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5. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 9 and 10, 2023
with Solutions

Exercise 1 (Non-ideally convex wedges).
(a) Find an example of a Banach space E and an Archimedean wedge E+ which is
generating but not ideally convex.
Hint: Start with an arbitrary infinite-dimensional Banach space E and a discontin-
uous linear functional φ : E → R.

(b) Find an example of a Banach space E and an Archimedean cone E+ which is
generating but not ideally convex.
Hint: Start with an arbitrary infinite-dimensional Banach space E and a Hamel basis
of E.

Solution:

(a) Let E be an arbitrary infinite-dimensional Banach space and φ : E → R a
discontinuous linear functional. Define a wedge

E+ := {x ∈ E | φ(x) ≥ 0}.

Clearly, E+ is indeed a wedge. Moreover, E+ is generating, since for every x ∈ E we
have x ∈ E+ or −x ∈ E+.

We show that E+ is Archimedean. Let x, y ∈ E+ be such that x ≤ 1
ny for all n ∈ N,

then y − n · x ≥ 0 for all n ∈ N. Hence,

0 ≤ φ(y − n · x) = φ(y)− n · φ(x)

for all n ∈ N and x ∈ E+ implies that φ(x) = 0. In particular, x ≤ 0, so E+ is
Archimedean.

Suppose to show a contradiction that E+ is ideally convex. Since φ is discontinuous;
and thus, unbounded, there exists a sequence (xn)n∈N in E that converges to 0 with
φ(xn) = 1 for all n ∈ N. So (xn)n∈N is a increasing (and even decreasing) sequence
in E+, since φ(xn+1−xn) = 0 for all n ∈ N. By Proposition 3.2.3 (i) ⇒ (v) it follows
that xn ≤ 0 for all n ∈ N. This is a contradiction, since φ(xn) = 1 for all n ∈ N.

(b) Let E be any infinite-dimensional Banach space and B ⊆ E be a Hamel basis of
E. Define the cone

E+ :=

{
n∑

k=1

αkbk

∣∣∣∣∣ α1, . . . , αn ≥ 0, b1, . . . , bn ∈ B, n ∈ N0

}
.
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Clearly, E+ is a wedge. Since the finite sum representation of each element in E
with respect to a Hamel basis is unique, it follows that each element x ∈ E+ ∩−E+

must be 0. Hence, E+ is a cone. That E+ is generating follows from the observation
that E+ − E+ is exactly the span of the basis B.

For x ∈ E and each b ∈ B denote by αb(x) the unique real number such that

x =
∑
b∈B

αb(x) b.

Notice αb is a linear functional, αb(x) ̸= 0 for at most finitely many b ∈ B and that
x ≤ y if and only if αb(x) ≤ αb(y) for all b ∈ B.

To show that E+ is Archimedean, let x, y ∈ E+ such that x ≤ 1
ny. Then repeating

the argument in (a), we obtain

0 ≤ αb(y − n · x) = αb(y)− n · αb(x)

for all b ∈ B and all n ∈ N. Hence, αb(x) = 0 for all b ∈ N, which implies that
x = 0 ≤ 0. So E+ is Archimedean.

Suppose to show a contradiction that E+ is ideally convex. Let (bk)k∈N be a pairwise
distinct sequence in B and (αk)k∈N be a sequence in (0,∞) such that ∥αkbk∥ < 1

2k
.

Define xn :=
∑n

k=1 αkbk for every n ∈ N. Then (xn)n∈N is an increasing sequence
that converges some x ∈ E. By Proposition 3.2.3 (i) ⇒ (v) it follows that xn ≤ x
for all n ∈ N; and hence, αb(xn) ≤ αb(x) for all b ∈ B and n ∈ N. This implies that
αb(x) > 0 for infinitely many b ∈ B. This is a contradiction. It follows that E+ is
not ideally convex.

Exercise 2 (Vector-valued ℓp-spaces). Let E be a pre-ordered Banach space
and let p ∈ [1,∞]. For each sequence x = (xn)n∈N in E we define ∥x∥p ∈ [0,∞] as

∥x∥p :=


(∑∞

n=1 ∥xn∥
p
)1/p

if p ∈ [1,∞),

supn∈N ∥xn∥ if p = ∞.

Define ℓp(N;E) to be the set of all sequences x in E, indexed over N, that satisfy
∥x∥p < ∞. One can show that this is a vector space with the pointwise operations
and a Banach space when endowed with the norm ∥ · ∥p. Let us equip the Banach
space ℓp(N;E) with the wedge

ℓp(N;E)+ :=
{
x ∈ ℓp(N;E) | xn ∈ E+ for each n ∈ N

}
.

Prove that ℓp(N;E)+ is closed. When is ℓp(N;E)+ a cone? When is it generating?

Solution: Consider the coordinate mappings

cn : ℓp(N;E) → E, x = (xn)n∈N 7→ xn.

and notice that ∥cnx∥E ≤ ∥x∥ℓp for each x ∈ ℓp(N;E) and each p ∈ [0,∞]. The cone
ℓp(N;E)+ is exactly the intersection

ℓp(N;E)+ =
⋂
n∈N

c−1
n

(
E+

)
.
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Since E+ is closed and cn continuous, this is an intersection of closed sets, and thus,
itself closed.
Claim. The set ℓp(N;E)+ is a cone if and only if E+ is a cone.
Proof. Notice that ℓp(N;E)+ is always a wedge.
“⇒”: Let ℓp(N;E)+ be a cone. Consider x ∈ E+∩−E+. Then the element ( 1

2nx)n∈N
is in ℓp(N;E)+ and −ℓp(N;E)+. Hence, ( 1

2nx)n∈N = 0, and thus, x = 0. So E+ is a
cone.
“⇐”: Let E+ be a cone. Pick x = (xn)n∈N such that −x, x ∈ ℓp(N;E)+. Then in
particular −xn, xn ∈ E+ for all n ∈ N. Hence, xn = 0 for all n ∈ N, which implies
that x = 0. So ℓp(N;E)+ is a cone.
Claim. The set ℓp(N;E)+ is generating if and only if E+ is generating.
Proof. “⇒”: Let ℓp(N;E)+ be generating and let x ∈ E. Then there exist (x+n )n∈N
and (x−n )n∈N such that (x+n )n∈N − (x−n )n∈N = ( 1

2nx)n∈N. Hence, 1
2nx = x+n − x−n and

x+n , x
−
n ∈ E+ for all n ∈ N. So E+ is generating.

“⇐”: Let E+ be generating and x = (xn)n∈N ∈ ℓp(N;E). Since E+ is generating
there exists a constant M > 0 and elements x+n and x−n in E+ such that xn = x+n −x−n
and ∥x+n ∥, ∥x−n ∥ ≤ M∥xn∥ for all n ∈ N. In particular, the sequences x+ := (x+n )n∈N
and x− := (x−n )n∈N are in ℓp(N;E)+ and satisfy x = x+ − x−. Thus ℓp(N;E)+ is
generating.

Exercise 3 (Properties of convex sets). Let E be a normed space over R and
let C ⊆ E be convex.
(a) Show that if x is an interior point of C and y ∈ ∂C, then y+λ(x−y) = λx+(1−λ)y
is also an interior point of C for all λ ∈ (0, 1].

(b) Show that if E is finite-dimensional, 0 ∈ C, and C spans E, then C has non-
empty interior.

(c) Show that if E is finite-dimensional, then C is ideally convex.

Solution:

(a) Let λ ∈ (0, 1]. Then clearly, Int(C) ⊆ λ Int(C)+(1−λ)C ⊆ C. Since the interior
of C is the largest open set contained in C, it suffices to show that λ Int(C)+(1−λ)C
is open. But this follows from

λInt(C) + (1− λ)C =
⋃
x∈C

λ Int(C) + (1− λ)x,

since this is a union of open sets. In particular it follows that y + λ(x − y) =
λx+ (1− λ)y is an interior point of C, whenever x ∈ Int(C) and y ∈ C.

(b) Since every spanning set of E contains a basis and C spans E there exist linearly
independent b1, . . . , bd ∈ C such that

E = {α1b1 + · · ·+ αdbd | α1, . . . , αd ∈ R},

where d = dim(E). Now the simplex

[b1, . . . , bd] = {α1b1 + · · ·+ αdbd | α1, . . . , αd ≥ 0, α1 + · · ·+ αd ≤ 1}

is contained in C and has non-empty interior. An open set in the simplex is for
instance the set determined by the coefficients αi ∈ (0, 1d) for all i ∈ {1, . . . , d}.
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(c) Let (xn)n∈N0
be a norm bounded sequence in C and (λn)n∈N0

be a sequence in
[0,∞) with

∑∞
n=0 λn = 1. We may assume w.l.o.g. that λn > 0 for all n ∈ N0 and

that x0 = 0 (otherwise we shift the sequence and the set C by −x0).

Let F be the span of (xn)n∈N0
and let d := dim(F ). Then we may assume, after

potentially reordering the sequences, that x1, . . . , xd are a basis of F . Thus we find
a linear and bijective map T : F → Rd that maps each x1, . . . , xd to a canonical unit
vector e1, . . . , ed, respectively. Notice that since λ0 > 0 and x0 = 0 it follows that

T

( d∑
n=0

λn

)−1 d∑
n=0

λnxn

 =

(
d∑

n=0

λn

)−1 d∑
n=1

λnen

lies in the interior of the standard simplex of Rd. Hence,
(∑d

n=0 λn

)−1∑d
n=0 λnxn

lies in the interior of C with respect to the relative topology induced by F .

Moreover, by convexity the point
(∑∞

n=d+1 λn

)−1∑∞
n=d+1 λnxn lies in the closure of

C (also with respect to the subspace topology of F ).

Now
∑∞

n=0 λnxn is but a convex combination of a point in the interior and a point
in the closure of C with weights strictly between 0 and 1. By (a) it follows that∑∞

n=0 λnxn ∈ C. So C is ideally convex.

Exercise 4 (Continuous decomposition in the ice-cream cone). Endow Rd

with the ice cream cone. Give an explicit example of functions γ+, γ− with the
properties stated in Theorem 3.4.1.

Solution: Define Px := (0, x2, . . . , xd) for all x ∈ Rd. Let

γ+ : Rd → Rd
+, x 7→

{
(∥Px∥2, x2, . . . , xd), x1 < 0,

(∥Px∥2 + x1, x2, . . . , xd) x1 ≥ 0,

and

γ− : Rd → Rd
+, x 7→

{
(−x1 + ∥Px∥2, 0, . . . , 0), x1 < 0,

(∥Px∥2, 0, . . . , 0), x1 ≥ 0.

Then γ+ and γ− are well-defined, positively homogeneous and satisfy

∥γ+(x)∥2, ∥γ
−(x)∥2 ≤ ∥x∥2 + ∥Px∥2 ≤ 2∥x∥2

for all x ∈ E. The continuity is also clear. Moreover, γ+(x)− γ−(x) = x.

Exercise 5 (The Loewner order on the self-adjoint operators). Let H be
an infinite-dimensional separable Hilbert space1 over C and let K(H)sa denote the

1Actually, neither the infinite dimension nor the separability is relevant for any of the properties
in (a)–(c); and for part (d), only the infinite dimension is relevant. But infinite dimension and
separability simplifies the notation in the solution a bit.
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space of all self-adjoint compact linear operators on H; this is a Banach space over
R with respect to the operator norm.
Similarly as on L(H)sa we define the Loewner cone

(
K(H)sa

)
+

on K(H)sa to consist
of all positive semidefinite operators in K(H)sa.
(a) Show that

(
K(H)sa

)
+

is a closed generating cone in K(H)sa.

(b) Show that K(H)sa has empty interior.

(c) For each closed vector subspace V of H define

FV :=
{
A ∈

(
K(H)sa

)
+
| A vanishes on V

}
.

Prove that each such set FV is a closed face of
(
K(H)sa

)
+

and that, conversely, every
closed face of

(
K(H)sa

)
+

is of the form FV for a closed vector subspace V of H.

Hint for the converse part: For a closed face F , define V :=
⋂

A∈F kerA. It might
be helpful to prove that2

W := {x ∈ H | x⊗ x ∈ F}

is a closed vector subspace of H.

(d) Extra challenge:
Show that the Loewner cone

(
L(H)sa

)
+

in L(H)sa has a closed face that is not of
the form {

A ∈
(
L(H)sa

)
+
| A vanishes on V

}
for any closed vector subspace V of H.

Solution:

(a) We show that
(
K(H)sa

)
+

is closed. Let (An)n∈N be a sequence in
(
K(H)sa

)
+

that converges to A ∈ K(H)sa. Then

0 ≤ (x | Anx) → (x | Ax)

for all x ∈ H. So A is also in
(
K(H)sa

)
+

and therefore the cone is closed.

To show that
(
K(H)sa

)
+

is generating, let A ∈ K(H)sa. Clearly σ(A) ⊆ R. By spec-
tral theory there exists a orthonormal basis (en)n∈N and a sequence of real numbers
(λn)n∈N such that

A =

∞∑
n=1

λn (en ⊗ en),

where (en ⊗ en)x := (en | x)en is the orthogonal rank-1-projection onto the span of
en. By setting

A+ :=

∞∑
n=1

max(λn, 0) (en ⊗ en),

2For each x ∈ H the operator x⊗ x : H → H is defined by (x⊗ x)z = (x | z)x for each z ∈ H.
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and

A− :=

∞∑
n=1

max(−λn, 0) (en ⊗ en),

We obtain that A = A+ + A− and that A+, A− ∈
(
K(H)sa

)
+
. Hence, the cone is

generating.

(b) Let A ∈
(
K(H)sa

)
+

and let (λn)n∈N be as in (a). Then also by spectral theory
(λn)n∈N converges to 0. So for every ε > 0 there is n ∈ N such that |λn| < ε. Then
S := −ε(en ⊗ en) satisfies ∥S∥ = ε and (en | (A + S)en) = λn + ε < 0. So A + S
is not positive definite. It follows that A is not in the interior of

(
K(H)sa

)
+
, and

hence, the interior is empty.

(c) We first show that for each closed vector subspace V of H the set FV is a closed
face of

(
K(H)sa

)
+
. Clearly FV is a wedge, since every linear combination of operator

A and B that vanish on V also vanishes on V . Now let A ∈ FV and B ∈ [0, A]. We
show that B ∈ FV . Then by Proposition 1.4.3 (ii) ⇒ (i) it follows that FV is a face.

By choice of A and B it follows that A vanishes on V and A−B ≥ 0. Suppose there
exists v ∈ V such that (v | Bv) ̸= 0. Then 0 ≤ (v | (A− B)v) = (v | Bv) < 0. This
is a contradiction.

Conversely, let F be a closed face in K(H)sa and define as in the hint the set closed
subspace V :=

⋂
A∈F kerA. Then clearly F ⊆ FV , since every operator in F vanishes

on V .

For the converse direction we show the claim in the hint. Let α ≥ 0 and x, y ∈ W .
Then (αx)⊗(αx) = |α| (x⊗x) ∈ F . To see that x+y ∈ W we use that the inequality
2Re(ab) ≤ |a|2 + |b|2 holds for all a, b ∈ C.3 Hence, a simple calculation yields(

z | ((x+ y)⊗ (x+ y))z
)
=
(
z | (x⊗ x)z

)
+ 2Re

(
(z | x)(y | z)

)
+
(
z | (y ⊗ y)z

)
≤ 2|(x | z)|2 + 2|(y | z)|2

= 2(z | (x⊗ x)z) + 2(z | (y ⊗ y)z)

for all z ∈ H. So it follows that (x + y) ⊗ (x + y) ≤ 2(x ⊗ x) + 2(y ⊗ y) and thus,
(x+ y)⊗ (x+ y) ∈ F by Proposition 1.4.3 (i) ⇒ (iii). In summary it follows that W
is indeed a vector space. Since the mapping H ∋ x 7→ x⊗ x is continuous and W is
its preimage under the set closed set F it follows that W is even closed.

With the claim proved, we now show that W ⊕ V = H. Clearly, x ∈ W ∩ V
implies that (x ⊗ x)x = ∥x∥2x = 0. Hence, x = 0. To conclude, we show that
W⊥ := {x ∈ H | ∀y ∈ W : (y | x) = 0} ⊆ V . Suppose there is x ∈ W⊥ with x ̸∈ V .
Then there is an element A ∈ F such that Ax ̸= 0. Since by the spectral theorem

A =

∞∑
n=1

λn(en ⊗ en)

for appropriate sequences (en)n∈N of eigenvectors of A and (λn)n∈N in [0,∞). So
there exists a n ∈ N some non-zero eigenvalue λn > 0 such that (en | x) ̸= 0. Since
F is a face and λn(en ⊗ en) is clearly dominated by A it follows that en ⊗ en ∈ W ,

3This can be seen by showing that |a|2 − 2Re(ab) + |b|2 = |a− b|2 for all a, b ∈ C.
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and thus, en ∈ W . This is a contradiction, since en is not orthogonal to x and x was
assumed to be in W⊥. It follows that W⊥ ⊆ V and thus, W ⊕ V = H.

To finalize the proof, we show now that FV ⊆ F . Take A ∈ FV . Then harnessing
the power of the spectral theorem once again we obtain

A =
∞∑
n=1

λn(en ⊗ en)

for appropriate sequences (en)n∈N of eigenvectors of A and (λn)n∈N in [0,∞). Then
clearly λn ̸= 0 implies that (en | x) = 0 for all x ∈ kerA, and thus, en ∈ V ⊥ = W .
Hence, en ⊗ en ∈ F , whenever λn ̸= 0. By closedness of F it follows that A ∈ F .

(d) Claim. The Loewner cone in K(H)sa is a face of the Loewner cone in L(H)sa
that is not of the form FV for any closed subspace V ⊆ H.

Proof. Let B ∈
(
K(H)sa

)
+

and 0 ≤ B ≤ A. We show that A is also compact, and
thus, A ∈ B ∈

(
K(H)sa

)
+
.

Clearly,

∥A1/2∥2 = |(A1/2x | A1/2x)| ≤ |(B1/2x | B1/2x)| = ∥B1/2∥2 (1)

Since B1/2 is also compact by the spectral theorem, the sequence (B1/2xn)n∈N has
a convergent subsequence, whenever (xn)n∈N is a bounded sequence in H. Since,
convergent sequences are Cauchy, the inequality (1) now implies that (A1/2xn)n∈N
also has a Cauchy (and thus convergent) subsequence. This shows that B is compact.

To see that
(
K(H)sa

)
+

is not of the form FV notice that
(
K(H)sa

)
+

contains all
rank-1-operators, so there exists no non-trivial subspace of H on which all operators
in
(
K(H)sa

)
+

vanish.
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