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3. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on April 25 and 26, 2023
with Solutions

Exercise 1 (Masquerade of cones, continued). Are the following two ordered
vector spaces isomorphic?

(1) The space R* with the ice cream cone.

(2) The space of all self-adjoint complex 2 x 2-matrices with the Loewner order.

Solution: We recall that the space of self-adjoint complex 2 x 2-matrices is given

by
C22 = {( “oa “b) e C2x2
az —ib as

a1, a9,as,b € R} .

Also recall from linear algebra that self-adjoint matrices have real spectrum. So as it
is in the real and symmetric case, a 2 x 2-matrix A € C2*?2 is in the Loewner cone if
and only if its eigenvalues are non-negative. This is the case if and only if det(A) > 0
and tr(A) > 0. We claim that the mapping defined by

sa

) 1+ x2 T3 +1x
i:R* — C2x2 a;—(xl,xg,a:g,a:4)»—>< ! 2 3 4>

I3 —i$4 r1 — T2

is order isomorphic.

Bijectivity is straightforward: clearly, ¢ is injective (by Proposition 1.6.4 this even
follows from the bipositivity) and its domain and codomain both have dimension 4
(as a vector space over the reals). To show bipositivity, let 2 € R*. Then

i(x) >0
= tri(z) >0 A deti(x) >0
& 2z1 >0 A (z1 4 z2)(x1 — 29) — (25 +23) >0
& 1 >0 A 2 > a3 + 235 +
& x>0

Exercise 2 (Loewner order). Let d € N and let E denote the space of all
self-adjoint complex d x d-matrices, endowed with the Loewner order.
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(a) Show that, as claimed in Example 2.1.6(b), the set B := {a € Ey | tra =1} is
a base of E .

b) Show that, as claimed in Example 2.1.6(b s the interior [)OiIltS of £ are [)recisely
p +
the pOSitiVG definite self—adjoint matrices.

c) Le S . ow tha € mappin S at— bab” € 1s positive. en 1s1
Let b € C?™?. Show that th ing £ bab* € E i itive. When is it
an order isomorphism?

(d) For every a € E let 7, € E' be given by (74,b) := tr(a*b) for all b € E. Show
that

v B — E, a7,

is an isomorphism of (pre-)ordered vector spaces (where E’ is endowed with the dual
wedge).

Solution: In the following we denote by (- | -) the standard sesquilinear product
on C? that is anti-linear in the first and linear in the second component.

(a) If A € CL? is positive-semidefinite, then

k)|Ae >0

M&

k:l

shows that A := tr(A4) > 0, tr (5 (A)) 1l and A = )‘t (1. Here e®) denotes the

k-th canonical unit vector. This representation is unique. Indeed, let A;, Ay € CX4
with tr(A4;) = tr(Az) = 1 and A\, A2 > 0 with A\ A1 = A2 As. Then A\ = A\ tr(4;) =
tr(A1 A1) = tr(A2Aa) = Aatr(A2) = Ag; and hence, A} = Ay. It follows that B is a
base.

(b) We first show that the positive definite matrices are in the interior of the cone
E,. Let A be positive definite. Then by compactness of the unit sphere in C¢ the
minimum

¢ :=min{(z | Az) | € C%, ||z, = 1}

exists and is positive. Choose S € C&*? with ||S||, < 5. Then, by the Cauchy-
Schwarz inequality, we have
(x| (A+ 8)z) = (x| Az) + (¢ | Sz)
> (2| Az) + |[zfly [[Szlly = (2 | Az) —€/2 > €/2

for all  in the unit sphere of C?. Hence, A is in the interior of E,.

Conversely, if A € FE is not positive definite, then there exists x € C? with ||z| = 1
and (z | Az) < 0. Let € > 0 and set Sy := —¢(z | y)r = —exz*y. Then clearly,
|S]|, = € and

(:c|(A+S)1:):(x|Ax)+(x|Sx)S(:E|Sa:):—e||x||§:—e<0.

Hence, A is not in the interior of F, .
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(¢) Let b€ C¥? and a € E,. Then for all 2 € C? we have
(x| bab*z) = (b*x | a(b*x)) > 0.
Hence, bab* is also positive semidefinite.

Claim. The map is an order isomorphism if and only if b is invertible.

Proof. Notice that if b is invertible, then

Esa—bta®d™) =bta(b*)?
is the inverse of the mapping in the exercise statement and also positive.
Conversely, if b is not invertible, then b is not injective. So there exists 0 # z € C¢
such that (b*z | 2) = (z | bz) = 0 for all z € C%. Set a := (2| -)z = z2*. Then
a # 0 is self-adjoint and Im(a) C span{z}. Hence,

(x| bab*x) = (b*x | ab™x) = 0.

Thus the map E 2 a — bab* is not injective.
(d) We show injectivity of the mapping a — 7,. Let a € E such that 7, = 0.
For b = (e® | -)el) = e(j)(e(i))*. Then, since a = a* and the trace is cyclic,
tr(a*b) = tr ae(j)(e(i))* = tr (e(i))*ae(j)> = a;;. Since, 7, = 0 it follows that
a;j =0 for all 4,5 € {1,...,d}. Hence, a = 0. This shows the injectivity.

As F is finite dimensional dim(F) = dim(E’), and thus, the surjectivity of a — 7,
follows.

To show positivity, let a € Ey, b € F,. Since any positive semidefinite matrices has
a positive semidefinite root, we can write b = b'/2bY/2 for b1/2 E,. Thus, using
that a and b'/2 are self-adjoint, we obtain

(Ta,b) = tr(a™b) = tr (a*b1/2b1/2) = tr (bl/Qablﬂ) = tr <b1/2a(b1/2)*> >0,

since by (c) b'/ 2a(b1/ 2) is positive semidefinite and the diagonal entries of positive
semidefinite matrices are non-negative.

Conversely, suppose 7, € E',. Then for every € C? define a = (v | - )z = zz* and
notice that a is self-adjoint and R 3 (y,ay) = (y*z)(z*y) = (y*x)(y*z) > 0. So a is
also positive semidefinite. It follows that

0 < (74, b) = tr(z*a*x) = z*a*x = (v | ax)

Hence, a € E.

Exercise 3 (Masquerade, Third Act). Endow the space E of self-adjoint com-
plex 3 x 3-matrices with the Loewner order and denote its positive cone by E .

(a) Set n := dim E. Compute n.

+
E+.

(c) Is the ordered vector space (F, E) isomorphic to R™ with the ice cream cone?

Solution:
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(a) It is easily checked that the complex self-adjoint 3 x 3-matrices are of the form

aq a2 + iblg ai1s + iblg
a1z — tbi2 a a93 + iba3
a13 —ib1z  ag3 — 1ba3 as

where ai,az,az,aiz,a13, a3, b12, b13, b23 e R. So it follows that n := dlm(E) =09.

(b) Claim. We claim that the set
F:Z{A€E+‘A11=O}

is a face of F that is neither a half-line nor trivial.

Proof. Clearly, F is a wedge. Let A € F and B € [0, A]. Then (e | (A—B)e(M) >0,
which shows that the entry Bj; of B is non-positive. Since B is positive semi-definite,
it follows that Byj; = 0. Thus, B € F. It follows from Proposition 1.4.3 (ii) = (i)
that F' is a face. Moreover, F' is # F,,{0} nor a half-line, since it contains the
matrices

0 0 0 000 1 00
010 and 0 0 0 but not 0 0O
0 00 0 01 0 00

(¢) Claim. No.

Proof. Suppose there is an order isomorphism ¢ : £ — R™. Then ¢ maps faces of E
to faces of the ice-cream cone R’} (this is proved as in the solution to Exercise 2 (b)).
Moreover, {0}, the entire cone and half-lines are preserved under order isomorphisms.
Let F be as in (b). It follows that i(F') is a face # R4, {0} of the ice-cream cone. By
Example 1.4.7. (b) it follows that ¢(F) must be a half-line. This is a contradiction,
since F is no half-line, as proved in (b).

Exercise 4 (The ice-cream cone, again). Let d € N and endow R? with the
ice-cream cone Ri.

. . . . . d
(a) Determine the interior points of RY .
; d
(b) Find a base of RY.

(c) Let us identify R with its own dual space in the canonical way. Show that, under
this identification, the dual wedge of Ri is also the ice-cream cone in R%.

Solution:

(a) Claim. The interior points of Rff_ are given by the set

d
{z eRY| 20/\x%>2x%}

n=2
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Proof. Notice that

d d
R ={zeR |21 >0A2} > in}U{xERd |z >0 A2 :in}
n=2 , n=2
A= B:=
and that the union is disjoint. Then B is the boundary of Ri. To see this, recall that
a point is in the boundary of a set if and only if every neighborhood has non-trivial
intersection with the set and its complement (if suffices to show this for e-balls). Let
x € B and € > 0. Then the elements x and

y = (21,72 + sign(x2)e/2, x3,...)

satisfy x € R‘i and y € ]Rd\]Rfr and lie in the e-ball about z. It follows that B C 8R‘fr.
Clearly, A is open, so AN ORL = (. Thus, ORY? C B, and thus, B = R%. This
implies int(RY) = RZ \ ORY = A.

(b) Claim. The set
B:={zecRL | (W, z) =1}
is a base for Ri E|

Proof. Clearly B is a convex subset of R%. Moreover, if € R% \ {0}, it follows from
the definition of the ice-cream cone that z; > 0. Hence, (¢(!), z) = 21 > 0. Then for
A= (eM,z) and b:= A"z, we have z = Ab and (e(V),b) = 1.

It is left to show uniqueness of A and b. Suppose that b1,b € B and A1, A2 > 0 with
& = Ab1 = Xoby. Then it follows from A; = Ay (eM) b)) = Ap(e™), by) = Ao, and
thus, by = )\flaz = by. It follows that B is indeed a base of R,.

(c¢) Recall that
(RY)' = {«/ e R? | Vz € RL : (2, z) > 0}
We show that (Ri)/ = Ri.
“D” Let x,2’ € ]Rff_ and denote by Px := (0,z2,x3,...). Then it follows from the
Cauchy-Schwarz inequality that
(o, 3) = @ - @1 + (P2, Pa) > | Pa/lly - | Pell, + (P!, Px) > 0

Since x was arbitrary, it follows that x’ € (R‘fr)/.

“C” Let o' € (Ri)/. Then (2, eM)) > 0 shows that 2} > 0, where e(!) denotes the
first canonical unit vector.
Define x by z1 := ||P2’||, and z,, := —a;, for all n > 2. Notice that Px = —Pz’ and
x1 > ||Pz|ly = ||—Pz’||,- Hence, z € R% and

2y || Pa'lly = a a1 = (') = (Pa', Pa) > (Pa!, Pa') = | Pa'|l3

If |P2'||y > 0, then 2} > ||P2'||,. If ||P2'||, = 0, then 2} > 0 also implies z} >
| P2'||5. In any case 2’ € R% holds.

!Notice that B defines an affine hyperplane that is orthogonal to e and shifted along the e
vector by 1. Since eV is the rotational symmetry axis of the ice-cream cone, B is a basis of Ri.
Now that we have an intuitive understanding what happens geometrically, we conclude with the
rigorous proof.
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