

CHE SITÄT RTAL

Summer term 2023

9. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on June 13 and 14, 2023

with Solutions

Exercise 1 (Non-disjointness in the Loewner order).

(a) Endow the space $\mathbb{C}_{sa}^{2\times 2}$ of self-adjoint 2×2 -matrices with the Loewner order. Show that any two non-zero positive elements a, b in this space are not disjoint.

(b) Let X be an ordered vector space and let $V \subseteq X$ be a vector subspace which we endow with the order inherited from X^{1} Let $v, w \in V$. Show that if v and w are disjoint within the ordered vector space X, then they are also disjoint within the ordered vector space V.

Conversely, give an example of spaces X and V and elements $v, w \in V$ such that v and w are disjoint within the space V but not within the space X.

(c) Let H be an infinite-dimensional separable complex Hilbert space and endow the space $\mathcal{K}(H)_{sa}$ of compact self-adjoint operators on H with the Loewner order. Let $x, y \in H \setminus \{0\}$. Show that $x \otimes x$ and $y \otimes y$ are not disjoint.

Hint: Let $G \subseteq H$ denote the span of x and y and let $V \subseteq \mathcal{K}(H)_{sa}$ consist of those operators that leave G invariant and vanish on the orthogonal complement of G.

(d) In the setting of part (c), show that two non-zero elements of the positive cone are never disjoint.

Solution:

(a) It follows from the definition of the infimum that disjointness is preserved by order isomorphisms. Recall from Exercise 3 on Sheet 2 that the Loewner cone in $\mathbb{C}_{sa}^{2\times 2}$ is order isomorphic to the ice cream cone in \mathbb{R}^3 . Hence, the statement follows immediately from Example 5.1.4 (b) (together with Exercise 3 (b) on Sheet 8).

(b) Claim. For any two elements $x, y \in V$ the set of upper bounds of x and y in V is the intersection of the set of upper bound in X with V.

Proof. If z is an upper bound of x and y in V, then it is clearly also an upper bound of x and y in X and $z \in V$. Conversely, if $z \in V$ and z is an upper bound of x and y, then z is clearly an upper bound of x and y in V.

Now let $v, w \in V$ be disjoint in X. Then by Proposition 5.1.5 (i) \Rightarrow (ii) the set of upper bound in X of v + w and -v - w and the set of upper bound in X of v - w and w - v coincide. By intersecting both set with V, the above claim yields that the

¹In other words, $V_+ = V \cap X_+$.

set of upper bound in V of v + w and -v - w and the set of upper bound in V of v - w and w - v coincide. Now Proposition 5.1.5 (ii) \Rightarrow (i) yields that v and w are disjoint in V.

We now give the example. Let $X = \mathbb{R}^3$ endowed with the ice cream cone and $V = \{x \in \mathbb{R}^3 \mid x_3 = 0\}$ endowed with the cone $V_+ = X_+ \cap V$. Then V is order isomorphic to \mathbb{R}^2 endowed with the ice cream cone. By Exercise 3 (b) on Sheet 8 we know that any non-zero element $v, w \in \partial V_+$ are not disjoint in X but are always disjoint in V.

(c) If x and y are linearly dependent, it follows easily that $x \otimes x$ and $y \otimes y$ are also linearly dependent. Hence, the operators are not disjoint.

So let $x, y \in H$ be linearly independent. Consider the mapping²

$$i: \mathbb{C}_{\mathrm{sa}}^{2 \times 2} \to \mathcal{K}(H)_{\mathrm{sa}}, \quad \begin{pmatrix} a_1 & a_3 \\ a_3^* & a_2 \end{pmatrix} \mapsto a_1(x \otimes x) + a_2(y \otimes y) + a_3(x \otimes y) + a_3^*(y \otimes x).$$

It follows from

$$\begin{pmatrix} \begin{pmatrix} (x \mid z) \\ (y \mid z) \end{pmatrix} \begin{pmatrix} a_1 & a_3 \\ a_3^* & a_2 \end{pmatrix} \middle| \begin{pmatrix} (x \mid z) \\ (y \mid z) \end{pmatrix} \end{pmatrix}$$

= $((a_1(x \otimes x) + a_2(y \otimes y) + a_3(x \otimes y) + a_3^*(y \otimes x))z |z),$

which holds for all $z \in H$, and the fact that by linear independence of x and y the mapping

$$H \to \mathbb{C}^2, \quad z \mapsto \begin{pmatrix} (x \mid z) \\ (y \mid z) \end{pmatrix}$$

is surjective, that the mapping *i* is bi-positive, and thus, injective (see Proposition 1.6.4). In particular it follows that we may view $\mathbb{C}_{sa}^{2\times 2}$ as an ordered subspace of $\mathcal{K}(H)_{sa}$ that contains the operators $x \otimes x$ and $y \otimes y$. Thus, the non-disjointness of these operator follows from (b) and (a).

(d) Let $A, B \in \mathcal{K}(H)_{sa} \setminus \{0\}$. Then by the spectral theorem for self-adjoint compact operators there exist two non-zero vectors $x, y \in H$ such that $A \ge x \otimes x \ge 0$ and $B \ge y \otimes y \ge 0$. By (c) the operators $x \otimes x$ and $y \otimes y$ are not disjoint. Hence, there exists a lower bound $C \le x \otimes x, y \otimes y$ such that $C \nleq 0$. But C is also a lower bound of A and B. Hence, A and B are not disjoint.

Solution:

Exercise 2 (The space of test functions). Let $C_c^{\infty}(0,1)$ denote the real vector space of all infinitely differentiable functions $f : (0,1) \to \mathbb{R}$ whose support $\overline{\{x \in (0,1) : f(x) \neq 0\}}$ is a compact subset of (0,1) (i.e., $C_c^{\infty}(0,1)$ is the space of test functions on (0,1)). Endow $C_c^{\infty}(0,1)$ with the pointwise order.

⁽a) Show that the positive cone in $C_c^{\infty}(0,1)$ is generating. Is it Archimedean?

⁽b) When are two elements of $C_c^{\infty}(0,1)$ disjoint? When are two positive elements of $C_c^{\infty}(0,1)$ D-disjoint?

²Recall that for $x, y \in H$ we have defined $(x \otimes y)z := (y \mid z)x$ for all $z \in H$.

(a) Let $f \in C_c^{\infty}(0,1)$ and let 0 < a < b < 1 define an interval $(a,b) \subsetneq (0,1)$ that contains the support of f. Now choose any $g \in C_c^{\infty}(\mathbb{R})$ with $0 \le g \le 1$ and $\int_0^1 g(x) \, dx = 1$ that is supported on (-1,1). Then

$$\tilde{g}(x) := \int_{a}^{b} \frac{1}{\delta} g\left(\frac{x-t}{\delta}\right) \, \mathrm{d}t = \int_{\frac{a}{\delta}}^{\frac{b}{\delta}} g\left(\frac{x}{\delta}-t\right) \, \mathrm{d}t$$

for small $\delta > 0$ is supported in a small neighborhood of (a, b) and satisfies $\tilde{g} = 1$ on the support of f. Moreover, $\tilde{g} \in C_c^{\infty}(0, 1)$.³ Then the decomposition $f = f^+ - f^-$ is given by

$$f^+ = f + ||f||_{\infty} g, \qquad f^- = ||f||_{\infty} g,$$

where $f^+, f^- \ge 0$.

Let $f,g \in C_c^{\infty}(0,1)$ with $f \ge 0$ and $g \le \frac{1}{n}f$ for all $n \in \mathbb{N}$. Then pointwisely $g(x) \le \frac{1}{n}f(x)$, and thus, $g(x) \le 0$. It follows that $g \le 0$ and that the positive cone is Archimedean.

(b) Claim. Two positive elements in $C_c^{\infty}(0,1)$ are disjoint if and only if they are D-disjoint.

Proof. By Proposition 5.1.3 it suffices to show that D-disjointness implies disjointness. Let f, g be D-disjoint and suppose there exists a lower bound $l \in C_c^{\infty}(0,1)$ of f and g that does not satisfy $l \leq 0$. As the order is pointwise, there exists $x \in (0,1)$ such that l(x) > 0. Hence, f and g are larger than 0 in a common open neighborhood of x. By a similar argument as in (a) we are able to find a non-zero function $0 \leq h \in C_c^{\infty}(0,1)$ such that $h \leq f, g$. This contradicts the D-disjointness of f and g.

Claim. Two elements $f, g \in C_c^{\infty}(0, 1)$ are disjoint if and only if their open supports $\{x \in (0, 1) \mid f(x) \neq 0\}$ and $\{x \in (0, 1) \mid g(x) \neq 0\}$ are disjoint.

Proof. Suppose that U is a non-empty subset of the open supports of f and g. Then by Proposition 5.1.8 (i) and by potentially making U smaller, we may we may assume that 0 < f(x) < g(x) for all $x \in U$. Let $0 \le h \in C_c^{\infty}(0, 1)$ be non-zero with support in U. Let $u \in \{f - g, g - f\}^{\text{ub}}$ and consider $\tilde{u} := u - \lambda h$ for a choice of $\lambda > 0$ such that \tilde{u} is still an upper bound of f - g and g - f and there exists $x \in U$ such that $g(x) < f(x)\tilde{u}(x) < g(x)$. Then, in particular, $\tilde{u} \notin \{f + g, -f - g\}^{\text{ub}}$. Hence, f and g are not disjoint.

Conversely, let f and g have disjoint open support. We show that f and g are disjoint. Let $u \in \{f + g, -f - g\}^{\text{ub}}$. Then $u \ge f + g$ and $u \ge -f - g$. In particular, $u(x) \ge |f(x)|$ for all x in the support of f and $u(x) \ge |g(x)|$ for all x in the support of g (and $u(x) \ge 0$ for all x outside of the support of f and g). So $u \ge f - g, g - f$, and thus, $u \in \{f - g, g - f\}^{\text{ub}}$.

The converse inclusion now follows from the fact that f and -g also have disjoint open support.

³The construction of \tilde{g} is a standard argument in the literature. There \tilde{g} is called a *mollification* of g. Mollifications are usually used to smoothen non-smooth functions. In our example we have smoothed the indicator function $\mathbb{1}_{(a,b)}$.

Exercise 3 (Holomorphic functions again). Let $E \subseteq \mathcal{H}^{\infty}(\mathbb{D})$ be the space from Exercise 4 on Sheet 6, endowed with the order defined there.

(a) Let $n_0 \ge 2$ be an integer. Show that there exists a function $h \in E$ that satisfies $h(\frac{1}{n_0}) = 1$ but $h(\frac{1}{n}) < 0$ for all integers $n \ge 2$ different from n_0 .

(b) Let $f, g \in E_+$ be non-zero. Show that there exists an integer $n_0 \ge 2$ such that both functions f and g do not vanish at $\frac{1}{n_0}$.

(c) Let $f, g \in E_+$ be non-zero. Show that f and g are not disjoint.

Solution:

(a) Consider the function

$$h: \mathbb{D} \to \mathbb{C}, \quad z \mapsto -a(x - \frac{1}{n_0})^2 + 1,$$

where $a \in \mathbb{R}$ is to be determined. Then for the right choice of a the function h satisfies the desired properties. Indeed, $h(\frac{1}{n_0}) = 1$ and has the zeros $x_{1,2} = \frac{1}{n_0} \pm \sqrt{1/a}$, which lie in the interval $(\frac{1}{n_0+1}, \frac{1}{n_0-1})$ for an appropriate choice of $a \in \mathbb{R}$.

(b) For every non-zero function $f \in \mathcal{H}^{\infty}(\mathbb{C})$ there exists an integer $n_1 \geq 2$ such that $f(\frac{1}{n_0}) \neq 0$. Otherwise the identity theorem there exists a sequence converging to 0 on which the function is 0. By continuity the function is 0 in 0. Hence, the identity theorem implies that f = 0. Let $n_1 \geq 2$ be the integer with this property for $f \in E_+$ and $n_2 \geq 2$ be the integer with this property for $g \in E_+$. Set $n_0 := \max\{n_1, n_2\}$.

(c) Let $f,g \in E_+$ be non-zero and let $n_0 \geq 2$ be an integer for which f and g do not vanish at $\frac{1}{n_0}$. Let $0 < \alpha := \min\{f(\frac{1}{n_0}), g(\frac{1}{n_0})\}$. Let h be a function with the properties listed in (a). Then αh is a lower bound of f and g. Indeed, for $n \in \mathbb{N} \setminus \{n_0\}$ we have $f(\frac{1}{n}), g(\frac{1}{n}) \geq 0$ and $h(\frac{1}{n}) \leq 0$, and $f(\frac{1}{n_0}), g(\frac{1}{n_0}) > \alpha = h(\frac{1}{n_0})$. But $h \nleq 0$. So 0 is not the infimum of $\{f, g\}$.

Exercise 4 (Anti-lattices). Let E be an ordered vector space whose cone is generating. The space E is called an *anti-lattice* if the following holds for all vectors x, y: if $\{x, y\}$ has a supremum in E, then $x \ge y$ or $y \ge x$.

Prove that E is an anti-lattice if and only if there is no pair of non-zero disjoint elements of E_+ .⁴

Hints: To show " \Rightarrow ", prove that any two disjoint elements $x, y \in E_+$ have supremum x + y. To show " \Leftarrow ", take two elements x, y which have a supremum and shift -x and -y such that you get two elements of E_+ that have an infimum. Then subtract the infimum from both elements.

⁴So \mathbb{R}^d with the ice-cream cone is an anti-lattice if $d \geq 3$ or d = 1 (Exercise 3(b) on Sheet 8). Moreover, the self-adjoint compact operators on a complex Hilbert space form an anti-lattice with respect to the Loewner order (Exercise 1(d) on the present sheet) and the space E in Exercise 3 is also an anti-lattice (part (c) of that Exercise).

Solution: " \Rightarrow ": Suppose that there is a pair of non-zero disjoint elements $x, y \in E_+$. We show first that x + y is the supremum of $\{x, y\}$. Clearly $x + y \ge x, y$. So x + y is an upper bound of x and y. If u is an upper bound of x and y, then $u \ge x - y$ and $u \ge y - x$. Hence, by disjointness $u \ge x + y, -x - y$. Thus, x + y is indeed the supremum of $\{x, y\}$.

However, we neither have $x \ge y$ nor $y \ge x$, since then the infimum of $\{x, y\}$ is would not equal 0, which would contradict the disjointness of x and y.

" \Leftarrow ": Assume that E is not an anti-lattice. So there exist two elements $x, y \in E$ such that $\{x, y\}$ has the supremum $s \in E$ and neither $x \ge y$ nor $y \ge x$. Now the elements s - y and s - x are in E_+ and non-zero, as otherwise we have s = x or s = y contradicting the assumption that neither $x \ge y$ nor $y \ge x$ holds. It suffices to show that s - y and s - x are disjoint, but this follows immediately from the fact that the infimum of the shifted set $\{-x + s, -y + s\}$ is 0, since -s is the infimum of $\{-x, -y\}$. This concludes the proof.