

Summer term 2023

4. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on May 2 and 3, 2023

with Solutions

Exercise 1 (Duality of half the ice-cream cone).

(a) Let E be a finite-dimensional vector space let $C, D \subseteq E$ be closed wedges in E, and denote their dual wedges by $C', D' \subseteq E'$. Show that the dual wedge of $C \cap D$ is the closure of C' + D'.

(b) Endow \mathbb{R}^3 with the generating cone

$$\mathbb{R}^3_+ := \{ x \in \mathbb{R}^3 \mid x_1, x_2 \ge 0 \text{ and } x_1^2 \ge x_2^2 + x_3^2 \}.$$

Compute the dual cone.

(c) Sketch the cone from part (b) and its dual cone.

Solution:

(a) We show that $(C \cap D)' = \operatorname{cl}(C' + D')$.

"⊆": Note that for two closed wedges $W,V\subseteq E,$ where E is finite-dimensional, we have^1

$$W \subseteq V$$
 if and only if $V' \subseteq W'$

and that dual wedges are always closed. Thus it suffices to show the inclusion

$$(cl(C'+D'))' = (C'+D')' \subseteq C \cap D = (C \cap D)''.$$

So let $x'' \in (C' + D')'$. By definition we have $\langle x'', x' \rangle \geq 0$ for all $x' \in C' + D'$, which implies $\langle x'', x'_1 + x'_2 \rangle \geq 0$ for all $x'_1 \in C'$ and all $x'_2 \in D'$. Since $0 \in C' \cap D'$ we obtain, in particular, that $\langle x'', x'_1 \rangle \geq 0$ and $\langle x'', x'_2 \rangle \geq 0$ for all $x'_1 \in C'$ and all $x'_2 \in D'$. Thus, $x'' \in C'' \cap D'' = C \cap D$. This shows the inclusion.

" \supseteq ": Let $x' \in C' + D'$. Then there exists $x'_1 \in C$ and $x'_2 \in D$ such that $x' = x'_1 + x'_2$. Hence, we have for all $x \in (C \cap D)$ that $\langle x', x \rangle = \langle x'_1, x \rangle + \langle x'_2, x \rangle \ge 0$. So $x' \in (C \cap D)'$. As the dual cone $(C \cap D)'$ is closed, the claimed inclusion follows.

(b) Notice that \mathbb{R}^3_+ is the intersection of the ice-cream cone

$$C := \left\{ x \in \mathbb{R}^3 \mid \ x_1 \ge 0 \text{ and } x_1^2 \ge x_2^2 + x_3^2 \right\}$$

¹By finite-dimensionality, we have W'' = W and V'' = V, and thus, it suffices to show the implication " \Rightarrow ".

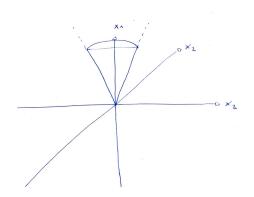


Figure 1: The cone \mathbb{R}^3_+ in Exercise 1 (b).

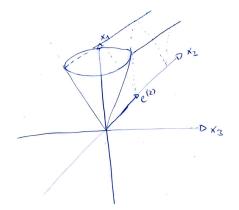


Figure 2: The dual of the cone \mathbb{R}^3_+ in Exercise 1 (b).

and the half space

$$D := \{ x \in \mathbb{R}^3 \mid x_2 \ge 0 \}.$$

So by (a) the dual of \mathbb{R}^3_+ is given by C' + D'. We compute C' + D'. By Exercise 4 (c) on Sheet 3 we know that the ice-cream cone is self-dual, so C' = C. Moreover, it follows from a simple computation that the dual of D is given by

$$D' = [0, \infty)e^{(2)}.$$

Notice also that \mathbb{R}^3_+ is not self-dual.

(c) A sketch of cone \mathbb{R}^3_+ can be found in Figure 1 and a sketch of the dual cone of \mathbb{R}^3_+ can be found in Figure 2.

Exercise 2 (Non-closedness under linear maps). Find an example of a finitedimensional real vector spaces E and F, a closed and generating cone E_+ in E, and a linear map $T: E \to F$ such that $T(E_+)$ is not closed in F.

Solution: Let $E = \mathbb{R}^3$ and E_+ be the ice-cream cone in E. We know from the lecture that E_+ is closed and generating. Moreover, let $F = \mathbb{R}^2$ and consider the

mapping

$$T: E \to F,$$
 $(x_1, x_2, x_3) \mapsto (x_1 + x_2, x_3).$

Claim. The image of E_+ under T is given by

$$T(E_+) = \{0\} \cup \{(y_1, y_2) \in \mathbb{R}^2 \mid y_1 > 0\}.$$

Proof. "⊆": Let $y \in T(E_+)$. Then if $x_3 = y_2 = 0$, then $x_1^2 \ge x_2^2$ implies that $y_1 \ge 0$. Hence, y = 0 or $y_1 > 0$. If $x_3 = y_2 \ne 0$, then $x_1^2 > x_2^2$ implies $y_1 > 0$. In any case y = 0 or $y_1 > 0$.

" \supseteq ": Clearly, $0 \in T(E_+)$. If $y \in F$ with $y_1 > 0$, then choose $x \in E$ such that $x_3 := y_2$ and and $x_1 \ge 0$ large enough that $x_1^2 \ge (y_1 - x_1)^2 + x_3^2$. Such x_1 exists, since this inequality is equivalent to

$$0 \ge y_1^2 - 2x_1y_1 + y_2^2.$$

Now set $x_2 := y_1 - x_1$. Then clearly, $x \in E_+$ and Tx = y.

Exercise 3 (Positive operators with respect to the standard cone). Endow \mathbb{R}^c and \mathbb{R}^d with the standard cones. What are the interior points of $\mathcal{L}(\mathbb{R}^c; \mathbb{R}^d)_+$?

Solution: Recall from Propositon 2.3.2 that and operator $T : \mathbb{R}^c \to \mathbb{R}^d$ is in the interior of $\mathcal{L}(\mathbb{R}^c; \mathbb{R}^d)_+$ if and only if $T(\mathbb{R}^c_+ \setminus \{0\}) \subseteq \operatorname{Int}(\mathbb{R}^d_+)$.Clearly,

$$\operatorname{Int}(\mathbb{R}^d_+) = \{ x \in \mathbb{R}^d \mid x_1, \dots, x_d > 0 \}.$$

Let T be in the interior of $\mathcal{L}(\mathbb{R}^c; \mathbb{R}^d)_+$. Then $Te^{(k)} \in Int(\mathbb{R}^d_+)$ for all $k \in \{1, \ldots, c\}$, where $e^{(k)}$ denotes the canonical unit vectors in \mathbb{R}^c . Since $Te^{(k)}$ is the k-th column of T it it follows that the k-th column only has positive entries. Since this is true for every k it follows that T only has positive entries.

Conversely, let T only have positive entries and take $x \in \mathbb{R}^{c}_{+} \setminus \{0\}$. Then

$$Tx = \sum_{k=1}^{c} x_i T e^{(k)}.$$

Since all x_i are non-negative and at least one is positive, it follows that Tx only has positive entries; and thus, $Tx \in \text{Int}(\mathbb{R}^d_+)$.

Exercise 4 (Positive operator with the respect to the Loewner order). Endow $E := \mathbb{C}_{sa}^{d \times d}$ with the Loewner order.

(a) For every $C \in \mathbb{C}^{d \times d}$ consider the positive operator $T_C : E \to E$ that is given by $T_C A = C^* A C$ for all $A \in E$.

For which $C \in \mathbb{C}^{d \times d}$ is T_C an interior point of $\mathcal{L}(E; E)_+$?

(b) Prove or disprove that for all $A, B \in E_+$ the matrix AB + BA is also in E_+ .

(c) Fix $C \in E_+$ and let $S_C : E \to E$ be given by $S_C A = AC + CA$ for all $A \in E$. When is S_C an interior point of $\mathcal{L}(E; E)_+$? (d) Fix $C \in E_+$ and consider the map $R_C : E \to E$ that is given by $R_C A = \operatorname{tr}(A)C$ for each $A \in E$.

Show that R_C is positive for every $C \in E_+$. Under which conditions is R_C an interior point of $\mathcal{L}(E; E)_+$?

Solution:

(a) Recall from Exercise 2 (b) on Sheet 3 that the interior points of E_+ are precisely the positive definite matrices. Moreover, recall from Proposition 2.3.2 that T_C is an interior point of $\mathcal{L}(E; E)_+$ if and only if

$$T_C(E_+ \setminus \{0\}) \subseteq \operatorname{Int}(E_+).$$

We differentiate two cases:

If d = 1, then $E \cong \mathbb{R}$ and $E_+ \setminus \{0\} = \text{Int}(E_+)$. So $T_C \in \text{Int}(\mathcal{L}(E; E)_+)$ if and only if $C \in \mathbb{C} \setminus \{0\}$.

If d > 1, then let $C \in \mathbb{C}^{d \times d}$ and $A \in E_+ \setminus \{0\}$ be such that A is positive semidefinite but not positive definite.² Then for every $C \in \mathbb{C}^{d \times d}$ the operator $T_C A = C^* A C$ is positive semidefinite but not positive definite. Hence, $T_C A \notin \text{Int}(E_+)$. It follows that T_C is not in the interior of $\mathcal{L}(E; E)_+$ for any $C \in \mathbb{C}^{d \times d}$.

(b) Let

$$A := \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \quad \text{and} \quad C := \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

It is easily checked that $A, C \in E_+$ and

$$AC + CA = \begin{pmatrix} -1 & 3 \\ -3 & 8 \end{pmatrix} + \begin{pmatrix} -1 & -3 \\ 3 & -8 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}.$$

So $AC + CA \notin E_+$.

(c) Let $A, C \in E_+$.

If d = 1, then $E \cong \mathbb{R}$ and $E_+ \setminus \{0\} = \text{Int}(E_+)$. So $S_C \in \text{Int}(\mathcal{L}(E; E)_+)$ if and only if C > 0.

If d > 1, then let $C \in E_+$ and $A \in E_+ \setminus \{0\}$ be such that A is positive semidefinite but not positive definite.³ Then there exists $0 \neq x \in \mathbb{C}^2$ such that Ax = 0. Thus,

$$(x \mid (AC + CA)x) = (Ax \mid Cx) + (Cx \mid Ax) = 0.$$

So AC + CA can not be positive definite, so $AC + CA \notin \text{Int}(E_+)$. Now by Proposition 2.3.2 the operator S_C is not in the interior of $\mathcal{L}(E; E)_+$ for any $C \in E_+$.

(d) Notice that a positive semidefinite matrix A has tr(A) = 0 if and only if A = 0. Indeed, if A = 0 then clearly tr(A) = 0. Conversely, recall that there exists a unitary matrix $U \in \mathbb{C}^{d \times d}$ such that UAU^* is diagonal. Since $tr(UAU^*) = tr(A) = 0$ it follows that $UAU^* = 0$. Hence, A = 0.

It follows that $R_C A \in Int(E_+)$ for all $A \in E_+ \setminus \{0\}$ if and only if $C \in Int(E_+)$.

²Note that one need d > 1 for such a matrix to exist.

³Note that one need d > 1 for such a matrix to exist.