7. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on May 23 and 24, 2023
with Solutions

Exercise 1 (Positive extension of functionals). Consider the ordered Banach space $E:=\mathrm{C}^{1}([0,2 \pi])$ (with the pointwise order and the C^{1}-norm).
(a) Let $V \subseteq E$ denote the span of $\{\mathbb{1}, \sin \}$ and let the functional $v^{\prime} \in V^{\prime}$ be given by

$$
\left\langle v^{\prime}, \alpha \mathbb{1}+\beta \sin \right\rangle=\alpha
$$

for all $\alpha, \beta \in \mathbb{R}$. Is v^{\prime} positive? Can v^{\prime} be extended to a functional $x^{\prime} \in E_{+}^{\prime}$?
(b) Let $W:=\{w \in E \mid w(0)=0\}$ and let $w^{\prime} \in W^{\prime}$ be given by

$$
\left\langle w^{\prime}, w\right\rangle:=\left.\frac{\mathrm{d}}{\mathrm{~d} x} w(x)\right|_{x=0}
$$

for all $w \in W$. Is w^{\prime} positive? Can w^{\prime} be extended to a functional $x^{\prime} \in E_{+}^{\prime}$?

Solution:

(a) Claim: The functional $v^{\prime}: V \rightarrow \mathbb{R}$ is positive and it can be extended to a positive linear functional in V^{\prime}.

Proof. Positivity: We have $\left\langle v^{\prime}, v\right\rangle=v(0)$ for each $v \in V$, which is clearly positive if v is positive everywhere on $[0,2 \pi]$.

Positive and continuous extension: The functional $\delta_{0} \in E^{\prime}$ that is given by $\left\langle\delta_{0}, f\right\rangle=$ $f(0)$ for each $f \in E$ is positive and extends v.

Alternatively, the following abstract argument works to get a positive and continuous extension of $v^{\prime}:$ As $\mathbb{1} \in V$, the subspace V is majorizing in E. Hence, Corollary 4.2.2 shows that there exists a positive linear functional $\varphi: E \rightarrow \mathbb{R}$ that extends v^{\prime}. To show continuity of φ, observe that that every f in the unit ball of E satisfies $-\mathbb{1} \leq f \leq \mathbb{1}$ and thus, $|\varphi(f)| \leq \varphi(\mathbb{1}) \mathbb{1}^{1}$
(b) Claim: The functional $w^{\prime}: W \rightarrow \mathbb{R}$ is positive, but it cannot be extended to a positive linear functional in E^{\prime}.

[^0]Proof. Positivity: For every $w \in W_{+}$we have

$$
\left\langle w^{\prime}, w\right\rangle=\lim _{x \downarrow 0} \frac{w(x)-w(0)}{x-0}=\lim _{x \downarrow 0} \frac{w(x)}{x} \geq 0
$$

since $w(x) \geq 0$ for every $x \in[0,2 \pi]$. So w^{\prime} is indeed positive.
Non-existence of positive and continuous extension: To see that w^{\prime} cannot be extended to an element $x^{\prime} \in E_{+}^{\prime}$ we use Theorem 4.2 .4 (i) \Leftrightarrow (ii): Let $n \in \mathbb{N}$. There exists a function $w_{n} \in W$ that satisfies $0 \leq w_{n} \leq \mathbb{1}$ and whose derivative at 0 is equal to n.
Thus, w_{n} is dominated by the element $\mathbb{1}$ of the unit ball of E, but one has $\left\langle w^{\prime}, w_{n}\right\rangle=$ n. Hence, assertion (ii) in Theorem 4.2.4 is not satisfied for any constant $c \geq 0$.

Exercise 2 (Distance to the cone).

(a) Let (Ω, μ) be a measure space, let $p \in[1, \infty]$, and endow $L^{p}:=L^{p}(\Omega, \mu)$ with its usual norm and the pointwise almost everywhere order. Show that

$$
\operatorname{dist}\left(f,-L_{+}^{p}\right)=\left\|f^{+}\right\|
$$

for each $f \in L^{p}$, where $f^{+} \in L^{p}$ is defined by the formula $f^{+}(\omega):=f(\omega) \vee 0$ for almost all $\omega \in \Omega$.
(b) Let H be an infinite-dimensional, separable, complex Hilbert space ${ }^{2}$ and let E denote the space of all self-adjoint compact linear opeators on H, endowed with the Loewner order. Show that

$$
\operatorname{dist}\left(A,-E_{+}\right)=\left\|A^{+}\right\|
$$

for each $A \in E$.
Here, A^{+}is defined by means of the functional calculus, i.e., if $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ is the sequence of eigenvalues of A and $\left(u_{n}\right)$ is an orthonormal basis of H that consists of corresponding eigenvectors, then

$$
A^{+}:=\sum_{n=1}^{\infty} \lambda_{n}^{+} u_{n} \otimes u_{n}
$$

with $\lambda_{n}^{+}=\lambda_{n} \vee 0$ (where the series converges unconditionally with respect to the operator norm).

Solution:

(a) Let $f \in L^{p}$.
" \leq ": The function $f-f^{+}$is in $-L_{+}^{p}$ and its distance to f is $\left\|f^{+}\right\|$.
" \geq ": Let $g \in-L_{+}^{p}$. Then $f-g \geq f$, so $(f-g)^{+} \geq f^{+}$and hence,

$$
\|f-g\| \geq\left\|(f-g)^{+}\right\| \geq\left\|f^{+}\right\|
$$

which proves the claim.

[^1](b) Let $A \in E$.
" \leq ": It follows from the definition of A^{+}that $B:=A-A^{+}$is in $-E_{+}$. Moreover, B has distance $\left\|A^{+}\right\|$from A.
" \geq ": If all eigenvalues of A are strictly negative, then $A^{+}=0$ and the claimed inequality is clear. So assume that at least one eigenvalue of A is ≥ 0. Since A is compact, the sequence of eigenvalues converges to 0 , so there exists a maximal eigenvalue $\lambda \geq 0$ of A. Let $u \in H$ be a corresponding eigenvector of norm 1 . The definition of A^{+}gives $\lambda=\left\|A^{+}\right\|$. Thus, or every $C \in-E_{+}$we have
$$
\|A-C\| \geq((A-C) u \mid u) \geq(A u \mid u)=\lambda(u \mid u)=\lambda=\left\|A^{+}\right\|
$$
which shows the desired inequality.

Exercise 3 (Distance to the cone and positive extension of functionals). Endow $[-1,1]$ with the Borel σ-algebra and the Lebesgue measure and endow the space $L^{1}:=L^{1}([-1,1])$ with its usual norm and the pointwise almost everywhere order. Consider the functions $v, w \in L_{+}^{1}$ that are given by

$$
v(x)=1+x \quad \text { and } \quad w(x)=1-x
$$

for almost all $x \in[-1,1]$ and let $V \subseteq L^{1}$ denote the linear span of $\{v, w\}$. Let $v^{\prime} \in V^{\prime}$ be given by

$$
\left\langle v^{\prime}, \alpha v+\beta w\right\rangle=\alpha
$$

for all $\alpha, \beta \in \mathbb{R}$.
(a) Show that a vector $\alpha v+\beta w \in V$ (with $\alpha, \beta \in \mathbb{R}$) is positive if and only if $\alpha, \beta \geq 0$. Conclude that the functional v^{\prime} is positive.
(b) Show that v^{\prime} cannot be extended to a positive and continuous linear functional on all of L^{1}.
Hint: First show that, for $g \in L^{\infty}([-1,1])$, the functional $f \mapsto \int_{-1}^{1} f(x) g(x) \mathrm{d} x$ on L^{1} is positive if and only if $g(x) \geq 0$ for almost all $x \in[-1,1]$.
(c) It follows from part (b) and from Theorem 4.2.6 that there exists a sequence $\left(v_{n}\right)$ in V such that

$$
\operatorname{dist}\left(v_{n}, V_{+}\right) \rightarrow \infty, \quad \text { while } \operatorname{dist}\left(v_{n}, E_{+}\right) \text {remains bounded }
$$

as $n \rightarrow \infty$. Find an explicit example of such a sequence $\left(v_{n}\right)$.
Hint: First show, for instance by distinguishing different cases for the signs of α and β, that $\|\alpha v+\beta w\| \geq \max \{|\alpha|,|\beta|\}$ for all $\alpha, \beta \in \mathbb{R}$.

Solution:

(a) Claim: Let $\alpha, \beta \in \mathbb{R}$. Then $\alpha v+\beta w \geq 0$ if and only if $\alpha, \beta \geq 0$.

Proof. " \Leftarrow ": This implication is clear since $v, w \geq 0$.
$" \Rightarrow "$: Let $\alpha v+\beta w \geq 0$. It follows that

$$
0 \leq \alpha \underbrace{\int_{-1}^{-1+\varepsilon} v(x) \mathrm{d} x}_{=\varepsilon^{2} / 2}+\beta \underbrace{\int_{-1}^{-1+\varepsilon} w(x) \mathrm{d} x}_{=2 \varepsilon-\varepsilon^{2} / 2}
$$

for all small $\varepsilon>0$. Dividing by ε and letting $\varepsilon \downarrow 0$ yields $\beta \geq 0$.
The same argument, but with integration from $1-\varepsilon$ to 1 , shows that $\alpha \geq 0$.
Alternatively, the following abstract argument works also to prove that $\alpha, \beta \geq 0$. Notice that the identity mapping $V \rightarrow \mathrm{C}([-1,1])$ is well-defined and bi-positive. Then $0 \leq \alpha v(0)+\beta w(0)=\beta$ shows that $\beta \geq 0$ and $0 \leq \alpha v(1)+\beta w(0)=\alpha$ show that $\alpha \geq 0$.

Claim: The functional $v^{\prime} \in V^{\prime}$ is positive.
Proof. Let $\alpha, \beta \in \mathbb{R}$ and assume that $\alpha v+\beta w \geq 0$. As we have just shown it follows that $\alpha, \beta \geq 0$. Hence $\left\langle v^{\prime}, \alpha v+\beta w\right\rangle=\alpha \geq 0$.
(b) We first show the claim in the hint.

Proof. Fix $n \in \mathbb{N}$ and consider the set $M_{n}:=\left\{x \in[-1,1]: g(x) \leq-\frac{1}{n}\right\}$. Then $\mathbb{1}_{M_{n}} \in L_{+}^{1}$ and hence,

$$
0 \leq \int_{-1}^{1} \mathbb{1}_{M_{n}}(x) g(x) \mathrm{d} x \leq-\frac{1}{n}\left|M_{n}\right|,
$$

where $\left|M_{n}\right|$ denotes the Lebesgue measure of M_{n}. Thus, $\left|M_{n}\right|=0$. Hence, the set $\{x \in[-1,1]: g(x)<0\}=\bigcup_{n \in \mathbb{N}} M_{n}$ has Lebesgue measure 0 .

Claim: The functional $v^{\prime} \in V^{\prime}$ cannot be extended to a positive continuous linear functional on L^{1}.

Proof. Assume that there exists a positive continuous linear functional x^{\prime} on L^{1}. There exists a function $g \in L^{\infty}$ such that

$$
\left\langle x^{\prime}, f\right\rangle=\int_{-1}^{1} f(x) g(x) \mathrm{d} x
$$

for all $f \in L^{1}$. By the hint that we have shown above, we know that $g(x) \geq 0$ for almost all $x \in[-1,1]$.
Since $\left\langle x^{\prime}, v\right\rangle=\left\langle v^{\prime}, v\right\rangle=1$, the function g is not the 0 element of L^{∞}. Hence,

$$
0<\int_{-1}^{1} w(x) g(x) \mathrm{d} x=\left\langle x^{\prime}, w\right\rangle=\left\langle v^{\prime}, w\right\rangle=0
$$

which is a contradiction.
(c) We first prove the claim in the hint.

Proof. If $\alpha, \beta \geq 0$, then we obtain, since both v and w are positive function ${ }^{3}$, that

$$
\|\alpha v+\beta w\|=\alpha\|v\|+\beta\|w\|=2(\alpha+\beta) \geq|\alpha| \vee|\beta| .
$$

If $\alpha, \beta \leq 0$ we can multiply the function $\alpha v+\beta w$ with -1 to get the same estimate.

Now let α and β have different sign. We distinguish two cases:
First case: $|\alpha| \leq|\beta|$.
By multiplying with -1 if necessary we may assume that $\alpha \leq 0$ and $\beta \geq 0$, so $\beta \geq-\alpha \geq 0$. On the interval $[-1,0]$ the function w dominates v, so $\beta w(x) \geq-\alpha v(x)$ for all $x \in[-1,0]$. Hence,

$$
\|\alpha v+\beta w\| \geq \int_{-1}^{0} \alpha v(x)+\beta w(x) \mathrm{d} x=\frac{1}{2} \alpha+\frac{3}{2} \beta \geq \beta=|\alpha| \vee|\beta|,
$$

where the last inequality follows from $\alpha \geq-\beta$.
Second case: $|\alpha| \geq|\beta|$.
By multiplying with -1 if necessary we may then assume that $\beta \leq 0$ and $\alpha \geq 0$, so $0 \leq-\beta \leq \alpha$. The same argument as in the first case, but now on the interval $[0,1]$, then shows that $\|\alpha v+\beta w\| \geq \alpha=|\alpha| \vee|\beta|$.

Construction of the sequence $\left(v_{n}\right)$: Set, for instance, $v_{n}:=-n v+n^{2} w$ for each $n \in \mathbb{N}$.

Proof of the claimed properties of $\left(v_{n}\right)$. Every element u of V_{+}can, according to part (a), be written as $u=\alpha v+\beta w$ for numbers $\alpha, \beta \geq 0$. The distance of $-u$ to v_{n} for any $n \in \mathbb{N}$ is

$$
\left\|-u-v_{n}\right\|=\left\|(-\alpha-n) v+\left(-\beta+n^{2}\right) w\right\| \geq|-\alpha-n| \vee\left|-\beta+n^{2}\right| \geq \alpha+n \geq n
$$

where the first inequality follows from the hint and the latter two inequalities both use that $\alpha \geq 0$. Hence,

$$
\operatorname{dist}\left(v_{n},-V_{+}\right) \geq n
$$

for each $n \in \mathbb{N}$.
On the other hand, fix $n \in \mathbb{N}$. The function v_{n} satisfies $v_{n}(x) \leq 0$ if and only if $x \geq \frac{n-1}{n+1}=1-\frac{2}{n+1}=: 1-\delta_{n}$. With the notation $v_{n}^{-}:=\left(-v_{n}\right)^{+}$we thus get from Exercise 2 (b) that

$$
\operatorname{dist}\left(v_{n}, L_{+}^{1}\right)=\left\|v_{n}^{-}\right\|=\int_{1-\delta_{n}}^{1}-v_{n}(x) \mathrm{d} x=n\left(2 \delta_{n}-\frac{\delta_{n}^{2}}{2}\right)-n^{2} \frac{\delta_{n}^{2}}{2}=\frac{2 n}{n+1} \leq 2 .
$$

This shows that $\operatorname{dist}\left(v_{n}, L_{+}^{1}\right)$ remains bounded as $n \rightarrow \infty$.

[^2]
[^0]: ${ }^{1}$ We will see in Section 4.4 that positive linear functionals on ordered Banach spaces with generating cone are automatically continuous.

[^1]: ${ }^{2}$ Again, the assumptions that H be infinite-dimensional and separable are actually not needed here; it is here to simplify the notation.

[^2]: ${ }^{3}$ And since L^{1} is an AL-space; in particular, the norm is additive on the positive cone.

