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4. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on May 2 and 3, 2023

with Solutions

Exercise 1 (Duality of half the ice-cream cone).

(a) Let E be a finite-dimensional vector space let C, D C E be closed wedges in E,
and denote their dual wedges by C’, D’ C E'.
Show that the dual wedge of C' N D is the closure of C' + D’.

(b) Endow R? with the generating cone
R3 = {z e R | 1,22 >0 and z? > x%+x§}

Compute the dual cone.

(c) Sketch the cone from part (b) and its dual cone.

Solution:
(a) We show that (C'N D) =cl(C'+ D).
“C” Note that for two closed wedges W,V C E, where E is finite-dimensional, we
havd]
WCV if and only if vicw!
and that dual wedges are always closed. Thus it suffices to show the inclusion
(cl(C'+ D)) =(C"+D'YcCcnbD=(CnD)"

So let 2" € (C" + D’)'. By definition we have (z”,2') > 0 for all 2/ € C" + D’, which
implies (2", 2} +x4) > 0 for all #} € C’ and all 2, € D’. Since 0 € C'N D’ we obtain,
in particular, that (z”,2}) > 0 and (2”,2%) > 0 for all 2} € C’ and all 25 € D',
Thus, 2”7 € C" N D" = C N D. This shows the inclusion.

“D” Let a’ € C"+ D'. Then there exists ) € C and x}, € D such that 2/ = 2/ + 5.
Hence, we have for all z € (CND) that (2, z) = (2, 2)+ (2}, 2) > 0. Soz’ € (CND)".
As the dual cone (C' N D)’ is closed, the claimed inclusion follows.

(b) Notice that R‘i is the intersection of the ice-cream cone

C’::{JJGR3| mleandx%Zx%+:U§}

!By finite-dimensionality, we have W” = W and V" = V, and thus, it suffices to show the
implication “=".
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Figure 1: The cone R? in Exercise 1 (b).

Figure 2: The dual of the cone R} in Exercise 1 (b).

and the half space
D = {xE]R3| 3:220}.

So by (a) the dual of R? is given by C'+ D’. We compute C'+ D’. By Exercise 4 (c)
on Sheet 3 we know that the ice-cream cone is self-dual, so C' = C. Moreover, it
follows from a simple computation that the dual of D is given by

D' =1[0,00)e?.
Notice also that Ri"r is not self-dual.

(c) A sketch of cone R can be found in Figure [1| and a sketch of the dual cone of
Ri can be found in Figure

Exercise 2 (Non-closedness under linear maps). Find an example of a finite-
dimensional real vector spaces E and F', a closed and generating cone F in F, and
a linear map 7' : F — F such that T'(E) is not closed in F.

Solution: Let EF = R? and E, be the ice-cream cone in E. We know from the
lecture that E, is closed and generating. Moreover, let F = R? and consider the
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mapping
T:E—F, (z1,72,73) = (21 + T2, 73).
Claim. The image of F; under T is given by

T(Es) = {0} U{(y1,y2) € R* | y1 > 0}.

Proof. “C™ Let y € T(Ey). Then if 13 = yo = 0, then 22 > 23 implies that y; > 0.
Hence, y = 0 or y; > 0. If x3 = yo # 0, then 22 > 22 implies y; > 0. In any case
y=0ory >0.

“2" Clearly, 0 € T(E4). If y € F with y; > 0, then choose z € E such that x3 := y
and and x7 > 0 large enough that l‘% > (y1 — 931)2 + x% Such x1 exists, since this
inequality is equivalent to

0>y} — 2x1y1 + v

Now set xy := y1 — x1. Then clearly, z € E; and Tx = y.

Exercise 3 (Positive operators with respect to the standard cone). Endow
R¢ and R? with the standard cones. What are the interior points of £(R¢;R9),?

Solution: Recall from Propositon 2.3.2 that and operator T : R® — R? is in the
interior of £(R¢;R?) if and only if T(RS \ {0}) C Int(R%).Clearly,

Int(RL) = {z € R? | z1,...,24 > 0}.

Let T be in the interior of £(R%;R?),. Then Te® € Int(RL) for all k € {1,...,c},
where e(*) denotes the canonical unit vectors in R¢. Since Te®) is the k-th column
of T it it follows that the k-th column only has positive entries. Since this is true for
every k it follows that T' only has positive entries.

Conversely, let T only have positive entries and take x € RS \ {0}. Then

C
Tx = Z xiTe(k).
k=1

Since all x; are non-negative and at least one is positive, it follows that Tz only has
positive entries; and thus, Tz € Int(R%).

Exercise 4 (Positive operator with the respect to the Loewner order).
Endow E = C&*? with the Loewner order.

(a) For every C' € C%*? consider the positive operator T : E — E that is given by
TcA=C*AC for all A€ E.
For which C' € C%*? is T an interior point of L(E; E)?

(b) Prove or disprove that for all A, B € E, the matrix AB + BA is also in E.

(¢) Fix C € E4 and let S¢ : E — E be given by ScA = AC + CA for all A € E.
When is S¢ an interior point of L(E; E)47
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(d) Fix C € E4 and consider the map R¢ : F — E that is given by RcA = tr(A)C
for each A € E.

Show that R is positive for every C' € E. Under which conditions is R¢ an interior
point of L(E; E)4?

Solution:

(a) Recall from Exercise 2 (b) on Sheet 3 that the interior points of F are precisely
the positive definite matrices. Moreover, recall from Proposition 2.3.2 that T¢ is an
interior point of L(F; F)4 if and only if

Tc(E4\{0}) € Int(EL).

We differentiate two cases:

If d =1, then F = R and Ey \ {0} = Int(EL). So Te € Int(L(E; E)4) if and only
if C € C\ {0}.

If d > 1, then let C € C¥™% and A € E, \ {0} be such that A is positive semidefinite
but not positive deﬁnite Then for every C' € C**? the operator TcA = C*AC is

positive semidefinite but not positive definite. Hence, TcA ¢ Int(E;). It follows
that T¢ is not in the interior of £L(E; E) 4 for any C' € C4*,

1 2 1 -1
i (1) o (1 ).

It is easily checked that A,C' € E and

-1 3 -1 -3 -1 0
sevea= () (3 )= (20).

So AC + CA ¢ E,.

(b) Let

(c) Let A,C € E,.

If d=1, then E =R and E4 \ {0} = Int(Ey). So S¢ € Int(L(E; E)4) if and only
if ¢ > 0.

If d > 1, then let C € E;4 and A € E4 \ {0} be such that A is positive semidefinite
but not positive deﬁniteﬁ Then there exists 0 # 2 € C? such that Az = 0. Thus,

(x| (AC 4+ CA)x) = (Az | Cx) + (Cx | Az) = 0.

So AC' + C'A can not be positive definite, so AC + CA ¢ Int(E,). Now by Proposi-
tion 2.3.2 the operator S¢ is not in the interior of L(E; E)4 for any C € E..

(d) Notice that a positive semidefinite matrix A has tr(A) = 0 if and only if A = 0.
Indeed, if A = 0 then clearly tr(A) = 0. Conversely, recall that there exists a unitary
matrix U € C%? such that UAU* is diagonal. Since tr(UAU*) = tr(A4) = 0 it
follows that UAU* = 0. Hence, A = 0.

It follows that RcA € Int(E,) for all A € Ey \ {0} if and only if C € Int(EL).

2Note that one need d > 1 for such a matrix to exist.
3Note that one need d > 1 for such a matrix to exist.
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