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9. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on June 13 and 14, 2023

with Solutions

Exercise 1 (Non-disjointness in the Loewner order).

(a) Endow the space C2X? of self-adjoint 2 x 2-matrices with the Loewner order.
Show that any two non-zero positive elements a, b in this space are not disjoint.

(b) Let X be an ordered vector space and let V' C X be a vector subspace which
we endow with the order inherited from X[ Let v,w € V. Show that if v and w
are disjoint within the ordered vector space X, then they are also disjoint within the
ordered vector space V.

Conversely, give an example of spaces X and V and elements v, w € V such that v
and w are disjoint within the space V but not within the space X.

(c) Let H be an infinite-dimensional seperable complex Hilbert space and endow the
space IC(H )gsa of compact self-adjoint operators on H with the Loewner order. Let
z,y € H\ {0}. Show that x ® z and y ® y are not disjoint.

Hint: Let G C H denote the span of z and y and let V' C K(H)g, consist of those
operators that leave G invariant and vanish on the orthogonal complement of G.

(d) In the setting of part (c), show that two non-zero elements of the positive cone
are never disjoint.

Solution:

(a) It follows from the definition of the infimum that disjointness is preserved by
order isomorphisms. Recall from Exercise 3 on Sheet 2 that the Loewner cone in
C22 is order isomorphic to the ice cream cone in R3. Hence, the statement follows
immediately from Example 5.1.4 (b) (together with Exercise 3 (b) on Sheet 8).

(b) Claim. For any two elements x,y € V the set of upper bounds of x and y in V
is the intersection of the set of upper bound in X with V.

Proof. If z is an upper bound of x and y in V, then it is clearly also an upper bound
of z and y in X and z € V. Conversely, if z € V and z is an upper bound of z and
y, then z is clearly an upper bound of x and y in V. O

Now let v,w € V be disjoint in X. Then by Proposition 5.1.5 (i) = (ii) the set of
upper bound in X of v + w and —v — w and the set of upper bound in X of v — w
and w — v coincide. By intersecting both set with V', the above claim yields that the

'In other words, V4 =V N X .
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set of upper bound in V of v + w and —v — w and the set of upper bound in V of
v —w and w — v coincide. Now Proposition 5.1.5 (ii) = (i) yields that v and w are
disjoint in V.

We now give the example. Let X = R? endowed with the ice cream cone and
V = {r € R3 | z3 = 0} endowed with the cone V, = X, N'V. Then V is order
isomorphic to R? endowed with the ice cream cone. By Exercise 3 (b) on Sheet 8
we know that any non-zero element v, w € 9V are not disjoint in X but are always
disjoint in V.

(¢) If x and y are linearly dependent, it follows easily that x ® = and y ® y are also
linearly dependent. Hence, the operators are not disjoint.

So let z,y € H be linearly independent. Consider the mappinéﬂ
; 2x2 ap as *
G K (8 8) o arlee) +aaly e ) + o o) +ailye o)

aj a
It follows from

((12) G 2)l@12)
= ((m(z @)+ as(y @ y) + az(z @ y) + a3(y ® x))z|2),

which holds for all z € H, and the fact that by linear independence of x and y the
mapping

H — C?, zH(Ezg)

is surjective, that the mapping ¢ is bi-positive, and thus, injective (see Proposi-
tion 1.6.4). In particular it follows that we may view C2X? as an ordered subspace
of K(H)s, that contains the operators x @ x and y ® y. Thus, the non-disjointness
of these operator follows from (b) and (a).

(d) Let A, B € K(H)sa \ {0}. Then by the spectral theorem for self-adjoint compact
operators there exist two non-zero vectors x,y € H such that A > z ® x > 0 and
B>y®y >0. By (c) the operators z ® x and y ® y are not disjoint. Hence, there
exists a lower bound C' < z ® x,y ® y such that C' £ 0. But C is also a lower bound
of A and B. Hence, A and B are not disjoint.

Exercise 2 (The space of test functions). Let C°(0,1) denote the real vec-
tor space of all infinitely differentiable functions f : (0,1) — R whose support
{z €(0,1): f(x)# 0} is a compact subset of (0,1) (i.e., C°(0,1) is the space of
test functions on (0,1)). Endow Cg°(0,1) with the pointwise order.

(a) Show that the positive cone in CZ°(0,1) is generating. Is it Archimedean?

(b) When are two elements of C2°(0,1) disjoint? When are two positive elements of
C°(0,1) D-disjoint?

Solution:

?Recall that for x,y € H we have defined (z ® y)z := (y | z)z for all z € H.
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(a) Let f € C°(0,1) and let 0 < a < b < 1 define an interval (a,b)
that contains the support of f. Now choose any g € C°(R) with 0 < ¢
fol g(z)dz =1 that is supported on (—1,1). Then

j() ::/bflsg(xé"j dt:/agg(f;—t) dt
“ 5

for small § > 0 is supported in a small neighborhood of (a,b) and satisfies g = 1 on
the support of f. Moreover, g € C2°(0, 1)E| Then the decomposition f = f™ — f~ is
given by

f=f+fllsg, =g

where f, f~ > 0.

Let f,g € C(0,1) with f > 0 and g < 2f for all n € N. Then pointwisely
g(z) < %f(:c), and thus, g(z) < 0. It follows that g < 0 and that the positive cone
is Archimedean.

(b) Claim. Two positive elements in C2°(0, 1) are disjoint if and only if they are
D-disjoint.

Proof. By Proposition 5.1.3 it suffices to show that D-disjointness implies disjoint-
ness. Let f, g be D-disjoint and suppose there exists a lower bound [ € C2°(0,1) of
f and g that does not satisfy [ < 0. As the order is pointwise, there exists z € (0,1)
such that [(z) > 0. Hence, f and g are larger than 0 in a common open neighbor-
hood of . By a similar argument as in (a) we are able to find a non-zero function
0 < h e C(0,1) such that h < f,g. This contradicts the D-disjointness of f and
g. O

Claim. Two elements f,g € C2°(0,1) are disjoint if and only if their open supports
{z €(0,1)]| f(z) # 0} and {z € (0,1) | g(z) # 0} are disjoint.

Proof. Suppose that U is a non-empty subset of the open supports of f and g. Then
by Proposition 5.1.8 (i) and by potentially making U smaller, we may we may assume
that 0 < f(z) < g(x) for all z € U. Let 0 < h € C°(0,1) be non-zero with support
in U. Let u € {f — 9,9 — f}" and consider @ := u — Ah for a choice of A > 0 such
that @ is still an upper bound of f — g and g — f and there exists € U such that
g(z) < f(x)a(x) < g(z). Then, in particular, @ ¢ {f + g, —f — g}"P. Hence, f and
g are not disjoint.

Conversely, let f and ¢ have disjoint open support. We show that f and g are
disjoint. Let u € {f +g,—f — ¢g}"". Then u > f + g and u > —f — ¢. In particular,
u(z) > | f(z)| for all z in the support of f and w(z) > |g(z)| for all z in the support
of g (and u(x) > 0 for all x outside of the support of f and g). Sou > f—g,9— f,
and thus, u € {f —g,9 — f}"°.

The converse inclusion now follows from the fact that f and —g also have disjoint
open support. ]

3The construction of § is a standard argument in the literature. There § is called a mollification
of g. Mollifications are usually used to smoothen non-smooth functions. In our example we have
smoothed the indicator function 1, p).
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Exercise 3 (Holomorphic functions again). Let E C H*°(D) be the space from
Exercise 4 on Sheet 6, endowed with the order defined there.

(a) Let ng > 2 be an integer. Show that there exists a function h € E that satisfies
h(-L) =1 but h(1) <0 for all integers n > 2 different from ny.

no

(b) Let f,g € E4+ be non-zero. Show that there exists an integer ng > 2 such that
both functions f and g do not vanish at 7710'

(c) Let f,g € E4+ be non-zero. Show that f and g are not disjoint.

Solution:

(a) Consider the function

h:D— C, z&—>—a(ac—n—10)2—|—l,
where a € R is to be determined. Then for the right choice of a the function h satisfies
the desired properties. Indeed, h(nio) =1 and has the zeros z1 2 = nio +/1/a, which

1 1
no+1’ ng—1

lie in the interval ( ) for an appropriate choice of a € R.

(b) For every non-zero function f € H(C) there exists an integer n; > 2 such that
f (%) = 0. Otherwise the identity theorem there exists a sequence converging to 0 on
which the the function is 0. By continuity the function is 0 in 0. Hence, the identity
theorem implies that f = 0. Let ny > 2 be the integer with this property for f € E
and ng > 2 be the integer with this property for g € Ey. Set ng := max{ni, na}.

(c) Let f,g € E+ be non-zero and let ng > 2 be an integer for which f and g do
not vanish at nio Let 0 < a := mm{f(nio),g(nio)} Let h be a function with the
properties listed in (a). Then ah is a lower bound of f and g. Indeed, for n € N\ {ng}
we have f(1),¢(2) > 0 and h(%) <0, and f(n—lo),g(nio) > o= h(n—lo). But h £ 0.
So 0 is not the infimum of {f, g}.

Exercise 4 (Anti-lattices). Let E be an ordered vector space whose cone is
generating. The space F is called an anti-lattice if the following holds for all vectors
z,y: if {x,y} has a supremum in F, then z > y or y > x.

Prove that E is an anti-lattice if and only if there is no pair of non-zero disjoint
elements of E+E|

Hints: To show “=", prove that any two disjoint elements x,y € F; have supremum
x 4+ y. To show “<”, take two elements x,y which have a supremum and shift —x
and —y such that you get two elements of F; that have an infimum. Then subtract
the infimum from both elements.

*So R? with the ice-cream cone is an anti-lattice if d > 3 or d = 1 (Exercise 3(b) on Sheet 8).
Moreover, the self-adjoint compact operators on a complex Hilbert space form an anti-lattice with
respect to the Loewner order (Exercise 1(d) on the present sheet) and the space E in Exercise 3 is
also an anti-lattice (part (c) of that Exercise).
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Solution: “=": Suppose that there is a pair of non-zero disjoint elements z,y € E .
We show first that = + y is the supremum of {z,y}. Clearly x +y > z,y. So x + y
is an upper bound of z and y. If u is an upper bound of z and y, then u > z — y
and u > y — . Hence, by disjointness v > = + y, —z — y. Thus, 4 y is indeed the
supremum of {z,y}.

However, we neither have z > y nor y > z, since then the infimum of {x, y} is would
not equal 0, which would contradict the disjointness of z and y.

“<". Assume that E is not an anti-lattice. So there exist two elements x,y € E
such that {z,y} has the supremum s € F and neither > y nor y > z. Now the
elements s — y and s — x are in F; and non-zero, as otherwise we have s = = or
s = y contradicting the assumption that neither x > y nor y > z holds. It suffices
to show that s —y and s — = are disjoint, but this follows immediately from the fact
that the infimum of the shifted set {—z + s, —y + s} is 0, since —s is the infimum of
{—z,—y}. This concludes the proof.
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