4. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on May 2 and 3, 2023
with Solutions

Exercise 1 (Duality of half the ice-cream cone).

(a) Let E be a finite-dimensional vector space let $C, D \subseteq E$ be closed wedges in E, and denote their dual wedges by $C^{\prime}, D^{\prime} \subseteq E^{\prime}$.
Show that the dual wedge of $C \cap D$ is the closure of $C^{\prime}+D^{\prime}$.
(b) Endow \mathbb{R}^{3} with the generating cone

$$
\mathbb{R}_{+}^{3}:=\left\{x \in \mathbb{R}^{3} \mid x_{1}, x_{2} \geq 0 \text { and } x_{1}^{2} \geq x_{2}^{2}+x_{3}^{2}\right\} .
$$

Compute the dual cone.
(c) Sketch the cone from part (b) and its dual cone.

Solution:

(a) We show that $(C \cap D)^{\prime}=\operatorname{cl}\left(C^{\prime}+D^{\prime}\right)$.
" \subseteq ": Note that for two closed wedges $W, V \subseteq E$, where E is finite-dimensional, we have1 ${ }^{1}$

$$
W \subseteq V \quad \text { if and only if } \quad V^{\prime} \subseteq W^{\prime}
$$

and that dual wedges are always closed. Thus it suffices to show the inclusion

$$
\left(\mathrm{cl}\left(C^{\prime}+D^{\prime}\right)\right)^{\prime}=\left(C^{\prime}+D^{\prime}\right)^{\prime} \subseteq C \cap D=(C \cap D)^{\prime \prime} .
$$

So let $x^{\prime \prime} \in\left(C^{\prime}+D^{\prime}\right)^{\prime}$. By definition we have $\left\langle x^{\prime \prime}, x^{\prime}\right\rangle \geq 0$ for all $x^{\prime} \in C^{\prime}+D^{\prime}$, which implies $\left\langle x^{\prime \prime}, x_{1}^{\prime}+x_{2}^{\prime}\right\rangle \geq 0$ for all $x_{1}^{\prime} \in C^{\prime}$ and all $x_{2}^{\prime} \in D^{\prime}$. Since $0 \in C^{\prime} \cap D^{\prime}$ we obtain, in particular, that $\left\langle x^{\prime \prime}, x_{1}^{\prime}\right\rangle \geq 0$ and $\left\langle x^{\prime \prime}, x_{2}^{\prime}\right\rangle \geq 0$ for all $x_{1}^{\prime} \in C^{\prime}$ and all $x_{2}^{\prime} \in D^{\prime}$. Thus, $x^{\prime \prime} \in C^{\prime \prime} \cap D^{\prime \prime}=C \cap D$. This shows the inclusion.
"つ": Let $x^{\prime} \in C^{\prime}+D^{\prime}$. Then there exists $x_{1}^{\prime} \in C$ and $x_{2}^{\prime} \in D$ such that $x^{\prime}=x_{1}^{\prime}+x_{2}^{\prime}$. Hence, we have for all $x \in(C \cap D)$ that $\left\langle x^{\prime}, x\right\rangle=\left\langle x_{1}^{\prime}, x\right\rangle+\left\langle x_{2}^{\prime}, x\right\rangle \geq 0$. So $x^{\prime} \in(C \cap D)^{\prime}$. As the dual cone $(C \cap D)^{\prime}$ is closed, the claimed inclusion follows.
(b) Notice that \mathbb{R}_{+}^{3} is the intersection of the ice-cream cone

$$
C:=\left\{x \in \mathbb{R}^{3} \mid x_{1} \geq 0 \text { and } x_{1}^{2} \geq x_{2}^{2}+x_{3}^{2}\right\}
$$

[^0]

Figure 1: The cone \mathbb{R}_{+}^{3} in Exercise 1 (b).

Figure 2: The dual of the cone \mathbb{R}_{+}^{3} in Exercise 1 (b).
and the half space

$$
D:=\left\{x \in \mathbb{R}^{3} \mid x_{2} \geq 0\right\} .
$$

So by (a) the dual of \mathbb{R}_{+}^{3} is given by $C^{\prime}+D^{\prime}$. We compute $C^{\prime}+D^{\prime}$. By Exercise 4 (c) on Sheet 3 we know that the ice-cream cone is self-dual, so $C^{\prime}=C$. Moreover, it follows from a simple computation that the dual of D is given by

$$
D^{\prime}=[0, \infty) e^{(2)}
$$

Notice also that \mathbb{R}_{+}^{3} is not self-dual.
(c) A sketch of cone \mathbb{R}_{+}^{3} can be found in Figure 1 and a sketch of the dual cone of \mathbb{R}_{+}^{3} can be found in Figure 2 .

Exercise 2 (Non-closedness under linear maps). Find an example of a finitedimensional real vector spaces E and F, a closed and generating cone E_{+}in E, and a linear map $T: E \rightarrow F$ such that $T\left(E_{+}\right)$is not closed in F.

Solution: Let $E=\mathbb{R}^{3}$ and E_{+}be the ice-cream cone in E. We know from the lecture that E_{+}is closed and generating. Moreover, let $F=\mathbb{R}^{2}$ and consider the
mapping

$$
T: E \rightarrow F, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}+x_{2}, x_{3}\right) .
$$

Claim. The image of E_{+}under T is given by

$$
T\left(E_{+}\right)=\{0\} \cup\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid y_{1}>0\right\} .
$$

Proof. " \subseteq ": Let $y \in T\left(E_{+}\right)$. Then if $x_{3}=y_{2}=0$, then $x_{1}^{2} \geq x_{2}^{2}$ implies that $y_{1} \geq 0$. Hence, $y=0$ or $y_{1}>0$. If $x_{3}=y_{2} \neq 0$, then $x_{1}^{2}>x_{2}^{2}$ implies $y_{1}>0$. In any case $y=0$ or $y_{1}>0$.
"?": Clearly, $0 \in T\left(E_{+}\right)$. If $y \in F$ with $y_{1}>0$, then choose $x \in E$ such that $x_{3}:=y_{2}$ and and $x_{1} \geq 0$ large enough that $x_{1}^{2} \geq\left(y_{1}-x_{1}\right)^{2}+x_{3}^{2}$. Such x_{1} exists, since this inequality is equivalent to

$$
0 \geq y_{1}^{2}-2 x_{1} y_{1}+y_{2}^{2} .
$$

Now set $x_{2}:=y_{1}-x_{1}$. Then clearly, $x \in E_{+}$and $T x=y$.

Exercise 3 (Positive operators with respect to the standard cone). Endow \mathbb{R}^{c} and \mathbb{R}^{d} with the standard cones. What are the interior points of $\mathcal{L}\left(\mathbb{R}^{c} ; \mathbb{R}^{d}\right)_{+}$?

Solution: Recall from Propositon 2.3 .2 that and operator $T: \mathbb{R}^{c} \rightarrow \mathbb{R}^{d}$ is in the interior of $\mathcal{L}\left(\mathbb{R}^{c} ; \mathbb{R}^{d}\right)_{+}$if and only if $T\left(\mathbb{R}_{+}^{c} \backslash\{0\}\right) \subseteq \operatorname{Int}\left(\mathbb{R}_{+}^{d}\right)$.Clearly,

$$
\operatorname{Int}\left(\mathbb{R}_{+}^{d}\right)=\left\{x \in \mathbb{R}^{d} \mid x_{1}, \ldots, x_{d}>0\right\} .
$$

Let T be in the interior of $\mathcal{L}\left(\mathbb{R}^{c} ; \mathbb{R}^{d}\right)_{+}$. Then $T e^{(k)} \in \operatorname{Int}\left(\mathbb{R}_{+}^{d}\right)$ for all $k \in\{1, \ldots, c\}$, where $e^{(k)}$ denotes the canonical unit vectors in \mathbb{R}^{c}. Since $T e^{(k)}$ is the k-th column of T it it follows that the k-th column only has positive entries. Since this is true for every k it follows that T only has positive entries.
Conversely, let T only have positive entries and take $x \in \mathbb{R}_{+}^{c} \backslash\{0\}$. Then

$$
T x=\sum_{k=1}^{c} x_{i} T e^{(k)} .
$$

Since all x_{i} are non-negative and at least one is positive, it follows that $T x$ only has positive entries; and thus, $T x \in \operatorname{Int}\left(\mathbb{R}_{+}^{d}\right)$.

Exercise 4 (Positive operator with the respect to the Loewner order). Endow $E:=\mathbb{C}_{\text {sad }}^{d \times d}$ with the Loewner order.
(a) For every $C \in \mathbb{C}^{d \times d}$ consider the positive operator $T_{C}: E \rightarrow E$ that is given by $T_{C} A=C^{*} A C$ for all $A \in E$.
For which $C \in \mathbb{C}^{d \times d}$ is T_{C} an interior point of $\mathcal{L}(E ; E)_{+}$?
(b) Prove or disprove that for all $A, B \in E_{+}$the matrix $A B+B A$ is also in E_{+}.
(c) Fix $C \in E_{+}$and let $S_{C}: E \rightarrow E$ be given by $S_{C} A=A C+C A$ for all $A \in E$. When is S_{C} an interior point of $\mathcal{L}(E ; E)_{+}$?
(d) Fix $C \in E_{+}$and consider the map $R_{C}: E \rightarrow E$ that is given by $R_{C} A=\operatorname{tr}(A) C$ for each $A \in E$.
Show that R_{C} is positive for every $C \in E_{+}$. Under which conditions is R_{C} an interior point of $\mathcal{L}(E ; E)_{+}$?

Solution:

(a) Recall from Exercise 2 (b) on Sheet 3 that the interior points of E_{+}are precisely the positive definite matrices. Moreover, recall from Proposition 2.3.2 that T_{C} is an interior point of $\mathcal{L}(E ; E)_{+}$if and only if

$$
T_{C}\left(E_{+} \backslash\{0\}\right) \subseteq \operatorname{Int}\left(E_{+}\right)
$$

We differentiate two cases:
If $d=1$, then $E \cong \mathbb{R}$ and $E_{+} \backslash\{0\}=\operatorname{Int}\left(E_{+}\right)$. So $T_{C} \in \operatorname{Int}\left(\mathcal{L}(E ; E)_{+}\right)$if and only if $C \in \mathbb{C} \backslash\{0\}$.
If $d>1$, then let $C \in \mathbb{C}^{d \times d}$ and $A \in E_{+} \backslash\{0\}$ be such that A is positive semidefinite but not positive definite ${ }^{2}$ Then for every $C \in \mathbb{C}^{d \times d}$ the operator $T_{C} A=C^{*} A C$ is positive semidefinite but not positive definite. Hence, $T_{C} A \notin \operatorname{Int}\left(E_{+}\right)$. It follows that T_{C} is not in the interior of $\mathcal{L}(E ; E)_{+}$for any $C \in \mathbb{C}^{d \times d}$.
(b) Let

$$
A:=\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right) \quad \text { and } \quad C:=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) .
$$

It is easily checked that $A, C \in E_{+}$and

$$
A C+C A=\left(\begin{array}{ll}
-1 & 3 \\
-3 & 8
\end{array}\right)+\left(\begin{array}{cc}
-1 & -3 \\
3 & -8
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) .
$$

So $A C+C A \notin E_{+}$.
(c) Let $A, C \in E_{+}$.

If $d=1$, then $E \cong \mathbb{R}$ and $E_{+} \backslash\{0\}=\operatorname{Int}\left(E_{+}\right)$. So $S_{C} \in \operatorname{Int}\left(\mathcal{L}(E ; E)_{+}\right)$if and only if $C>0$.

If $d>1$, then let $C \in E_{+}$and $A \in E_{+} \backslash\{0\}$ be such that A is positive semidefinite but not positive definite $\|^{3}$ Then there exists $0 \neq x \in \mathbb{C}^{2}$ such that $A x=0$. Thus,

$$
(x \mid(A C+C A) x)=(A x \mid C x)+(C x \mid A x)=0
$$

So $A C+C A$ can not be positive definite, so $A C+C A \notin \operatorname{Int}\left(E_{+}\right)$. Now by Proposition 2.3.2 the operator S_{C} is not in the interior of $\mathcal{L}(E ; E)_{+}$for any $C \in E_{+}$.
(d) Notice that a positive semidefinite matrix A has $\operatorname{tr}(A)=0$ if and only if $A=0$. Indeed, if $A=0$ then clearly $\operatorname{tr}(A)=0$. Conversely, recall that there exists a unitary matrix $U \in \mathbb{C}^{d \times d}$ such that $U A U^{*}$ is diagonal. Since $\operatorname{tr}\left(U A U^{*}\right)=\operatorname{tr}(A)=0$ it follows that $U A U^{*}=0$. Hence, $A=0$.
It follows that $R_{C} A \in \operatorname{Int}\left(E_{+}\right)$for all $A \in E_{+} \backslash\{0\}$ if and only if $C \in \operatorname{Int}\left(E_{+}\right)$.

[^1]
[^0]: ${ }^{1}$ By finite-dimensionality, we have $W^{\prime \prime}=W$ and $V^{\prime \prime}=V$, and thus, it suffices to show the implication " \Rightarrow ".

[^1]: ${ }^{2}$ Note that one need $d>1$ for such a matrix to exist.
 ${ }^{3}$ Note that one need $d>1$ for such a matrix to exist.

