
Summer term
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4. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 2 and 3, 2023
with Solutions

Exercise 1 (Duality of half the ice-cream cone).
(a) Let E be a finite-dimensional vector space let C,D ⊆ E be closed wedges in E,
and denote their dual wedges by C ′, D′ ⊆ E′.
Show that the dual wedge of C ∩D is the closure of C ′ +D′.

(b) Endow R3 with the generating cone

R3
+ :=

{
x ∈ R3 | x1, x2 ≥ 0 and x21 ≥ x22 + x23

}
.

Compute the dual cone.

(c) Sketch the cone from part (b) and its dual cone.

Solution:

(a) We show that (C ∩D)′ = cl
(
C ′ +D′).

“⊆”: Note that for two closed wedges W,V ⊆ E, where E is finite-dimensional, we
have1

W ⊆ V if and only if V ′ ⊆ W ′

and that dual wedges are always closed. Thus it suffices to show the inclusion(
cl(C ′ +D′)

)′
= (C ′ +D′)′ ⊆ C ∩D = (C ∩D)′′.

So let x′′ ∈ (C ′ +D′)′. By definition we have ⟨x′′, x′⟩ ≥ 0 for all x′ ∈ C ′ +D′, which
implies ⟨x′′, x′1+x′2⟩ ≥ 0 for all x′1 ∈ C ′ and all x′2 ∈ D′. Since 0 ∈ C ′∩D′ we obtain,
in particular, that ⟨x′′, x′1⟩ ≥ 0 and ⟨x′′, x′2⟩ ≥ 0 for all x′1 ∈ C ′ and all x′2 ∈ D′.
Thus, x′′ ∈ C ′′ ∩D′′ = C ∩D. This shows the inclusion.

“⊇”: Let x′ ∈ C ′ +D′. Then there exists x′1 ∈ C and x′2 ∈ D such that x′ = x′1 + x′2.
Hence, we have for all x ∈ (C∩D) that ⟨x′, x⟩ = ⟨x′1, x⟩+⟨x′2, x⟩ ≥ 0. So x′ ∈ (C∩D)′.
As the dual cone (C ∩D)′ is closed, the claimed inclusion follows.

(b) Notice that R3
+ is the intersection of the ice-cream cone

C :=
{
x ∈ R3 | x1 ≥ 0 and x21 ≥ x22 + x23

}
1By finite-dimensionality, we have W ′′ = W and V ′′ = V , and thus, it suffices to show the

implication “⇒”.
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Figure 1: The cone R3
+ in Exercise 1 (b).
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Figure 2: The dual of the cone R3
+ in Exercise 1 (b).

and the half space

D :=
{
x ∈ R3 | x2 ≥ 0

}
.

So by (a) the dual of R3
+ is given by C ′+D′. We compute C ′+D′. By Exercise 4 (c)

on Sheet 3 we know that the ice-cream cone is self-dual, so C ′ = C. Moreover, it
follows from a simple computation that the dual of D is given by

D′ = [0,∞)e(2).

Notice also that R3
+ is not self-dual.

(c) A sketch of cone R3
+ can be found in Figure 1 and a sketch of the dual cone of

R3
+ can be found in Figure 2.

Exercise 2 (Non-closedness under linear maps). Find an example of a finite-
dimensional real vector spaces E and F , a closed and generating cone E+ in E, and
a linear map T : E → F such that T (E+) is not closed in F .

Solution: Let E = R3 and E+ be the ice-cream cone in E. We know from the
lecture that E+ is closed and generating. Moreover, let F = R2 and consider the
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mapping

T : E → F, (x1, x2, x3) 7→ (x1 + x2, x3).

Claim. The image of E+ under T is given by

T (E+) = {0} ∪ {(y1, y2) ∈ R2 | y1 > 0}.

Proof. “⊆”: Let y ∈ T (E+). Then if x3 = y2 = 0, then x21 ≥ x22 implies that y1 ≥ 0.
Hence, y = 0 or y1 > 0. If x3 = y2 ̸= 0, then x21 > x22 implies y1 > 0. In any case
y = 0 or y1 > 0.
“⊇”: Clearly, 0 ∈ T (E+). If y ∈ F with y1 > 0, then choose x ∈ E such that x3 := y2
and and x1 ≥ 0 large enough that x21 ≥ (y1 − x1)

2 + x23. Such x1 exists, since this
inequality is equivalent to

0 ≥ y21 − 2x1y1 + y22.

Now set x2 := y1 − x1. Then clearly, x ∈ E+ and Tx = y.

Exercise 3 (Positive operators with respect to the standard cone). Endow
Rc and Rd with the standard cones. What are the interior points of L(Rc;Rd)+?

Solution: Recall from Propositon 2.3.2 that and operator T : Rc → Rd is in the
interior of L(Rc;Rd)+ if and only if T (Rc

+ \ {0}) ⊆ Int(Rd
+).Clearly,

Int(Rd
+) = {x ∈ Rd | x1, . . . , xd > 0}.

Let T be in the interior of L(Rc;Rd)+. Then Te(k) ∈ Int(Rd
+) for all k ∈ {1, . . . , c},

where e(k) denotes the canonical unit vectors in Rc. Since Te(k) is the k-th column
of T it it follows that the k-th column only has positive entries. Since this is true for
every k it follows that T only has positive entries.
Conversely, let T only have positive entries and take x ∈ Rc

+ \ {0}. Then

Tx =
c∑

k=1

xiTe
(k).

Since all xi are non-negative and at least one is positive, it follows that Tx only has
positive entries; and thus, Tx ∈ Int(Rd

+).

Exercise 4 (Positive operator with the respect to the Loewner order).
Endow E := Cd×d

sa with the Loewner order.
(a) For every C ∈ Cd×d consider the positive operator TC : E → E that is given by
TCA = C∗AC for all A ∈ E.
For which C ∈ Cd×d is TC an interior point of L(E;E)+?

(b) Prove or disprove that for all A,B ∈ E+ the matrix AB +BA is also in E+.

(c) Fix C ∈ E+ and let SC : E → E be given by SCA = AC + CA for all A ∈ E.
When is SC an interior point of L(E;E)+?
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(d) Fix C ∈ E+ and consider the map RC : E → E that is given by RCA = tr(A)C
for each A ∈ E.
Show that RC is positive for every C ∈ E+. Under which conditions is RC an interior
point of L(E;E)+?

Solution:

(a) Recall from Exercise 2 (b) on Sheet 3 that the interior points of E+ are precisely
the positive definite matrices. Moreover, recall from Proposition 2.3.2 that TC is an
interior point of L(E;E)+ if and only if

TC(E+ \ {0}) ⊆ Int(E+).

We differentiate two cases:

If d = 1, then E ∼= R and E+ \ {0} = Int(E+). So TC ∈ Int(L(E;E)+) if and only
if C ∈ C \ {0}.
If d > 1, then let C ∈ Cd×d and A ∈ E+ \ {0} be such that A is positive semidefinite
but not positive definite.2 Then for every C ∈ Cd×d the operator TCA = C∗AC is
positive semidefinite but not positive definite. Hence, TCA ̸∈ Int(E+). It follows
that TC is not in the interior of L(E;E)+ for any C ∈ Cd×d.

(b) Let

A :=

(
1 2
2 5

)
and C :=

(
1 −1
−1 2

)
.

It is easily checked that A,C ∈ E+ and

AC + CA =

(
−1 3
−3 8

)
+

(
−1 −3
3 −8

)
=

(
−1 0
0 0

)
.

So AC + CA ̸∈ E+.

(c) Let A,C ∈ E+.

If d = 1, then E ∼= R and E+ \ {0} = Int(E+). So SC ∈ Int(L(E;E)+) if and only
if C > 0.

If d > 1, then let C ∈ E+ and A ∈ E+ \ {0} be such that A is positive semidefinite
but not positive definite.3 Then there exists 0 ̸= x ∈ C2 such that Ax = 0. Thus,

(x | (AC + CA)x) = (Ax | Cx) + (Cx | Ax) = 0.

So AC +CA can not be positive definite, so AC +CA ̸∈ Int(E+). Now by Proposi-
tion 2.3.2 the operator SC is not in the interior of L(E;E)+ for any C ∈ E+.

(d) Notice that a positive semidefinite matrix A has tr(A) = 0 if and only if A = 0.
Indeed, if A = 0 then clearly tr(A) = 0. Conversely, recall that there exists a unitary
matrix U ∈ Cd×d such that UAU∗ is diagonal. Since tr(UAU∗) = tr(A) = 0 it
follows that UAU∗ = 0. Hence, A = 0.

It follows that RCA ∈ Int(E+) for all A ∈ E+ \ {0} if and only if C ∈ Int(E+).

2Note that one need d > 1 for such a matrix to exist.
3Note that one need d > 1 for such a matrix to exist.
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