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6. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 16 and 17, 2023
with Solutions

Exercise 1 (The Loewner order on the compact operators, again). Let
H be an infinite-dimensional separable complex Hilbert space and let E denote the
space of all self-adjoint compact linear operators on H, endowed with the Loewner
order. From Exercise 5(a) on Sheet 5 you know that E+ is a generating cone.
(a) Give an example of functions γ+, γ− with the properties in Theorem 3.4.1.

(b) Is E+ normal?

Solution:

(a) The decomposition into γ+ and γ− is constructed analogous to the decomposition
in Exercise 5 (a) on Sheet 5. We repeat it anyway. Recall that by the spectral theorem
for self-adjoint compact operators for each A ∈ K(H)sa there exists an orthonormal
basis (an)n∈N of eigenvectors of A and a sequence (αn)n∈N of eigenvalues of A (which
are real) that converges to 0 such that

A =
∞∑
n=1

αn (an ⊗ an)

We then set

γ+(A) =
∞∑
n=1

max(αn, 0) (en ⊗ en), γ−(A) =
∞∑
n=1

max(−αn, 0) (en ⊗ en).

It is also easy to see that the operator A+ and A+ obtained through this construction
do not depend on the explicit choices of sequences (an)n∈N and (αn)n∈N.

We show that this defines the desired decomposition. The positive homogeneity it
clear. The norm bound follows from

∥γ+(A)∥2 = sup
∥x∥=1

(γ+(A)x | γ+(A)x)

= sup
n∈N

max(α2, 0) ≤ sup
n∈N

|α2
n| = sup

∥x∥=1
(Ax | Ax) = ∥A∥2.

So we have

∥γ+(A)∥ ≤ ∥A∥, and analogously, ∥γ−(A)∥ ≤ ∥A∥,

as desired.
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We show that γ+ and γ− are continuous. To this end let

Ak =

∞∑
n=1

α(k)
n (a(k)n ⊗ a(k)n ), A =

∞∑
n=1

αn (an ⊗ an),

with Ak → A for k → ∞. Clearly, the set M := {α(k)
n , αn | n, k ∈ N} is bounded.

Take a sequence of polynomials (pi)i∈N in C[X] that converges uniformly on M to
max( · , 0). Then, by orthogonality of the sequences (a

(k)
n )n∈N and (an)n∈N it follows

that

pi(Ak) =
∞∑
n=1

pi(α
(k)
n ) (a(k)n ⊗ a(k)n ), pi(A) =

∞∑
n=1

pi(αn) (an ⊗ an),

Moreover, for all k ∈ N, the uniform convergence of the polynomials on M implies
that for every ϵ > 0 there exists i0 ∈ N such that for all i ≥ i0 we have

∥pi(Ak)− γ+(Ak)∥, ∥pi(A) → γ+(A)∥ < ϵ.

in operator norm. Furthermore, there exists k0 ∈ N such that for all k ≥ k0 we have

∥pi0(Ak)− pi0(A)∥ < ϵ.

Altogether, we obtain

∥γ+(Ak)− γ+(A)∥ ≤ ∥γ+(Ak)− pi0(Ak)∥
+ ∥pi0(Ak)− pi0(A)∥+ ∥pi0(A)− γ+(A)∥ < 3ϵ.

Hence, γ+ is continuous. The proof for γ− is analogous.

(b) Let 0 ≤ A ≤ B. Then 0 ≤ (x | Ax) ≤ (x | Bx) for all x ∈ H. Notice that the
roots A1/2 and B1/2 are also self-adjoint. Hence∥∥∥A1/2

∥∥∥ = sup
∥x∥=1

√
(A1/2x | A1/2x) = sup

∥x∥=1

√
(x | Ax)

≤ sup
∥x∥=1

√
(x | Bx) = sup

∥x∥=1

√
(B1/2x | B1/2x) =

∥∥∥B1/2
∥∥∥ .

Now the statement follows by noticing that
∥∥A2

∥∥ = ∥A∥2 for all A ∈ K(H)sa.
The inequality “≤” follows from the submulitplicativity of the norm. The converse
inequality follows from∥∥A2

∥∥ ≥
∥∥A2x

∥∥ ≥ (x | A2x) = (Ax | Ax) for all x ∈ H.

Taking the supremum over all x ∈ H with ∥x∥ = 1 yields the claim.

Exercise 2 (Some function spaces).
(a) Let (Ω, µ) be a measure space and let p ∈ [1,∞]. Endow Lp(Ω, µ) with the
pointwise almost everywhere order and its usual norm. Find mappings γ+, γ− :
Lp(Ω, µ) → Lp(Ω, µ)+ with the properties stated in Theorem 3.4.1.
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(b) Let E be a pre-ordered Banach space and let M be a non-empty compact metric
space.1 Let C(M ;E) denote the space of all continuous functions from M to E,
endowed with the norm given by

∥f∥∞ := max
x∈M

∥f(x)∥E

for each f ∈ C(M ;E) and with the pointwise order. It is not difficult to show that
C(M ;E) is a pre-ordered Banach space.
When is the wedge C(M ;E)+ a cone? When is it normal? When is it generating?

Solution:

(a) Set

γ+ : Lp(Ω, µ) → Lp(Ω, µ)+, f 7→ max(f, 0),

γ− : Lp(Ω, µ) → Lp(Ω, µ)+, f 7→ max(−f, 0).

Then γ+ and γ− are positive homogeneous and continuous. Moreover, for f ∈
Lp(Ω, µ) we have

∥γ+(f)∥, ∥γ−(f)∥ ≤ ∥f∥.

(b) Since the constant functions are in C(M ;E), it follows that E is a cone, whenever
C(M ;E)+ is a cone. Conversely, if E is a cone and f,−f ∈ C(M ;E)+. Then,
pointwisely, f(x) ∈ E+ ∩ −E+. So f(x) = 0 for all x ∈ M which implies f = 0.

Since the constant functions are in C(M ;E), it follows that E is normal, whenever
C(M ;E) is normal. Conversely, if E is normal and 0 ≤ f ≤ g are in C(M ;E) it
follows that 0 ≤ f(x) ≤ g(x) for all x ∈ M and thus, ∥f(x)∥ ≤ ∥g(x)∥. Hence, it
follows that ∥f∥ ≤ ∥g∥.
Since the constant functions are in C(M ;E), it follows that E is generating, when-
ever C(M ;E) is generating. If E+ is generating, let γ+, γ− : E → E+ be as in
Theorem 3.4.1. For f ∈ C(M ;E) set f+(x) := γ+(f(x)) and f−(x) := γ+(f(x)) for
all x ∈ M . Then there exists M ≥ 1 such that

∥f+∥ = sup
x∈M

∥f+(x)∥ ≤ sup
x∈M

∥f(x)∥

So f+ ∈ C(M ;E) and analogously f− ∈ C(M ;E). Hence, C(M ;E)+ is generating.

Exercise 3 (Lipschitz continuous decomposition?). Prove or disprove: For
every pre-ordered Banach space E whose wedge is generating, there exist Lipschitz
continuous maps γ+, γ− : E → E+ such that x = γ+(x)− γ−(x) for each x ∈ E.

Solution: This is in fact an open problem. If you have solved it, you should
probably write a paper about it.

1Or, more generally, a non-empty compact Hausdorff space.
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Exercise 4 (A space of holomorphic functions). Denote the open unit disk in C
by D. Let H∞(D) be the Banach space of all bounded holomorphic functions D → C
with the supremum norm and set E :=

{
f ∈ H∞(D) | f( 1n) ∈ R for all 2 ≤ n ∈ N

}
.

This is a closed subset of H∞(D) and thus a real Banach space with respect to the
supremum norm over D. Define E+ := {f ∈ E | f( 1n) ≥ 0 for all 2 ≤ n ∈ N}. This
turns E into a pre-ordered Banach space.
(a) Show that E+ is a cone.

(b) Is the cone E+ normal? Is it generating?

Solution:

(a) That E+ is a wedge is clear. If f,−f ∈ E+ it follows that f( 1n) = 0 for all n ∈ N.
In other words, f is 0 on a set with accumulation point. Hence, the identity theorem
for holomorphic functions implies that f = 0.

(b) We first show that E+ is not normal. By means of Theorem 3.5.5 (i) ⇒ (iii) it
suffices to show that the order interval [0,1] is not norm bounded. Here 1 denotes
the constant function with the value 1, which is clearly in E+. Since sin is entire
and not constant, there exists a sequence (zn)n∈N with |sin(zn)| → ∞. Clearly, the
family D ∋ z → sin(2|zn|z) is in [0,1], since on the real axis these functions are
bounded by 1. However, ∥z 7→ sin(2|zn|z)∥ ≥

∣∣∣sin(2|zn| zn
2|zn|

)∣∣∣ → ∞. So [0,1] is not
norm bounded.

We now show that E+ is generating. Let f ∈ E. Then by continuity f(0) ∈ R.
Let f(z) =

∑∞
k=0 αkz

k. Since f is bounded, this series converges absolutely on D.
Clearly, α0 = f(0) ∈ R. Now f1 : z 7→ 1

z (f(z)− α0) =
∑∞

k=0 αk+1z
k is also bounded

and holomorphic on the open unit disk and satisfies f1(
1
n) = n(f( 1n) − α0) ∈ R for

all 2 ≤ n ∈ N. So f1 ∈ E, and thus, α1 = f1(0) ∈ R. By induction we can prove
that αn ∈ R for all n ∈ N0.

Notice that if f(z) =
∑∞

k=0 αkz
k converges absolutely on D and αk ≥ 0, then f( 1n) =∑∞

k=0
αk

nk ≥ 0.

So any function f ∈ E can be decomposed into

f+(z) =

∞∑
k=0

max(αn, 0)z
k, f−(z) =

∞∑
k=0

max(−αn, 0)z
k

with f+, f− ∈ E+ and f = f+ − f−. It follows that E+ is generating.

Exercise 5 (Norm boundedness of order bounds). Let E be a pre-ordered
Banach space and let I be a non-empty set. Let ℓob(I;E) denote the vector space of
all functions f : I → E for which there exists a vector h ∈ E+ such that f(i) ∈ [−h, h]
for all i ∈ I.2 For each f ∈ ℓob(I;E) we define

∥f∥ob := inf
{
∥h∥E | h ∈ E+ and f(i) ∈ [−h, h] for all i ∈ I

}
.

We endow the vector space ℓob(I;E) with the pointwise order.
2Here, the acronym “ob” stands for “order bounded”.
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(a) When is the wedge ℓob(I;E)+ a cone? When is it generating?

(b) When is ∥ · ∥ob a norm? When is it a complete norm?

(c) Assume now that the wedge E+ in E is normal and generating. Let D be a Banach
space and let (Ti)i∈I be a family of bounded linear operators D → E. Assume that
for each x ∈ D the orbit {Tix | i ∈ I} in E is order bounded.
Show that there exists a constant M ≥ 0 with the following property: for each x ∈ D
there exists h ∈ E+ such that ∥h∥E ≤ M ∥x∥D and Tix ∈ [−h, h] for each i ∈ I.

Solution:

(a) Since E contains all the constant functions, the wedge E+ is a cone, whenever
ℓob(I;E)+ is a cone. Conversely, if E+ is a cone and f,−f ∈ ℓob(I;E)+, then
f(i) = 0 for all i ∈ I, and thus, f = 0. So ℓob(I;E) is also a cone.

The cone ℓob(I;E)+ is always generating, since for f ∈ ℓob(I;E), there exists h ∈ E+

such that f(i) ∈ [−h, h] for all i ∈ I, and thus, f+(i) := f(i) + h and f−(i) := h
define functions in ℓob(I;E)+ with f = f+ − f−.

(b) Claim. The mapping ∥ · ∥ob is a norm if and only if E+ is a cone.

Proof. Clearly, ∥0∥ob = 0 and ∥f∥ob ≥ 0 for all f ∈ ℓob(I;E). It also follows
readily that ∥ · ∥ob is positively homogeneous. To show the triangle inequality let
f, g ∈ ℓob(I;E) and notice that

{∥h∥E | h ∈ E+ and f(i) + g(i) ∈ [−h, h] for all i ∈ I}
⊇ {∥hf + hg∥E | hf , hg ∈ E+ and f(i) ∈ [−hf , hf ], g(i) ∈ [−hg, hg] for all i ∈ I}

So taking the infima of both sets it follows from the triangle inequality of ∥ · ∥ob that

∥f + g∥ob ≤ ∥f∥ob + ∥g∥ob .

It follows that ∥ · ∥ob is always a semi-norm.

If E+ is no cone, then the interval [0, 0] = E+ ∩ −E+ contains a non-zero element
x. By definition we have ∥f∥ob = 0 for f(i) := x ̸= 0. Hence, ∥ · ∥ob is not positive
definite.

Conversely, if E+ is a cone, and f ∈ E with ∥f∥ob = 0, then for every n ∈ N there
exists hn ∈ E+ such that ∥hn∥E < 1

n3 and f(i) + hn ∈ [0, 2hn] for all i ∈ I. Set
g :=

∑∞
n=1 nhn. Since E is an ordered Banach space, g ∈ E+ and

nf(i) ≤ n(f(i) + hn) ≤ 2nhn ≤ 2g,

which implies

f(i) ≤ 2 1
ng

for all n ∈ N and all i ∈ I. Since a E+ is closed, it is also Archimedean and we
obtain that f(i) ≤ 0 for all i ∈ I. With the same argument for −f instead of f we
obtain that −f(i) ≤ 0 for all i ∈ I. Hence, f(i) ∈ [0, 0] = {0} for all i ∈ I. It follows
that f = 0.

Claim. The norm ∥ · ∥ob is complete if and only if E+ is normal.
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Proof. “⇐”: Let E+ be normal. Then for f ∈ ℓob(I;E) there exists for each ϵ > 0
an element h ∈ E+ such that 0 ≤ ∥h∥E − ∥f∥ob < ϵ and f(i) + h ∈ [0, 2h] for all
i ∈ I. Normality of E+ now implies the existence of M ≥ 1, which is independent
on ϵ, such that ∥f(i)∥E − ∥h∥E ≤ ∥f(i) + h∥E ≤ 2M ∥h∥E . In particular,

∥f(i)∥E ≤ (2M + 1) ∥h∥E ≤ (2M + 1)(∥f∥ob + ϵ).

Since ϵ was arbitrarily chosen and M does not depend on ϵ we have that ∥f(i)∥E ≤
(2M +1) ∥f∥ob for all i ∈ I. Now suppose

∑∞
n=1 fn with fn ∈ ℓob(I;E) is absolutely

convergent. By the above norm inequality it follows that
∑∞

n=1 fn(i) converges
absolutely in E for each i ∈ I. By completeness of E, the series

∑∞
n=1 fn(i) thus

converges in E for all i ∈ I. It remains to show that
∑∞

n=1 fn ∈ ℓob(I;E).

To this end, notice that there exists a sequence (hn)n∈N in E+ with ∥hn∥E−∥fn∥E <
1
2n and fn(i) ∈ [−hn, hn] for all i ∈ I. Then the series g :=

∑∞
n=1 hn also converges

absolutely in E; hence it is convergent. It follows that
∞∑
n=1

fn(i) ∈ [−g, g]

for all i ∈ I. So it follows that
∑∞

n=1 fn ∈ ℓob(I;E).

“⇒”: Let ∥ · ∥ob be a complete norm. To show that E+ is normal. Let 0 ≤ x ≤ y.

Consider the subspace D := E+ − E+ with the norm ∥ · ∥D from Lemma 3.2.5 and
recall that ∥x∥D = ∥x∥E for all x ∈ E+. Recall also that ∥ · ∥D is complete, since
E+ is closed, and thus, ideally convex.

Let V be the subspace of ℓob(I;E) that contains the constant functions. We will
show that V is closed in ∥ · ∥ob. As then the mapping

ι : (D, ∥ · ∥D) → (V, ∥ · ∥ob), x 7→ (x)i∈I

is bijective and continuous between Banach spaces. Indeed, let x ∈ D. By definition
of D and ∥ · ∥D (see Lemma 3.2.5) there exist y, z ∈ E+ with x = y − z and ∥y∥D +
∥z∥D ≤ 2 ∥x∥D. Set h := y + z. Then x ∈ [−h, h], and thus, ∥(x)i∈I∥ob ≤ ∥h∥D ≤
2 ∥x∥D. Now the open mapping theorem implies that ι−1 is continuous, and thus,
the existence of a bound M ≥ 0 such that

∥x∥D ≤ M ∥(x)i∈I∥ob .

Now it follows that every order bounded set in D is norm bounded in D.3 Hence,
by Theorem 3.5.5 (ii) ⇒ (i) the cone E+ is normal in D. Since, as mentioned above,
the norms ∥ · ∥D and ∥ · ∥E coincide on E+ it follows that E+ is also normal in E.

It remains to show that V is closed in ∥ · ∥ob. To this end let (fn)n∈N be a sequence
in V , which converges to f ∈ ℓob(I;E). Then there exists for each k ∈ N an element
nk ∈ N such that for all n ≥ nk we have ∥fn − f∥ob < 1

k3
. So in particular there exists

for each k ∈ N an order bound hk ∈ E+ with ∥hk∥ < 2
k3

and fn(i)− f(i) ∈ [−hk, hk]
for all i ∈ I and all n ≥ nk. Since fn is constant we have for all i1, i2 ∈ I and n ≥ nk

that

f(i1)− f(i2) = f(i1)− fn(i1) + fn(i2)− f(i2) ∈ [−2hk, 2hk].

3Indeed, since E+ is generating in D, every set S ⊆ D contained in an order interval [h1, h1] is
also contained in an order interval of the form [−h, h] for some h ∈ E+ (see proof of (c)) and thus
ι(S) is bounded in ∥ · ∥ob. So the above inequality shows that S is bounded in ∥ · ∥D.
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Set g :=
∑∞

n=1 khk ∈ E+ and notice that k(f(i1)− f(i2)) ≤ 2g. Dividing by k, the
Archimedean property of E+ yields that f(i1) − f(i2) ≤ 0. Since i1, i2 ∈ I where
arbitrarily chosen, it follows that f(i1)− f(i2) = 0 for all i1, i2 ∈ I. This means that
f is indeed constant.

(c) Define the operator

T : C → ℓob(I;E), x 7→ (Tix)i∈I .

We show that T is well-defined. Let x ∈ C. By order boundedness of the orbit,
there exists h1, h2 ∈ E such that Tix ∈ [h1, h2] for all i ∈ I. Since E+ is generating,
we can write hj = xj − yj for some xj , yj ∈ E+ for all j = 1, 2. Then [h1, h2] ⊆
[−(x2 + y1), x2 + y1]. Thus, there exists h̃ := x2 − y1 ∈ E+ such that Tix ∈ [−h̃, h̃]
for all i ∈ I. This implies that Tx ∈ ℓob(I;E).

We now show that T is closed. Let (xn)n∈N converge to 0 in C and (Txn)n∈N converge
to y in ℓob(I;E). We have to show that 0 = Tx = y. Recall from the proof of (b)
that normality of E+ implies the existence of C ≥ 0 such that

∥f(i)∥E ≤ C ∥f∥ob

for all f ∈ ℓob(I;E) and all i ∈ I. Hence,

∥Tixn − y(i)∥E ≤ C ∥Txn − y∥ob → 0

as n → ∞ for all i ∈ I. This implies that y = 0. Hence, T is a closed operator. Now
the closed graph theorem implies that there exists K ≥ 0 such that

∥Tx∥ob ≤ K ∥x∥C .

We may assume without restriction that x ̸= 0. By definition of ∥ · ∥ob there exists
h ∈ E+ (which depends on x) such that ∥h∥E−∥Tx∥ob < K ∥x∥C and Tix ∈ [−h, h].
In summary, setting M := 2K we obtain

∥h∥E ≤ M ∥x∥C .

This proves the claim.
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