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6. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 16 and 17, 2023
with Solutions

Exercise 1 (The Loewner order on the compact operators, again). Let
H be an infinite-dimensional separable complex Hilbert space and let E denote the
space of all self-adjoint compact linear operators on H, endowed with the Loewner
order. From Exercise 5(a) on Sheet 5 you know that E is a generating cone.

(a) Give an example of functions v, v~ with the properties in Theorem 3.4.1.

(b) Is E4 normal?

Solution:

(a) The decomposition into 4t and v~ is constructed analogous to the decomposition
in Exercise 5 (a) on Sheet 5. We repeat it anyway. Recall that by the spectral theorem
for self-adjoint compact operators for each A € K(H)g, there exists an orthonormal
basis (an),cy of eigenvectors of A and a sequence (ay,),, o of eigenvalues of A (which
are real) that converges to 0 such that

A:ian(an®an)

n=1

We then set
'Y+(A) = Z max(an, 0) (en ® en)y v (A) = Z maX(_O‘na 0) (en & en)-
n=1 n=1

It is also easy to see that the operator AT and A" obtained through this construction
do not depend on the explicit choices of sequences (an),cy and (o), cn-

We show that this defines the desired decomposition. The positive homogeneity it
clear. The norm bound follows from

I (AN = sup (vF(A)x | 7T (A)z)

[[zf|=1
= sup max(a?,0) < sup|a?| = sup (Az | Az) = ||A|*
neN neN llz]=1
So we have
" (Al < [IAll,  and analogously, —[ly~(A)]l < [|A],
as desired.
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We show that 4+ and v~ are continuous. To this end let

Ak—Za k)®a )) A:ian(an@)an),

n=1

with Ay — A for k — oo. Clearly, the set M := {a%k), ay, | nyk € N} is bounded.
Take a sequence of polynomials (p;);cy in C[X] that converges uniformly on M to

max(-,0). Then, by orthogonality of the sequences (agﬁ))

that

nery and (an), o it follows

sz o @al),  pi(A) =) pilan) (an © ap),

n=1

Moreover, for all k € N, the uniform convergence of the polynomials on M implies
that for every e > 0 there exists i9 € N such that for all i > iy we have

1pi(Ax) = v (Al [pi(A) = v (A)] < e

in operator norm. Furthermore, there exists kg € N such that for all £ > ky we have

1Pio (Ak) — pig (A) ]| <e.
Altogether, we obtain
7" (Ar) = v (AN < 7 (Ar) = pio (A |
+ [1io (Ak) = pig (Al + [Ipig (A) = 7T (A)]| < 3e.
Hence, v is continuous. The proof for 4~ is analogous.

(b) Let 0 < A< B. Then 0 < (z | Ax) < (x| Bz) for all x € H. Notice that the
roots A2 and BY/? are also self-adjoint. Hence

0 = AT T = T
l|lz||=1 [|l]|=1

< sup /(x| Bx) = sup \/Bl/% | BY2z) = HBWH'
llzll=1 llzf|=1

Now the statement follows by noticing that ||A?|| = |A|? for all A € K(H)sa.
The inequality “<” follows from the submulitplicativity of the norm. The converse
inequality follows from

|A%]] > ||A%z]| > (z | A%2) = (Az | Ax) for all z € H.

Taking the supremum over all z € H with ||z|| = 1 yields the claim.

Exercise 2 (Some function spaces).

(a) Let (92, ) be a measure space and let p € [1,00]. Endow LP(2, ) with the
pointwise almost everywhere order and its usual norm. Find mappings v, v~
LP(Q, p) — LP(Q, )4+ with the properties stated in Theorem 3.4.1.
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(b) Let E be a pre-ordered Banach space and let M be a non-empty compact metric
spaceH Let C(M; E) denote the space of all continuous functions from M to E,
endowed with the norm given by

1£lloo = max [.f ()]

for each f € C(M; E) and with the pointwise order. It is not difficult to show that
C(M; E) is a pre-ordered Banach space.
When is the wedge C(M; E) 1 a cone? When is it normal? When is it generating?

Solution:
(a) Set

’Y+ : LP(Q,M) - Lp(Qa /‘L)Jr? f = max(f, O)a
v LP( ) = LP(Q, )4, f > max(—f,0).

Then 4T and 4~ are positive homogeneous and continuous. Moreover, for f €
LP(Q, u) we have

Iy OIL Iy~ HOI < 11

(b) Since the constant functions are in C(M; E), it follows that E is a cone, whenever
C(M;E)4 is a cone. Conversely, if E is a cone and f,—f € C(M;E);. Then,
pointwisely, f(z) € Ex N —E4. So f(x) =0 for all x € M which implies f = 0.

Since the constant functions are in C(M; E), it follows that E is normal, whenever
C(M; E) is normal. Conversely, if E is normal and 0 < f < g are in C(M; E) it
follows that 0 < f(x) < g(x) for all x € M and thus, || f(z)|| < |lg(z)|. Hence, it
follows that || f|| < |lg]l-

Since the constant functions are in C(M; E), it follows that E is generating, when-
ever C(M; E) is generating. If F, is generating, let v©, v~ : E — E, be as in
Theorem 3.4.1. For f € C(M; E) set fT(z) :=~"(f(z)) and f~(x) :== " (f(z)) for
all x € M. Then there exists M > 1 such that

1£41 = sup [lf* ()] < supl|f(z)]
zeM xeM

So fT € C(M; E) and analogously f~ € C(M; E). Hence, C(M; E), is generating.

Exercise 3 (Lipschitz continuous decomposition?). Prove or disprove: For
every pre-ordered Banach space E whose wedge is generating, there exist Lipschitz
continuous maps v,y : E — Ey such that x = y*(x) — v~ (z) for each z € E.

Solution: This is in fact an open problem. If you have solved it, you should
probably write a paper about it.

LOr, more generally, a non-empty compact Hausdorff space.
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Exercise 4 (A space of holomorphic functions). Denote the open unit disk in C
by D. Let H*°(D) be the Banach space of all bounded holomorphic functions D — C
with the supremum norm and set E := {f € H®(D) | f() €R for all 2 <n € N}.
This is a closed subset of H*°(D) and thus a real Banach space with respect to the
supremum norm over D. Define Ey == {f € E | f(1) >0 for all 2 < n € N}. This

turns F into a pre-ordered Banach space.

(a) Show that E, is a cone.

(b) Is the cone E, normal? Is it generating?

Solution:

(a) That F; is a wedge is clear. If f,—f € F, it follows that f(%) =0 foralln € N.
In other words, f is 0 on a set with accumulation point. Hence, the identity theorem
for holomorphic functions implies that f = 0.

(b) We first show that Ey is not normal. By means of Theorem 3.5.5 (i) = (iii) it
suffices to show that the order interval [0, 1] is not norm bounded. Here 1 denotes
the constant function with the value 1, which is clearly in E. Since sin is entire
and not constant, there exists a sequence (zy),,cy With [sin(z,)| — oo. Clearly, the
family D 3 z — sin(2|z,|z) is in [0, 1], since on the real axis these functions are

bounded by 1. However, ||z — sin(2|z,|z)|| > [sin (2]2“%)‘ — 00. So [0, 1] is not

norm bounded.

We now show that F, is generating. Let f € E. Then by continuity f(0) € R.
Let f(2) = > pp az". Since f is bounded, this series converges absolutely on D.
Clearly, ap = f(0) € R. Now f1 : 2+ L(f(2) — ap) = 350 aps12” is also bounded
and holomorphic on the open unit disk and satisfies f1(1) = n(f(%) — ap) € R for
all 2 <n e N. So f; € E, and thus, a1 = f1(0) € R. By induction we can prove
that «,, € R for all n € Ny.

Notice that if f(z) = > 5o, axz” converges absolutely on D and ay > 0, then f(%) =
S0 % > 0.

So any function f € E can be decomposed into
ff(z) = Zmax(ozn, 0)2F, f(z)= Zmax(—an, 0)zF
k=0 k=0

with f*,f~ € Ey and f = fT — f~. It follows that E, is generating.

Exercise 5 (Norm boundedness of order bounds). Let E be a pre-ordered
Banach space and let I be a non-empty set. Let £°P(I; E) denote the vector space of
all functions f : I — F for which there exists a vector h € E such that f(i) € [—h, h]
for all i € IE| For each f € £°P(I; E) we define

[ fllg, =1inf { |Allz | h € Ey and f(i) € [~h,h] for all i € I}.

We endow the vector space £°P(I; E) with the pointwise order.

2Here, the acronym “ob” stands for “order bounded”.
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(a) When is the wedge £°°(I; E); a cone? When is it generating?
(b) When is || - [|;, @ norm? When is it a complete norm?

(c) Assume now that the wedge F in E is normal and generating. Let D be a Banach
space and let (T;);er be a family of bounded linear operators D — E. Assume that
for each x € D the orbit {T;z | ¢ € I} in F is order bounded.

Show that there exists a constant M > 0 with the following property: for each x € D
there exists h € E such that |||y < M ||z| , and Tjz € [—h, h] for each i € I.

Solution:

(a) Since E contains all the constant functions, the wedge E. is a cone, whenever
(°P(I;E), is a cone. Conversely, if E, is a cone and f,—f € (°P(I;E),, then
f(i) =0 for all i € I, and thus, f = 0. So £°°(I; E) is also a cone.

The cone £°(I; E), is always generating, since for f € ¢°P(I; F), there exists h € F
such that f(i) € [—h,h] for all i € I, and thus, f*(i) := f(i) + h and f~(i) := h
define functions in °°(I; E), with f = f* — f~.

(b) Claim. The mapping || - ||, is a norm if and only if E is a cone.

Proof. Clearly, [|0[|,, = 0 and | f||,, > 0 for all f € (°>(I;E). It also follows
readily that |- |, is positively homogeneous. To show the triangle inequality let
f,g € £°°(I; E) and notice that

{1kl | h € Ex and £(i) + g(i) € [=h, h] for all i € I}
O {||hs + bl | by, hg € Ey and (i) € [—hy, by, gi) € [~hg, hy) for all i € T}

So taking the infima of both sets it follows from the triangle inequality of || - ||, that

1+ gllon < 1 llow + Mgl -

It follows that || - ||, is always a semi-norm.

If E; is no cone, then the interval [0,0] = Ey N —FE, contains a non-zero element
x. By definition we have | f||,, = 0 for f(i) := « # 0. Hence, |- ||, is not positive
definite.

Conversely, if E is a cone, and f € E with || f||,, = 0, then for every n € N there
exists h, € Ey such that ||hy] 5 < n—lg, and f(i) + hy, € [0,2h,] for all i € I. Set
g:=> o2, nhy. Since E is an ordered Banach space, g € E and

nf (i) < n(f(@) + ) < 20l < 29,
which implies

fli) <2ig

for all n € N and all 4+ € I. Since a Fy is closed, it is also Archimedean and we
obtain that f(i) < 0 for all i € I. With the same argument for —f instead of f we
obtain that —f(¢) <0 for all ¢ € I. Hence, f(i) € [0,0] = {0} for all i € I. It follows
that f = 0.

Claim. The norm || - ||, is complete if and only if £ is normal.
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Proof. “«<": Let E, be normal. Then for f € (°°(I; E) there exists for each € > 0
an element h € E such that 0 < ||A||z — ||fll,p < € and f(i) + h € [0,2h] for all
i € I. Normality of F; now implies the existence of M > 1, which is independent
on €, such that ||f(3)|| 5 — k]| g < || (i) + hllp < 2M ||h|| 5. In particular,

If@)lle < M+ 1) [|h]lg < @M + 1D)(I[fllon + €)-

Since e was arbitrarily chosen and M does not depend on € we have that || f(i)]| 5 <
(2M +1) || f|l,p, for all i € I. Now suppose Y oo | fn With f,, € £°P(I; E) is absolutely
convergent. By the above norm inequality it follows that Y 7, f,(¢) converges
absolutely in E for each ¢ € I. By completeness of E, the series Y 7, fn (i) thus
converges in E for all ¢ € I. It remains to show that Y >°, f, € (°*(I; E).

To this end, notice that there exists a sequence (hy),, oy in Ey with [|hy || g — [ full g <
5 and f,(i) € [~hn, hy) for all i € I. Then the series g := > °° | hy, also converges
absolutely in F; hence it is convergent. It follows that

S” fali) € [=g.4]
n=1

for all i € I. So it follows that "2, f, € ¢°*(I; E).
“=" Let |- ||, be a complete norm. To show that E is normal. Let 0 <z <.

Consider the subspace D := E — E, with the norm || - ||, from Lemma 3.2.5 and
recall that ||z||, = |z||p for all z € E,. Recall also that |||, is complete, since
FE is closed, and thus, ideally convex.

Let V be the subspace of £°°(I; E) that contains the constant functions. We will
show that V' is closed in || - || ;. As then the mapping

(Dl p) = (V- Hlop)s T (T)er

is bijective and continuous between Banach spaces. Indeed, let x € D. By definition
of D and || - ||, (see Lemma 3.2.5) there exist y,z € E; with x =y — z and ||y||, +
|zl p < 2|zl 5. Set h =y + 2. Then « € [—h,h], and thus, ||(z)icr|,, < |Pllp <
2||x||p- Now the open mapping theorem implies that ! is continuous, and thus,
the existence of a bound M > 0 such that

[zl p < M[[(x)ierllop -

Now it follows that every order bounded set in D is norm bounded in DE| Hence,
by Theorem 3.5.5 (ii) = (i) the cone E is normal in D. Since, as mentioned above,
the norms || - ||, and || - || ; coincide on E it follows that E is also normal in E.

It remains to show that V' is closed in || -[|,;,. To this end let (fy), oy be a sequence
in V, which converges to f € £°®(I; E). Then there exists for each k € N an element
ny € Nsuch that for all n > ny, we have || f, — fl|,;, < k—lg So in particular there exists
for each k € N an order bound hy, € E with ||h|| < % and fn(i) — f(i) € [—hi, hy]
for all ¢ € I and all n > ng. Since f, is constant we have for all i1,i0 € I and n > ny,
that

flin) = fliz) = f(i) = fulin) + fuliz) — f(i2) € [=2hi, 2hy].

3Indeed, since E; is generating in D, every set S C D contained in an order interval [h1, hi] is
also contained in an order interval of the form [—h, h] for some h € E; (see proof of (c)) and thus
(S) is bounded in || - ||;,- So the above inequality shows that S is bounded in || - || 5.
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Set g := > >, khy € E; and notice that k(f(i1) — f(i2)) < 2¢g. Dividing by k, the
Archimedean property of Ey yields that f(i;) — f(i2) < 0. Since i1,i2 € I where
arbitrarily chosen, it follows that f(i1) — f(i2) = 0 for all 41,42 € I. This means that
f is indeed constant.

(¢) Define the operator
T:C — (*°(I;E), z = (Tix)ier.

We show that T is well-defined. Let x € C. By order boundedness of the orbit,
there exists hi, ho € E such that Tjxz € [hy, ho for all i € I. Since E is generating,
we can write h; = z; — y; for some z;,y; € E for all j = 1,2. Then [hl,hQ] C
[—(z2 + y1),x2 + y1]. Thus, there exists h := x9 —y1 € E4 such that Tjz € [—h, ]
for all i € I. This implies that Tx € (°°(I; E).

We now show that T is closed. Let (2,),,cy converge to 0in C and (T'zy),, . converge
to y in ¢°P(I; E). We have to show that 0 = Tx = y. Recall from the proof of (b)
that normality of E; implies the existence of C' > 0 such that

1F @l < Cllfllop
for all f € £°P(I; E) and all i € I. Hence,
[Tizn = y(@)ll g < CITen = yllg, = 0

as n — oo for all ¢ € I. This implies that y = 0. Hence, T is a closed operator. Now
the closed graph theorem implies that there exists K > 0 such that

1Tzl < K[|zl -

We may assume without restriction that « # 0. By definition of || - ||, there exists
h € E; (which depends on x) such that ||h|| 5 —||Tz||,, < K ||z||o and Tjx € [—h, h].
In summary, setting M := 2K we obtain

1Pllg < Mzl

This proves the claim.
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