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5. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 9 and 10, 2023
with Solutions

Exercise 1 (Non-ideally convex wedges).

(a) Find an example of a Banach space E' and an Archimedean wedge E which is
generating but not ideally convex.
Hint: Start with an arbitrary infinite-dimensional Banach space E and a discontin-
uous linear functional ¢ : £ — R.

(b) Find an example of a Banach space E and an Archimedean cone F; which is
generating but not ideally convex.

Hint: Start with an arbitrary infinite-dimensional Banach space E and a Hamel basis
of E.

Solution:

(a) Let E' be an arbitrary infinite-dimensional Banach space and ¢ : E — R a
discontinuous linear functional. Define a wedge

Ei:={z e E|p(z)>0}.
Clearly, E is indeed a wedge. Moreover, F is generating, since for every x € E we

have x € E or —xz € Ey.

We show that E is Archimedean. Let x,y € F; be such that x < %y for alln € N,
then y —n -z > 0 for all n € N. Hence,

0<ply—n-z)=p(y) —n-px)

for all n € N and =z € E, implies that ¢(z) = 0. In particular, z < 0, so E is
Archimedean.

Suppose to show a contradiction that E is ideally convex. Since ¢ is discontinuous;
and thus, unbounded, there exists a sequence (), oy in E that converges to 0 with
¢(zn) = 1 for all n € N. So (2n),,cy is a increasing (and even decreasing) sequence
in By, since p(xn4+1—2p) = 0 for all n € N. By Proposition 3.2.3 (i) = (v) it follows
that x, <0 for all n € N. This is a contradiction, since p(z,) =1 for all n € N.

(b) Let E be any infinite-dimensional Banach space and B C E be a Hamel basis of
E. Define the cone

E, = {Z by,

k=1

Aly...,apn >0, bl,...,bnEB,TLGNo}.
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Clearly, E. is a wedge. Since the finite sum representation of each element in E
with respect to a Hamel basis is unique, it follows that each element x € E, N —F
must be 0. Hence, E is a cone. That E is generating follows from the observation
that Ey — E is exactly the span of the basis B.

For x € E and each b € B denote by ap(x) the unique real number such that
x = Z ap(x) b.

Notice oy is a linear functional, ay(x) # 0 for at most finitely many b € B and that
z <y if and only if ap(x) < ap(y) for all b € B.

To show that E is Archimedean, let z,y € E. such that x < %y. Then repeating
the argument in (a), we obtain

0<ap(y—n-z)=am(y) —n-a@)

for all b € B and all n € N. Hence, ap(x) = 0 for all b € N, which implies that
x=0<0. So E; is Archimedean.

Suppose to show a contradiction that £, is ideally convex. Let (by),cy be a pairwise
distinct sequence in B and (ag),cy be a sequence in (0, 00) such that [Jagby| < gik
Define z,, := > ;_; aiby, for every n € N. Then (xy,),,cy is an increasing sequence
that converges some = € E. By Proposition 3.2.3 (i) = (v) it follows that z, < z
for all n € N; and hence, ap(x,) < ap(z) for all b € B and n € N. This implies that
ap(z) > 0 for infinitely many b € B. This is a contradiction. It follows that E. is
not ideally convex.

Exercise 2 (Vector-valued (P-spaces). Let E be a pre-ordered Banach space
and let p € [1,00]. For each sequence x = (zp)nen in £ we define [z, € [0, 00] as

0 1/p )
(Soilleal?) ™ ifpel00),

], = .
SuPpen ||| if p = co.

Define P(N; E) to be the set of all sequences x in F, indexed over N, that satisfy
|||, < oo. One can show that this is a vector space with the pointwise operations
and a Banach space when endowed with the norm || -||,. Let us equip the Banach
space (P(N; E') with the wedge

PN, E)y = {:1: eP(N;E) | z, € E4 for each n € N}.
Prove that (P(N; E) is closed. When is /?(N; E); a cone? When is it generating?

Solution: Consider the coordinate mappings
e P(NsE) = F, T = (Tn),en F Tn

and notice that ||c,z| 5 < ||z|, for each z € P(N; E) and each p € [0, 00]. The cone
P(N; E)4 is exactly the intersection

PN E)y = () ey (By).

neN
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Since E is closed and ¢, continuous, this is an intersection of closed sets, and thus,
itself closed.

Claim. The set ¢P(N; E), is a cone if and only if £ is a cone.

Proof. Notice that ¢P(N; E), is always a wedge.

“=": Let P(N; E), be a cone. Consider z € E; N—E,. Then the element (3-z)

is in P(N; E'); and —¢P(N; E) ;. Hence, (Q%ZL‘)%N

neN
=0, and thus, x =0. So E, is a
cone.

“«<" Let Ey be a cone. Pick x = (2,),cy such that —z,2 € (P(N; E),. Then in
particular —x,, x, € E. for all n € N. Hence, z,, = 0 for all n € N, which implies
that x = 0. So P(N; E)4 is a cone.

Claim. The set ¢P(N; E); is generating if and only if E is generating.

Proof. “=": Let ¢P(N; E)+ be generating and let € E. Then there exist (z}), cn
and (z,,),cy such that (2;0),eny — (€7 )pen = (352),,c- Hence, grz = 2,7 — 2, and
z},x, € Ey for all n € N. So E, is generating.

“«<" Let E4 be generating and x = (2,), .y € P(N; E). Since E, is generating
there exists a constant M > 0 and elements z;} and x;, in F such that z,, = 2} —z;,
and ||z;7][, |#;, || < M||xy| for all n € N. In particular, the sequences z := (z;}), oy
and 7 := (x;,),cy are in P(N; E) 4 and satisfy @ = 2t — 27, Thus (#(N; E) is
generating.

Exercise 3 (Properties of convex sets). Let E be a normed space over R and
let C C E be convex.

(a) Show that if x is an interior point of C'and y € dC, then y+A(z—y) = Az+(1-N)y
is also an interior point of C' for all A € (0, 1].

(b) Show that if F is finite-dimensional, 0 € C, and C spans E, then C' has non-
empty interior.

(¢) Show that if E is finite-dimensional, then C' is ideally convex.

Solution:

(a) Let A € (0,1]. Then clearly, Int(C') C AInt(C)+(1—X)C C C. Since the interior
of C is the largest open set contained in C, it suffices to show that A Int(C)+(1—\)C
is open. But this follows from

Alnt(C) + (1 = X)C = | J AInt(C) + (1 = Nz,
zeC

since this is a union of open sets. In particular it follows that y + Az — y) =
Az + (1 — \)y is an interior point of C', whenever x € Int(C') and y € C.

(b) Since every spanning set of E contains a basis and C spans E there exist linearly
independent by, ...,by € C such that

E:{a1b1+-~-+adbd|a1,...,adE]R},
where d = dim(E). Now the simplex
[bl,...,bd]:{a1b1+"'+adbd|Oél,..-,()éd20, a1+"'+adgl}

is contained in C' and has non-empty interior. An open set in the simplex is for
instance the set determined by the coefficients «; € (0, é) for all i € {1,...,d}.
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(c) Let (25),en, be a norm bounded sequence in C and (Ay),,cy, be a sequence in
[0,00) with 0% A, = 1. We may assume w.l.o.g. that A, > 0 for all n € Ny and
that zp = 0 (otherwise we shift the sequence and the set C' by —zg).

Let I be the span of (z5),cy, and let d := dim(F'). Then we may assume, after
potentially reordering the sequences, that z1,..., x4 are a basis of F. Thus we find
a linear and bijective map T : F' — R? that maps each z1,. .., x4 to a canonical unit
vector eq, ..., eq, respectively. Notice that since A\g > 0 and x¢ = 0 it follows that

d -1 4 d -1 4
T (Z )\n> D Az | = (Z An> > Anen
n=0 n=0 n=0 n=1

—1
lies in the interior of the standard simplex of R?. Hence, (Zzzo )\n> Zd AnZn

n=0
lies in the interior of C' with respect to the relative topology induced by F'.
Moreover, by convexity the point (307 ;1 An) ! Y medi1 AnTy lies in the closure of
C' (also with respect to the subspace topology of F').

Now Y >7  AnZy, is but a convex combination of a point in the interior and a point
in the closure of C' with weights strictly between 0 and 1. By (a) it follows that
302 o Ay € C. So C' is ideally convex.

Exercise 4 (Continuous decomposition in the ice-cream cone). Endow R¢
with the ice cream cone. Give an explicit example of functions v,v~ with the
properties stated in Theorem 3.4.1.

Solution: Define Px := (0,22, ...,24) for all z € RY. Let

R R {<||P:cu2,x2,...,xd>, 21 <0,

(HP.’IJH2+$1,$2,..-,$d> 3:1207
and

RIS R {(—w1+\|PxH2,O,...,O), 21 <0,

(I1Pz|l5,0,...,0), x1 > 0.
Then v and v~ are well-defined, positively homogeneous and satisfy
I @)y, 17~ (@)l < llzlly + [[Plly < 2z,

for all z € E. The continuity is also clear. Moreover, vt (z) — v~ (z) = .

Exercise 5 (The Loewner order on the self-adjoint operators). Let H be
an infinite-dimensional separable Hilbert spaceﬂ over C and let C(H )s, denote the

! Actually, neither the infinite dimension nor the separability is relevant for any of the properties
in (a)—(c); and for part (d), only the infinite dimension is relevant. But infinite dimension and
separability simplifies the notation in the solution a bit.
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space of all self-adjoint compact linear operators on H; this is a Banach space over
R with respect to the operator norm.

Similarly as on £(H)s, we define the Loewner cone (K(H )s,)
of all positive semidefinite operators in (H )g,.

(a) Show that (IC(H)sa)Jr
(b) Show that K(H )s, has empty interior.

4 on K(H)sa to consist

is a closed generating cone in IC(H )s,.

(c) For each closed vector subspace V' of H define
Fy = {A € (K(H)s), | A vanishes on V}.

Prove that each such set Fy is a closed face of (IC(H )sa) N and that, conversely, every

closed face of (IC(H )Sa) n is of the form Fy for a closed vector subspace V' of H.
Hint for the converse part: For a closed face F, define V' := [,y ker A. It might
be helpful to prove thatﬂ

W={xeH| z®xecF}

is a closed vector subspace of H.

(d) Extra challenge:
Show that the Loewner cone (ﬁ(H)w)Jr in £(H)s, has a closed face that is not of
the form

{A € (L'(H)Sa)+ | A vanishes on V}

for any closed vector subspace V' of H.

Solution:

(a) We show that (IC(H)Sa)+ is closed. Let (A,),cy be a sequence in (K(H)sa)

+
that converges to A € K(H)ga. Then

0<(z]|Anx)— (x| Ax)

for all z € H. So A is also in (IC(H)sa)+ and therefore the cone is closed.
To show that (IC(H)Sa)+ is generating, let A € K(H)g,. Clearly o(A) C R. By spec-
tral theory there exists a orthonormal basis (ey),,c and a sequence of real numbers

(An)pen such that

A= i/\" (en ® en),

n=1

where (e, ® ep)x := (e, | x)e, is the orthogonal rank-1-projection onto the span of
en. By setting

A+ = Z max()\n, 0) (en ® Bn),

n=1

2For each z € H the operator  ® « : H — H is defined by (z ® 2)z = (x| 2) « for each z € H.
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and
A = Z maX(—)\n, 0) (en X Bn),
n=1

We obtain that A = AT + A~ and that AT, A~ € (K(H)sa)

generating.

4 Hence, the cone is

(b) Let A € (’C(H)sa)Jr and let (A,),cy be as in (a). Then also by spectral theory
(An)pen converges to 0. So for every € > 0 there is n € N such that |A,| < e. Then
S = —¢c(en, ® ey) satisfies ||S]| = ¢ and (e, | (A+ S)en) = A+ <0. So A+ S
is not positive definite. It follows that A is not in the interior of (K(H)sa) - and
hence, the interior is empty.

(c) We first show that for each closed vector subspace V' of H the set Fy is a closed
face of (IC(H )Sa) .- Clearly Fy is a wedge, since every linear combination of operator
A and B that vanish on V' also vanishes on V. Now let A € Fyy and B € [0, A]. We
show that B € Fy,. Then by Proposition 1.4.3 (ii) = (i) it follows that Fy is a face.

By choice of A and B it follows that A vanishes on V and A — B > 0. Suppose there
exists v € V such that (v | Bv) # 0. Then 0 < (v | (A — B)v) = (v | Bv) < 0. This
is a contradiction.

Conversely, let F' be a closed face in C(H )s, and define as in the hint the set closed
subspace V' := (¢ ker A. Then clearly F' C Fy,, since every operator in F' vanishes
on V.

For the converse direction we show the claim in the hint. Let « > 0 and z,y € W.
Then (az)®(ax) = |a| (x®@z) € F. To see that x+y € W we use that the inequality
2Re(ab) < |a|? + [b]? holds for all a,b € CF| Hence, a simple calculation yields

Fl @ty ®@+y)z) = (]| (@@ )2) +2Re((z [ 2)(y | 2)) + (2| (y®y)2)
<2(z | 2)+2l(y ] 2)?
=2z | (x®@x)2) +2(2 | (y @ y)2)

for all z € H. So it follows that (z +y) ® (x +y) < 2(x ® ) + 2(y ® y) and thus,
(x+y)®(z+y) € F by Proposition 1.4.3 (i) = (iii). In summary it follows that W
is indeed a vector space. Since the mapping H > x — x ® x is continuous and W is
its preimage under the set closed set F' it follows that W is even closed.

With the claim proved, we now show that W @& V = H. Clearly, x € W NV
implies that (z ® z)z = ||z||>z = 0. Hence, z = 0. To conclude, we show that
Wt={zecH|VYyeW:(y|z)=0} CV. Suppose there is x € W+ with z ¢ V.
Then there is an element A € F' such that Ax # 0. Since by the spectral theorem

o)

A= Z An(en ® ep)

n=1

for appropriate sequences (en), oy of eigenvectors of A and (M), oy in [0,00). So
there exists a n € N some non-zero eigenvalue A\, > 0 such that (e, | z) # 0. Since
F is a face and \,(e, ® e,) is clearly dominated by A it follows that e, ® e, € W,

3This can be seen by showing that |a|?> — 2Re(ab) + |b|? = |a — b|? for all a,b € C.
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and thus, e, € W. This is a contradiction, since e, is not orthogonal to x and = was
assumed to be in W+, It follows that W+ C V and thus, W @ V = H.

To finalize the proof, we show now that Fyy C F. Take A € Fy. Then harnessing
the power of the spectral theorem once again we obtain

A= Z An(en ® ey)

n=1

for appropriate sequences (e;,),, ¢y of eigenvectors of A and (Ay),,cy in [0,00). Then
clearly \, # 0 implies that (e, | ) = 0 for all € ker A, and thus, e, € V+ = W.
Hence, e, ® e, € F, whenever A\, # 0. By closedness of F' it follows that A € F.

(d) Claim. The Loewner cone in (H)s, is a face of the Loewner cone in £(H )sa
that is not of the form Fy for any closed subspace V C H.

Proof. Let B € (IC(H)SEL)Jr and 0 < B < A. We show that A is also compact, and
thus, A€ B € (IC(H)S&)

Clearly,

4

IAY2|? = |(AY22 | AV22)| < |(BY?x | BY2)| = | BY?|? (1)

Since B'/? is also compact by the spectral theorem, the sequence (Bl/ an)neN has
a convergent subsequence, whenever (z,), .y is a bounded sequence in H. Since,
convergent sequences are Cauchy, the inequality now implies that (Al/ 2xn)n€N
also has a Cauchy (and thus convergent) subsequence. This shows that B is compact.

To see that (’C(H)sa)+ is not of the form Fy notice that (IC(H)sa)+ contains all
rank-1-operators, so there exists no non-trivial subspace of H on which all operators

in (/C(H)sa)+ vanish.
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