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7. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 23 and 24, 2023
with Solutions

Exercise 1 (Positive extension of functionals). Consider the ordered Banach
space E := C1([0, 2π]) (with the pointwise order and the C1-norm).
(a) Let V ⊆ E denote the span of {1, sin} and let the functional v′ ∈ V ′ be given by

⟨v′, α1+β sin⟩ = α

for all α, β ∈ R. Is v′ positive? Can v′ be extended to a functional x′ ∈ E′
+?

(b) Let W := {w ∈ E | w(0) = 0} and let w′ ∈ W ′ be given by

⟨w′, w⟩ := d

dx
w(x)

∣∣∣
x=0

for all w ∈ W . Is w′ positive? Can w′ be extended to a functional x′ ∈ E′
+?

Solution:

(a) Claim: The functional v′ : V → R is positive and it can be extended to a positive
linear functional in V ′.

Proof. Positivity: We have ⟨v′, v⟩ = v(0) for each v ∈ V , which is clearly positive if
v is positive everywhere on [0, 2π].

Positive and continuous extension: The functional δ0 ∈ E′ that is given by ⟨δ0, f⟩ =
f(0) for each f ∈ E is positive and extends v.

Alternatively, the following abstract argument works to get a positive and continuous
extension of v′: As 1 ∈ V , the subspace V is majorizing in E. Hence, Corollary 4.2.2
shows that there exists a positive linear functional φ : E → R that extends v′.
To show continuity of φ, observe that that every f in the unit ball of E satisfies
−1 ≤ f ≤ 1 and thus, |φ(f)| ≤ φ(1).1

(b) Claim: The functional w′ : W → R is positive, but it cannot be extended to a
positive linear functional in E′.

1We will see in Section 4.4 that positive linear functionals on ordered Banach spaces with gen-
erating cone are automatically continuous.
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Proof. Positivity: For every w ∈ W+ we have

⟨w′, w⟩ = lim
x↓0

w(x)− w(0)

x− 0
= lim

x↓0

w(x)

x
≥ 0

since w(x) ≥ 0 for every x ∈ [0, 2π]. So w′ is indeed positive.

Non-existence of positive and continuous extension: To see that w′ cannot be ex-
tended to an element x′ ∈ E′

+ we use Theorem 4.2.4 (i) ⇔ (ii): Let n ∈ N. There
exists a function wn ∈ W that satisfies 0 ≤ wn ≤ 1 and whose derivative at 0 is
equal to n.

Thus, wn is dominated by the element 1 of the unit ball of E, but one has ⟨w′, wn⟩ =
n. Hence, assertion (ii) in Theorem 4.2.4 is not satisfied for any constant c ≥ 0.

Exercise 2 (Distance to the cone).
(a) Let (Ω, µ) be a measure space, let p ∈ [1,∞], and endow Lp := Lp(Ω, µ) with its
usual norm and the pointwise almost everywhere order. Show that

dist(f,−Lp
+) =

∥∥f+
∥∥

for each f ∈ Lp, where f+ ∈ Lp is defined by the formula f+(ω) := f(ω) ∨ 0 for
almost all ω ∈ Ω.

(b) Let H be an infinite-dimensional, separable, complex Hilbert space2 and let E
denote the space of all self-adjoint compact linear opeators on H, endowed with the
Loewner order. Show that

dist(A,−E+) =
∥∥A+

∥∥
for each A ∈ E.
Here, A+ is defined by means of the functional calculus, i.e., if (λn)n∈N is the se-
quence of eigenvalues of A and (un) is an orthonormal basis of H that consists of
corresponding eigenvectors, then

A+ :=
∞∑
n=1

λ+
n un ⊗ un

with λ+
n = λn ∨ 0 (where the series converges unconditionally with respect to the

operator norm).

Solution:

(a) Let f ∈ Lp.

“≤”: The function f − f+ is in −Lp
+ and its distance to f is ∥f+∥.

“≥”: Let g ∈ −Lp
+. Then f − g ≥ f , so (f − g)+ ≥ f+ and hence,

∥f − g∥ ≥
∥∥(f − g)+

∥∥ ≥
∥∥f+

∥∥ ,
which proves the claim.

2Again, the assumptions that H be infinite-dimensional and separable are actually not needed
here; it is here to simplify the notation.
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(b) Let A ∈ E.

“≤”: It follows from the definition of A+ that B := A−A+ is in −E+. Moreover, B
has distance ∥A+∥ from A.

“≥”: If all eigenvalues of A are strictly negative, then A+ = 0 and the claimed
inequality is clear. So assume that at least one eigenvalue of A is ≥ 0. Since A
is compact, the sequence of eigenvalues converges to 0, so there exists a maximal
eigenvalue λ ≥ 0 of A. Let u ∈ H be a corresponding eigenvector of norm 1. The
definition of A+ gives λ = ∥A+∥. Thus, or every C ∈ −E+ we have

∥A− C∥ ≥ ((A− C)u | u) ≥ (Au | u) = λ (u | u) = λ =
∥∥A+

∥∥ ,
which shows the desired inequality.

Exercise 3 (Distance to the cone and positive extension of functionals).
Endow [−1, 1] with the Borel σ-algebra and the Lebesgue measure and endow the
space L1 := L1([−1, 1]) with its usual norm and the pointwise almost everywhere
order. Consider the functions v, w ∈ L1

+ that are given by

v(x) = 1 + x and w(x) = 1− x

for almost all x ∈ [−1, 1] and let V ⊆ L1 denote the linear span of {v, w}. Let
v′ ∈ V ′ be given by

⟨v′, αv + βw⟩ = α

for all α, β ∈ R.
(a) Show that a vector αv+βw ∈ V (with α, β ∈ R) is positive if and only if α, β ≥ 0.
Conclude that the functional v′ is positive.

(b) Show that v′ cannot be extended to a positive and continuous linear functional
on all of L1.

Hint: First show that, for g ∈ L∞([−1, 1]), the functional f 7→
∫ 1
−1 f(x)g(x) dx on

L1 is positive if and only if g(x) ≥ 0 for almost all x ∈ [−1, 1].

(c) It follows from part (b) and from Theorem 4.2.6 that there exists a sequence (vn)
in V such that

dist(vn, V+) → ∞, while dist(vn, E+) remains bounded

as n → ∞. Find an explicit example of such a sequence (vn).

Hint: First show, for instance by distinguishing different cases for the signs of α and
β, that ∥αv + βw∥ ≥ max{|α| , |β|} for all α, β ∈ R.

Solution:

(a) Claim: Let α, β ∈ R. Then αv + βw ≥ 0 if and only if α, β ≥ 0.
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Proof. “⇐”: This implication is clear since v, w ≥ 0.

“⇒”: Let αv + βw ≥ 0. It follows that

0 ≤ α

∫ −1+ε

−1
v(x) dx︸ ︷︷ ︸

=ε2/2

+β

∫ −1+ε

−1
w(x) dx︸ ︷︷ ︸

=2ε−ε2/2

for all small ε > 0. Dividing by ε and letting ε ↓ 0 yields β ≥ 0.

The same argument, but with integration from 1− ε to 1, shows that α ≥ 0.

Alternatively, the following abstract argument works also to prove that α, β ≥ 0.
Notice that the identity mapping V → C([−1, 1]) is well-defined and bi-positive.
Then 0 ≤ αv(0) + βw(0) = β shows that β ≥ 0 and 0 ≤ αv(1) + βw(0) = α show
that α ≥ 0.

Claim: The functional v′ ∈ V ′ is positive.

Proof. Let α, β ∈ R and assume that αv+βw ≥ 0. As we have just shown it follows
that α, β ≥ 0. Hence ⟨v′, αv + βw⟩ = α ≥ 0.

(b) We first show the claim in the hint.

Proof. Fix n ∈ N and consider the set Mn := {x ∈ [−1, 1] : g(x) ≤ − 1
n}. Then

1Mn ∈ L1
+ and hence,

0 ≤
∫ 1

−1
1Mn(x)g(x) dx ≤ − 1

n
|Mn| ,

where |Mn| denotes the Lebesgue measure of Mn. Thus, |Mn| = 0. Hence, the set
{x ∈ [−1, 1] : g(x) < 0} =

⋃
n∈NMn has Lebesgue measure 0.

Claim: The functional v′ ∈ V ′ cannot be extended to a positive continuous linear
functional on L1.

Proof. Assume that there exists a positive continuous linear functional x′ on L1.
There exists a function g ∈ L∞ such that

⟨x′, f⟩ =
∫ 1

−1
f(x)g(x) dx

for all f ∈ L1. By the hint that we have shown above, we know that g(x) ≥ 0 for
almost all x ∈ [−1, 1].

Since ⟨x′, v⟩ = ⟨v′, v⟩ = 1, the function g is not the 0 element of L∞. Hence,

0 <

∫ 1

−1
w(x)g(x) dx = ⟨x′, w⟩ = ⟨v′, w⟩ = 0,

which is a contradiction.

(c) We first prove the claim in the hint.
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Proof. If α, β ≥ 0, then we obtain, since both v and w are positive functions3, that

∥αv + βw∥ = α ∥v∥+ β ∥w∥ = 2(α+ β) ≥ |α| ∨ |β| .

If α, β ≤ 0 we can multiply the function αv+ βw with −1 to get the same estimate.

Now let α and β have different sign. We distinguish two cases:

First case: |α| ≤ |β|.
By multiplying with −1 if necessary we may assume that α ≤ 0 and β ≥ 0, so
β ≥ −α ≥ 0. On the interval [−1, 0] the function w dominates v, so βw(x) ≥ −αv(x)
for all x ∈ [−1, 0]. Hence,

∥αv + βw∥ ≥
∫ 0

−1
αv(x) + βw(x) dx =

1

2
α+

3

2
β ≥ β = |α| ∨ |β| ,

where the last inequality follows from α ≥ −β.

Second case: |α| ≥ |β|.
By multiplying with −1 if necessary we may then assume that β ≤ 0 and α ≥ 0, so
0 ≤ −β ≤ α. The same argument as in the first case, but now on the interval [0, 1],
then shows that ∥αv + βw∥ ≥ α = |α| ∨ |β|.

Construction of the sequence (vn): Set, for instance, vn := −nv+n2w for each n ∈ N.

Proof of the claimed properties of (vn). Every element u of V+ can, according to
part (a), be written as u = αv + βw for numbers α, β ≥ 0. The distance of −u
to vn for any n ∈ N is

∥−u− vn∥ =
∥∥(−α− n)v + (−β + n2)w

∥∥ ≥ |−α− n| ∨
∣∣−β + n2

∣∣ ≥ α+ n ≥ n,

where the first inequality follows from the hint and the latter two inequalities both
use that α ≥ 0. Hence,

dist(vn,−V+) ≥ n

for each n ∈ N.

On the other hand, fix n ∈ N. The function vn satisfies vn(x) ≤ 0 if and only if
x ≥ n−1

n+1 = 1 − 2
n+1 =: 1 − δn. With the notation v−n := (−vn)

+ we thus get from
Exercise 2 (b) that

dist(vn, L
1
+) =

∥∥v−n ∥∥ =

∫ 1

1−δn

−vn(x) dx = n
(
2δn − δ2n

2

)
− n2 δ

2
n

2
=

2n

n+ 1
≤ 2.

This shows that dist(vn, L
1
+) remains bounded as n → ∞.

3And since L1 is an AL-space; in particular, the norm is additive on the positive cone.
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