7. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on May 23 and 24, 2023

Exercise 1 (Positive extension of functionals). Consider the ordered Banach space $E:=C^{1}([0,2 \pi])$ (with the pointwise order and the C^{1}-norm).
(a) Let $V \subseteq E$ denote the span of $\{\mathbb{1}, \sin \}$ and let the functional $v^{\prime} \in V^{\prime}$ be given by

$$
\langle\varphi, \alpha \mathbb{1}+\beta \sin \rangle=\alpha
$$

for all $\alpha, \beta \in \mathbb{R}$. Is v^{\prime} positive? Can v^{\prime} be extended to a functional $x^{\prime} \in E_{+}^{\prime}$?
(b) Let $W:=\{w \in E \mid w(0)=0\}$ and let $w^{\prime} \in W^{\prime}$ be given by

$$
\left\langle w^{\prime}, w\right\rangle:=\left.\frac{\mathrm{d}}{\mathrm{~d} x} w(x)\right|_{x=0}
$$

for all $w \in W$. Is w positiv? Can w^{\prime} be extended to a functional $x^{\prime} \in E_{+}^{\prime}$?

Exercise 2 (Distance to the cone).

(a) Let (Ω, μ) be a measure space, let $p \in[1, \infty]$, and endow $L^{p}:=L^{p}(\Omega, \mu)$ with its usual norm and the pointwise almost everywhere order. Show that

$$
\operatorname{dist}\left(f,-L_{+}^{p}\right)=\left\|f^{+}\right\|
$$

for each $f \in L^{p}$, where $f^{+} \in L^{p}$ is defined by the formula $f^{+}(\omega):=f(\omega) \vee 0$ for almost all $\omega \in \Omega$.
(b) Let H be an infinite-dimensional, separable, complex Hilbert spac¢ $母^{1}$ and let E denote the space of all self-adjoint compact linear opeators on H, endowed with the Loewner order. Show that

$$
\operatorname{dist}\left(A,-E_{+}\right)=\left\|A^{+}\right\|
$$

for each $A \in E$.
Here, A^{+}is defined by means of the functional calculus, i.e., if $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ is the sequence of eigenvalues of A and $\left(u_{n}\right)$ is an orthonormal basis of H that consists of corresponding eigenvectors, then

$$
A^{+}:=\sum_{n=1}^{\infty} \lambda_{n}^{+} u_{n} \otimes u_{n}
$$

[^0]with $\lambda_{n}^{+}=\lambda_{n} \vee 0$ (where the series converges unconditionally with respect to the operator norm).

Exercise 3 (Distance to the cone and positive extension of functionals). Endow $[-1,1]$ with the Borel σ-algebra and the Lebesgue measure and endow the space $L^{1}:=L^{1}([-1,1])$ with its usual norm and the pointwise almost everywhere order. Consider the functions $v, w \in L_{+}^{1}$ that are given by

$$
v(x)=1+x \quad \text { and } \quad w(x)=1-x
$$

for almost all $x \in[-1,1]$ and let $V \subseteq L^{1}$ denote the linear span of $\{v, w\}$. Let $v^{\prime} \in V^{\prime}$ be given by

$$
\left\langle v^{\prime}, \alpha v+\beta w\right\rangle=\alpha
$$

for all $\alpha, \beta \in \mathbb{R}$.
(a) Show that a vector $\alpha v+\beta w \in V$ (with $\alpha, \beta \in \mathbb{R}$) is positive if and only if $\alpha, \beta \geq 0$. Conclude that the functional v^{\prime} is positive.
(b) Show that v^{\prime} cannot be extended to a positive and continuous linear functional on all of L^{1}.
Hint: First show that, for $g \in L^{\infty}([-1,1])$, the functional $f \mapsto \int_{-1}^{1} f(x) g(x) \mathrm{d} x$ on L^{1} is positive if and only if $g(x) \geq 0$ for almost all $x \in[-1,1]$.
(c) It follows from part (b) and from Theorem 4.2 .6 that there exists a sequence $\left(v_{n}\right)$ in V such that

$$
\operatorname{dist}\left(v_{n}, V_{+}\right) \rightarrow \infty, \quad \text { while } \operatorname{dist}\left(v_{n}, E_{+}\right) \text {remains bounded }
$$

as $n \rightarrow \infty$. Find an explicit example of such a sequence $\left(v_{n}\right)$.
Hint: First show, for instance by distinguishing different cases for the signs of α and β, that $\|\alpha v+\beta w\| \geq \max \{|\alpha|,|\beta|\}$ for all $\alpha, \beta \in \mathbb{R}$.

[^0]: ${ }^{1}$ Again, the assumptions that H be infinite-dimensional and separable are actually not needed here; there is just here to simplify the notation.

