) for an appropriate choice of a ∈ R.

(b) For every non-zero function f ∈ H∞(C) there exists an integer n1 ≥ 2 such that
f( 1

n0
) ̸= 0. Otherwise the identity theorem there exists a sequence converging to 0 on

which the the function is 0. By continuity the function is 0 in 0. Hence, the identity
theorem implies that f = 0. Let n1 ≥ 2 be the integer with this property for f ∈ E+

and n2 ≥ 2 be the integer with this property for g ∈ E+. Set n0 := max{n1, n2}.

(c) Let f, g ∈ E+ be non-zero and let n0 ≥ 2 be an integer for which f and g do
not vanish at 1

n0
. Let 0 < α := min{f( 1

n0
), g( 1

n0
)}. Let h be a function with the

properties listed in (a). Then αh is a lower bound of f and g. Indeed, for n ∈ N\{n0}
we have f( 1n), g(

1
n) ≥ 0 and h( 1n) ≤ 0, and f( 1

n0
), g( 1

n0
) > α = h( 1

n0
). But h ≰ 0.

So 0 is not the infimum of {f, g}.

Exercise 4 (Anti-lattices). Let E be an ordered vector space whose cone is
generating. The space E is called an anti-lattice if the following holds for all vectors
x, y: if {x, y} has a supremum in E, then x ≥ y or y ≥ x.
Prove that E is an anti-lattice if and only if there is no pair of non-zero disjoint
elements of E+.4

Hints: To show “⇒”, prove that any two disjoint elements x, y ∈ E+ have supremum
x + y. To show “⇐”, take two elements x, y which have a supremum and shift −x
and −y such that you get two elements of E+ that have an infimum. Then subtract
the infimum from both elements.

4So Rd with the ice-cream cone is an anti-lattice if d ≥ 3 or d = 1 (Exercise 3(b) on Sheet 8).
Moreover, the self-adjoint compact operators on a complex Hilbert space form an anti-lattice with
respect to the Loewner order (Exercise 1(d) on the present sheet) and the space E in Exercise 3 is
also an anti-lattice (part (c) of that Exercise).
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Solution: “⇒”: Suppose that there is a pair of non-zero disjoint elements x, y ∈ E+.
We show first that x+ y is the supremum of {x, y}. Clearly x+ y ≥ x, y. So x+ y
is an upper bound of x and y. If u is an upper bound of x and y, then u ≥ x − y
and u ≥ y − x. Hence, by disjointness u ≥ x+ y,−x− y. Thus, x+ y is indeed the
supremum of {x, y}.
However, we neither have x ≥ y nor y ≥ x, since then the infimum of {x, y} is would
not equal 0, which would contradict the disjointness of x and y.

“⇐”: Assume that E is not an anti-lattice. So there exist two elements x, y ∈ E
such that {x, y} has the supremum s ∈ E and neither x ≥ y nor y ≥ x. Now the
elements s − y and s − x are in E+ and non-zero, as otherwise we have s = x or
s = y contradicting the assumption that neither x ≥ y nor y ≥ x holds. It suffices
to show that s− y and s− x are disjoint, but this follows immediately from the fact
that the infimum of the shifted set {−x+ s,−y+ s} is 0, since −s is the infimum of
{−x,−y}. This concludes the proof.
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