

Summer term 2023

3. Exercise Sheet in Ordered Banach Spaces and Positive Operators

For the exercise classes on April 25 and 26, 2023

with Solutions

Exercise 1 (Masquerade of cones, continued). Are the following two ordered vector spaces isomorphic?

- (1) The space \mathbb{R}^4 with the ice cream cone.
- (2) The space of all self-adjoint complex 2×2 -matrices with the Loewner order.

Solution: We recall that the space of self-adjoint complex 2×2 -matrices is given by

$$\mathbb{C}_{\mathrm{sa}}^{2\times 2} = \left\{ \begin{pmatrix} a_1 & a_3 + ib \\ a_3 - ib & a_2 \end{pmatrix} \in \mathbb{C}^{2\times 2} \mid a_1, a_2, a_3, b \in \mathbb{R} \right\}.$$

Also recall from linear algebra that self-adjoint matrices have real spectrum. So as it is in the real and symmetric case, a 2×2 -matrix $A \in \mathbb{C}_{sa}^{2 \times 2}$ is in the Loewner cone if and only if its eigenvalues are non-negative. This is the case if and only if $\det(A) \ge 0$ and $\operatorname{tr}(A) \ge 0$. We claim that the mapping defined by

$$i: \mathbb{R}^4 \to \mathbb{C}^{2 \times 2}_{\mathrm{sa}}, \quad x = (x_1, x_2, x_3, x_4) \mapsto \begin{pmatrix} x_1 + x_2 & x_3 + ix_4 \\ x_3 - ix_4 & x_1 - x_2 \end{pmatrix}$$

is order isomorphic.

Bijectivity is straightforward: clearly, i is injective (by Proposition 1.6.4 this even follows from the bipositivity) and its domain and codomain both have dimension 4 (as a vector space over the reals). To show bipositivity, let $x \in \mathbb{R}^4$. Then

$$\begin{split} i(x) &\geq 0 \\ \Leftrightarrow & \operatorname{tr} i(x) \geq 0 & \wedge & \det i(x) \geq 0 \\ \Leftrightarrow & 2x_1 \geq 0 & \wedge & (x_1 + x_2)(x_1 - x_2) - (x_3^2 + x_4^2) \geq 0 \\ \Leftrightarrow & x_1 \geq 0 & \wedge & x_1^2 \geq x_2^2 + x_3^2 + x_4^2 \\ \Leftrightarrow & x \geq 0. \end{split}$$

Exercise 2 (Loewner order). Let $d \in \mathbb{N}$ and let E denote the space of all self-adjoint complex $d \times d$ -matrices, endowed with the Loewner order.

(a) Show that, as claimed in Example 2.1.6(b), the set $B := \{a \in E_+ \mid \text{ tr } a = 1\}$ is a base of E_+ .

(b) Show that, as claimed in Example 2.1.6(b), the interior points of E_+ are precisely the positive definite self-adjoint matrices.

(c) Let $b \in \mathbb{C}^{d \times d}$. Show that the mapping $E \ni a \mapsto bab^* \in E$ is positive. When is it an order isomorphism?

(d) For every $a \in E$ let $\tau_a \in E'$ be given by $\langle \tau_a, b \rangle \coloneqq \operatorname{tr}(a^*b)$ for all $b \in E$. Show that

$$\psi \colon E \to E', \qquad a \mapsto \tau_a$$

is an isomorphism of (pre-)ordered vector spaces (where E' is endowed with the dual wedge).

Solution: In the following we denote by $(\cdot | \cdot)$ the standard sesquilinear product on \mathbb{C}^d that is anti-linear in the first and linear in the second component.

(a) If $A \in \mathbb{C}_{sa}^{d \times d}$ is positive-semidefinite, then

$$tr(A) = \sum_{k=1}^{d} (e^{(k)} \mid Ae^{(k)}) \ge 0$$

shows that $\lambda := \operatorname{tr}(A) \geq 0$, $\operatorname{tr}\left(\frac{A}{\operatorname{tr}(A)}\right) = 1$ and $A = \lambda \frac{A}{\operatorname{tr}(A)}$. Here $e^{(k)}$ denotes the k-th canonical unit vector. This representation is unique. Indeed, let $A_1, A_2 \in \mathbb{C}_{\operatorname{sa}}^{d \times d}$ with $\operatorname{tr}(A_1) = \operatorname{tr}(A_2) = 1$ and $\lambda_1, \lambda_2 > 0$ with $\lambda_1 A_1 = \lambda_2 A_2$. Then $\lambda_1 = \lambda_1 \operatorname{tr}(A_1) = \operatorname{tr}(\lambda_1 A_1) = \operatorname{tr}(\lambda_2 A_2) = \lambda_2 \operatorname{tr}(A_2) = \lambda_2$; and hence, $A_1 = A_2$. It follows that B is a base.

(b) We first show that the positive definite matrices are in the interior of the cone E_+ . Let A be positive definite. Then by compactness of the unit sphere in \mathbb{C}^d the minimum

$$\epsilon := \min\{ (x \mid Ax) \mid x \in \mathbb{C}^d, \, \|x\|_2 = 1 \}$$

exists and is positive. Choose $S \in \mathbb{C}_{sa}^{d \times d}$ with $||S||_2 < \frac{\epsilon}{2}$. Then, by the Cauchy-Schwarz inequality, we have

$$(x \mid (A+S)x) = (x \mid Ax) + (x \mid Sx) \\ \ge (x \mid Ax) + \|x\|_2 \|Sx\|_2 \ge (x \mid Ax) - \epsilon/2 \ge \epsilon/2$$

for all x in the unit sphere of \mathbb{C}^d . Hence, A is in the interior of E_+ .

Conversely, if $A \in E_+$ is not positive definite, then there exists $x \in \mathbb{C}^d$ with ||x|| = 1and $(x \mid Ax) \leq 0$. Let $\epsilon > 0$ and set $Sy := -\epsilon(x \mid y)x = -\epsilon xx^*y$. Then clearly, $||S||_2 = \epsilon$ and

$$(x \mid (A+S)x) = (x \mid Ax) + (x \mid Sx) \le (x \mid Sx) = -\epsilon ||x||_2^2 = -\epsilon < 0.$$

Hence, A is not in the interior of E_+ .

(c) Let $b \in \mathbb{C}^{d \times d}$ and $a \in E_+$. Then for all $x \in \mathbb{C}^d$ we have

$$(x \mid bab^*x) = (b^*x \mid a(b^*x)) \ge 0.$$

Hence, bab^* is also positive semidefinite.

Claim. The map is an order isomorphism if and only if b is invertible.

Proof. Notice that if b is invertible, then

$$E \ni a \mapsto b^{-1}a(b^{-1})^* = b^{-1}a(b^*)^{-1}$$

is the inverse of the mapping in the exercise statement and also positive.

Conversely, if b is not invertible, then b is not injective. So there exists $0 \neq z \in \mathbb{C}^d$ such that $(b^*x \mid z) = (x \mid bz) = 0$ for all $x \in \mathbb{C}^d$. Set $a := (z \mid \cdot)z = zz^*$. Then $a \neq 0$ is self-adjoint and $\operatorname{Im}(a) \subseteq \operatorname{span}\{z\}$. Hence,

$$(x \mid bab^*x) = (b^*x \mid ab^*x) = 0.$$

Thus the map $E \ni a \mapsto bab^*$ is not injective.

(d) We show injectivity of the mapping $a \mapsto \tau_a$. Let $a \in E$ such that $\tau_a = 0$. For $b = (e^{(i)} | \cdot)e^{(j)} = e^{(j)}(e^{(i)})^*$. Then, since $a = a^*$ and the trace is cyclic, $\operatorname{tr}(a^*b) = \operatorname{tr}\left(ae^{(j)}(e^{(i)})^*\right) = \operatorname{tr}\left((e^{(i)})^*ae^{(j)}\right) = a_{ij}$. Since, $\tau_a = 0$ it follows that $a_{ij} = 0$ for all $i, j \in \{1, \ldots, d\}$. Hence, a = 0. This shows the injectivity.

As E is finite dimensional $\dim(E) = \dim(E')$, and thus, the surjectivity of $a \mapsto \tau_a$ follows.

To show positivity, let $a \in E_+$, $b \in E_+$. Since any positive semidefinite matrices has a positive semidefinite root, we can write $b = b^{1/2}b^{1/2}$ for $b^{1/2} \in E_+$. Thus, using that a and $b^{1/2}$ are self-adjoint, we obtain

$$\langle \tau_a, b \rangle = \operatorname{tr}(a^*b) = \operatorname{tr}\left(a^*b^{1/2}b^{1/2}\right) = \operatorname{tr}\left(b^{1/2}ab^{1/2}\right) = \operatorname{tr}\left(b^{1/2}a\left(b^{1/2}\right)^*\right) \ge 0,$$

since by (c) $b^{1/2}a(b^{1/2})$ is positive semidefinite and the diagonal entries of positive semidefinite matrices are non-negative.

Conversely, suppose $\tau_a \in E'_+$. Then for every $x \in \mathbb{C}^d$ define $a = (x | \cdot)x = xx^*$ and notice that a is self-adjoint and $\mathbb{R} \ni \langle y, ay \rangle = (y^*x)(x^*y) = (y^*x)\overline{(y^*x)} \ge 0$. So a is also positive semidefinite. It follows that

$$0 \le \langle \tau_a, b \rangle = \operatorname{tr}(x^*a^*x) = x^*a^*x = (x \mid ax)$$

Hence, $a \in E_+$.

Exercise 3 (Masquerade, Third Act). Endow the space E of self-adjoint complex 3×3 -matrices with the Loewner order and denote its positive cone by E_+ . (a) Set $n \coloneqq \dim E$. Compute n.

(b) Show that E_+ has a face that is not a half-line and not one of the sets $\{0\}$ and E_+ .

(c) Is the ordered vector space (E, E_+) isomorphic to \mathbb{R}^n with the ice cream cone?

Solution:

(a) It is easily checked that the complex self-adjoint 3×3 -matrices are of the form

$$\begin{pmatrix} a_1 & a_{12} + ib_{12} & a_{13} + ib_{13} \\ a_{12} - ib_{12} & a_2 & a_{23} + ib_{23} \\ a_{13} - ib_{13} & a_{23} - ib_{23} & a_3 \end{pmatrix}$$

where $a_1, a_2, a_3, a_{12}, a_{13}, a_{23}, b_{12}, b_{13}, b_{23} \in \mathbb{R}$. So it follows that $n := \dim(E) = 9$.

(b) Claim. We claim that the set

$$F := \{ A \in E_+ \mid A_{11} = 0 \}$$

is a face of E_+ that is neither a half-line nor trivial.

Proof. Clearly, F is a wedge. Let $A \in F$ and $B \in [0, A]$. Then $(e^{(1)} | (A-B)e^{(1)}) \ge 0$, which shows that the entry B_{11} of B is non-positive. Since B is positive semi-definite, it follows that $B_{11} = 0$. Thus, $B \in F$. It follows from Proposition 1.4.3 (ii) \Rightarrow (i) that F is a face. Moreover, F is $\neq E_+, \{0\}$ nor a half-line, since it contains the matrices

(0)	0	0		(0	0	0		/1	0	$\left(0 \right)$	
$ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $	1	0	and	0	0	0	but not	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
$\sqrt{0}$	0	0/				1/		$\left(0 \right)$	0	0/	

(c) Claim. No.

Proof. Suppose there is an order isomorphism $i : E \to \mathbb{R}^n$. Then *i* maps faces of E_+ to faces of the ice-cream cone \mathbb{R}^n_+ (this is proved as in the solution to Exercise 2 (b)). Moreover, $\{0\}$, the entire cone and half-lines are preserved under order isomorphisms. Let *F* be as in (b). It follows that i(F) is a face $\neq \mathbb{R}_+$, $\{0\}$ of the ice-cream cone. By Example 1.4.7. (b) it follows that i(F) must be a half-line. This is a contradiction, since *F* is no half-line, as proved in (b).

Exercise 4 (The ice-cream cone, again). Let $d \in \mathbb{N}$ and endow \mathbb{R}^d with the ice-cream cone \mathbb{R}^d_+ .

- (a) Determine the interior points of \mathbb{R}^d_+ .
- (b) Find a base of \mathbb{R}^d_+ .

(c) Let us identify \mathbb{R}^d with its own dual space in the canonical way. Show that, under this identification, the dual wedge of \mathbb{R}^d_+ is also the ice-cream cone in \mathbb{R}^d .

Solution:

(a) Claim. The interior points of \mathbb{R}^d_+ are given by the set

$$\{x \in \mathbb{R}^d \mid x_1 \ge 0 \land x_1^2 > \sum_{n=2}^d x_n^2\}$$

Proof. Notice that

$$\mathbb{R}^{d}_{+} = \underbrace{\{x \in \mathbb{R}^{d} \mid x_{1} \ge 0 \land x_{1}^{2} > \sum_{n=2}^{d} x_{n}^{2}\} \cup \underbrace{\{x \in \mathbb{R}^{d} \mid x_{1} \ge 0 \land x_{1}^{2} = \sum_{n=2}^{d} x_{n}^{2}\}}_{A:=}}_{B:=}$$

and that the union is disjoint. Then B is the boundary of \mathbb{R}^d_+ . To see this, recall that a point is in the boundary of a set if and only if every neighborhood has non-trivial intersection with the set and its complement (if suffices to show this for ϵ -balls). Let $x \in B$ and $\epsilon > 0$. Then the elements x and

$$y = (x_1, x_2 + \operatorname{sign}(x_2)\epsilon/2, x_3, \dots)$$

satisfy $x \in \mathbb{R}^d_+$ and $y \in \mathbb{R}^d \setminus \mathbb{R}^d_+$ and lie in the ϵ -ball about x. It follows that $B \subseteq \partial \mathbb{R}^d_+$. Clearly, A is open, so $A \cap \partial \mathbb{R}^d_+ = \emptyset$. Thus, $\partial \mathbb{R}^d_+ \subseteq B$, and thus, $B = \partial \mathbb{R}^d_+$. This implies $\operatorname{int}(\mathbb{R}^d_+) = \mathbb{R}^d_+ \setminus \partial \mathbb{R}^d_+ = A$.

(b) Claim. The set

$$B := \{ x \in \mathbb{R}^d_+ \mid \langle e^{(1)}, x \rangle = 1 \}$$

is a base for \mathbb{R}^{d}_{+} .¹

Proof. Clearly *B* is a convex subset of \mathbb{R}^d_+ . Moreover, if $x \in \mathbb{R}^d_+ \setminus \{0\}$, it follows from the definition of the ice-cream cone that $x_1 > 0$. Hence, $\langle e^{(1)}, x \rangle = x_1 > 0$. Then for $\lambda = \langle e^{(1)}, x \rangle$ and $b := \lambda^{-1}x$, we have $x = \lambda b$ and $\langle e^{(1)}, b \rangle = 1$.

It is left to show uniqueness of λ and b. Suppose that $b_1, b_2 \in B$ and $\lambda_1, \lambda_2 > 0$ with $x = \lambda_1 b_1 = \lambda_2 b_2$. Then it follows from $\lambda_1 = \lambda_1 \langle e^{(1)}, b_1 \rangle = \lambda_2 \langle e^{(1)}, b_2 \rangle = \lambda_2$, and thus, $b_1 = \lambda_1^{-1} x = b_2$. It follows that B is indeed a base of \mathbb{R}_+ .

(c) Recall that

$$(\mathbb{R}^d_+)' = \{ x' \in \mathbb{R}^d \mid \forall x \in \mathbb{R}^d_+ : \langle x', x \rangle \ge 0 \}.$$

We show that $(\mathbb{R}^d_+)' = \mathbb{R}^d_+$.

" \supseteq ": Let $x, x' \in \mathbb{R}^d_+$ and denote by $Px := (0, x_2, x_3, ...)$. Then it follows from the Cauchy-Schwarz inequality that

$$\langle x', x \rangle = x_1' \cdot x_1 + \langle Px', Px \rangle \ge \|Px'\|_2 \cdot \|Px\|_2 + \langle Px', Px \rangle \ge 0$$

Since x was arbitrary, it follows that $x' \in (\mathbb{R}^d_+)'$.

" \subseteq ": Let $x' \in (\mathbb{R}^d_+)'$. Then $\langle x'_1, e^{(1)} \rangle \geq 0$ shows that $x'_1 \geq 0$, where $e^{(1)}$ denotes the first canonical unit vector.

Define x by $x_1 := \|Px'\|_2$ and $x_n := -x'_n$ for all $n \ge 2$. Notice that Px = -Px' and $x_1 \ge \|Px\|_2 = \|-Px'\|_2$. Hence, $x \in \mathbb{R}^d_+$ and

$$x'_{1} \cdot \|Px'\|_{2} = x'_{1} \cdot x_{1} = \langle x', x \rangle - \langle Px', Px \rangle \ge \langle Px', Px' \rangle = \|Px'\|_{2}^{2}$$

If $||Px'||_2 > 0$, then $x'_1 \ge ||Px'||_2$. If $||Px'||_2 = 0$, then $x'_1 \ge 0$ also implies $x'_1 \ge ||Px'||_2$. In any case $x' \in \mathbb{R}^d_+$ holds.

¹Notice that B defines an affine hyperplane that is orthogonal to $e^{(1)}$ and shifted along the $e^{(1)}$ vector by 1. Since $e^{(1)}$ is the rotational symmetry axis of the ice-cream cone, B is a basis of \mathbb{R}^d_+ . Now that we have an intuitive understanding what happens geometrically, we conclude with the rigorous proof.