3. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on April 25 and 26, 2023

with Solutions

Exercise 1 (Masquerade of cones, continued). Are the following two ordered vector spaces isomorphic?
(1) The space \mathbb{R}^{4} with the ice cream cone.
(2) The space of all self-adjoint complex 2×2-matrices with the Loewner order.

Solution: We recall that the space of self-adjoint complex 2×2-matrices is given by

$$
\mathbb{C}_{\mathrm{sa}}^{2 \times 2}=\left\{\left.\left(\begin{array}{cc}
a_{1} & a_{3}+i b \\
a_{3}-i b & a_{2}
\end{array}\right) \in \mathbb{C}^{2 \times 2} \right\rvert\, a_{1}, a_{2}, a_{3}, b \in \mathbb{R}\right\} .
$$

Also recall from linear algebra that self-adjoint matrices have real spectrum. So as it is in the real and symmetric case, a 2×2-matrix $A \in \mathbb{C}_{\text {sa }}^{2 \times 2}$ is in the Loewner cone if and only if its eigenvalues are non-negative. This is the case if and only if $\operatorname{det}(A) \geq 0$ and $\operatorname{tr}(A) \geq 0$. We claim that the mapping defined by

$$
i: \mathbb{R}^{4} \rightarrow \mathbb{C}_{\mathrm{sa}}^{2 \times 2}, \quad x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(\begin{array}{cc}
x_{1}+x_{2} & x_{3}+i x_{4} \\
x_{3}-i x_{4} & x_{1}-x_{2}
\end{array}\right)
$$

is order isomorphic.
Bijectivity is straightforward: clearly, i is injective (by Proposition 1.6.4 this even follows from the bipositivity) and its domain and codomain both have dimension 4 (as a vector space over the reals). To show bipositivity, let $x \in \mathbb{R}^{4}$. Then

$$
\begin{array}{llll}
& i(x) \geq 0 & & \\
\Leftrightarrow & \operatorname{tr} i(x) \geq 0 & \wedge & \operatorname{det} i(x) \geq 0 \\
\Leftrightarrow & 2 x_{1} \geq 0 & \wedge & \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)-\left(x_{3}^{2}+x_{4}^{2}\right) \geq 0 \\
\Leftrightarrow & x_{1} \geq 0 & \wedge & x_{1}^{2} \geq x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \\
\Leftrightarrow & x \geq 0 . & &
\end{array}
$$

Exercise 2 (Loewner order). Let $d \in \mathbb{N}$ and let E denote the space of all self-adjoint complex $d \times d$-matrices, endowed with the Loewner order.
(a) Show that, as claimed in Example 2.1.6(b), the set $B:=\left\{a \in E_{+} \mid \operatorname{tr} a=1\right\}$ is a base of E_{+}.
(b) Show that, as claimed in Example 2.1.6(b), the interior points of E_{+}are precisely the positive definite self-adjoint matrices.
(c) Let $b \in \mathbb{C}^{d \times d}$. Show that the mapping $E \ni a \mapsto b a b^{*} \in E$ is positive. When is it an order isomorphism?
(d) For every $a \in E$ let $\tau_{a} \in E^{\prime}$ be given by $\left\langle\tau_{a}, b\right\rangle:=\operatorname{tr}\left(a^{*} b\right)$ for all $b \in E$. Show that

$$
\psi: E \rightarrow E^{\prime}, \quad a \mapsto \tau_{a}
$$

is an isomorphism of (pre-)ordered vector spaces (where E^{\prime} is endowed with the dual wedge).

Solution: In the following we denote by $(\cdot \mid \cdot)$ the standard sesquilinear product on \mathbb{C}^{d} that is anti-linear in the first and linear in the second component.
(a) If $A \in \mathbb{C}_{\text {sa }}^{d \times d}$ is positive-semidefinite, then

$$
\operatorname{tr}(A)=\sum_{k=1}^{d}\left(e^{(k)} \mid A e^{(k)}\right) \geq 0
$$

shows that $\lambda:=\operatorname{tr}(A) \geq 0, \operatorname{tr}\left(\frac{A}{\operatorname{tr}(A)}\right)=1$ and $A=\lambda \frac{A}{\operatorname{tr}(A)}$. Here $e^{(k)}$ denotes the k-th canonical unit vector. This representation is unique. Indeed, let $A_{1}, A_{2} \in \mathbb{C}_{\text {sa }}^{d \times d}$ with $\operatorname{tr}\left(A_{1}\right)=\operatorname{tr}\left(A_{2}\right)=1$ and $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1} A_{1}=\lambda_{2} A_{2}$. Then $\lambda_{1}=\lambda_{1} \operatorname{tr}\left(A_{1}\right)=$ $\operatorname{tr}\left(\lambda_{1} A_{1}\right)=\operatorname{tr}\left(\lambda_{2} A_{2}\right)=\lambda_{2} \operatorname{tr}\left(A_{2}\right)=\lambda_{2}$; and hence, $A_{1}=A_{2}$. It follows that B is a base.
(b) We first show that the positive definite matrices are in the interior of the cone E_{+}. Let A be positive definite. Then by compactness of the unit sphere in \mathbb{C}^{d} the minimum

$$
\epsilon:=\min \left\{(x \mid A x) \mid x \in \mathbb{C}^{d},\|x\|_{2}=1\right\}
$$

exists and is positive. Choose $S \in \mathbb{C}_{\mathrm{sa}}^{d \times d}$ with $\|S\|_{2}<\frac{\epsilon}{2}$. Then, by the CauchySchwarz inequality, we have

$$
\begin{aligned}
(x \mid(A+S) x) & =(x \mid A x)+(x \mid S x) \\
& \geq(x \mid A x)+\|x\|_{2}\|S x\|_{2} \geq(x \mid A x)-\epsilon / 2 \geq \epsilon / 2
\end{aligned}
$$

for all x in the unit sphere of \mathbb{C}^{d}. Hence, A is in the interior of E_{+}.
Conversely, if $A \in E_{+}$is not positive definite, then there exists $x \in \mathbb{C}^{d}$ with $\|x\|=1$ and $(x \mid A x) \leq 0$. Let $\epsilon>0$ and set $S y:=-\epsilon(x \mid y) x=-\epsilon x x^{*} y$. Then clearly, $\|S\|_{2}=\epsilon$ and

$$
(x \mid(A+S) x)=(x \mid A x)+(x \mid S x) \leq(x \mid S x)=-\epsilon\|x\|_{2}^{2}=-\epsilon<0 .
$$

Hence, A is not in the interior of E_{+}.
(c) Let $b \in \mathbb{C}^{d \times d}$ and $a \in E_{+}$. Then for all $x \in \mathbb{C}^{d}$ we have

$$
\left(x \mid b a b^{*} x\right)=\left(b^{*} x \mid a\left(b^{*} x\right)\right) \geq 0 .
$$

Hence, $b a b^{*}$ is also positive semidefinite.
Claim. The map is an order isomorphism if and only if b is invertible.
Proof. Notice that if b is invertible, then

$$
E \ni a \mapsto b^{-1} a\left(b^{-1}\right)^{*}=b^{-1} a\left(b^{*}\right)^{-1}
$$

is the inverse of the mapping in the exercise statement and also positive.
Conversely, if b is not invertible, then b is not injective. So there exists $0 \neq z \in \mathbb{C}^{d}$ such that $\left(b^{*} x \mid z\right)=(x \mid b z)=0$ for all $x \in \mathbb{C}^{d}$. Set $a:=(z \mid \cdot) z=z z^{*}$. Then $a \neq 0$ is self-adjoint and $\operatorname{Im}(a) \subseteq \operatorname{span}\{z\}$. Hence,

$$
\left(x \mid b a b^{*} x\right)=\left(b^{*} x \mid a b^{*} x\right)=0 .
$$

Thus the map $E \ni a \mapsto b a b^{*}$ is not injective.
(d) We show injectivity of the mapping $a \mapsto \tau_{a}$. Let $a \in E$ such that $\tau_{a}=0$. For $b=\left(e^{(i)} \mid \cdot\right) e^{(j)}=e^{(j)}\left(e^{(i)}\right)^{*}$. Then, since $a=a^{*}$ and the trace is cyclic, $\operatorname{tr}\left(a^{*} b\right)=\operatorname{tr}\left(a e^{(j)}\left(e^{(i)}\right)^{*}\right)=\operatorname{tr}\left(\left(e^{(i)}\right)^{*} a e^{(j)}\right)=a_{i j}$. Since, $\tau_{a}=0$ it follows that $a_{i j}=0$ for all $i, j \in\{1, \ldots, d\}$. Hence, $a=0$. This shows the injectivity.
As E is finite dimensional $\operatorname{dim}(E)=\operatorname{dim}\left(E^{\prime}\right)$, and thus, the surjectivity of $a \mapsto \tau_{a}$ follows.
To show positivity, let $a \in E_{+}, b \in E_{+}$. Since any positive semidefinite matrices has a positive semidefinite root, we can write $b=b^{1 / 2} b^{1 / 2}$ for $b^{1 / 2} \in E_{+}$. Thus, using that a and $b^{1 / 2}$ are self-adjoint, we obtain

$$
\left\langle\tau_{a}, b\right\rangle=\operatorname{tr}\left(a^{*} b\right)=\operatorname{tr}\left(a^{*} b^{1 / 2} b^{1 / 2}\right)=\operatorname{tr}\left(b^{1 / 2} a b^{1 / 2}\right)=\operatorname{tr}\left(b^{1 / 2} a\left(b^{1 / 2}\right)^{*}\right) \geq 0,
$$

since by (c) $b^{1 / 2} a\left(b^{1 / 2}\right)$ is positive semidefinite and the diagonal entries of positive semidefinite matrices are non-negative.
Conversely, suppose $\tau_{a} \in E_{+}^{\prime}$. Then for every $x \in \mathbb{C}^{d}$ define $a=(x \mid \cdot) x=x x^{*}$ and notice that a is self-adjoint and $\mathbb{R} \ni\langle y, a y\rangle=\left(y^{*} x\right)\left(x^{*} y\right)=\left(y^{*} x\right) \overline{\left(y^{*} x\right)} \geq 0$. So a is also positive semidefinite. It follows that

$$
0 \leq\left\langle\tau_{a}, b\right\rangle=\operatorname{tr}\left(x^{*} a^{*} x\right)=x^{*} a^{*} x=(x \mid a x)
$$

Hence, $a \in E_{+}$.

Exercise 3 (Masquerade, Third Act). Endow the space E of self-adjoint complex 3×3-matrices with the Loewner order and denote its positive cone by E_{+}.
(a) Set $n:=\operatorname{dim} E$. Compute n.
(b) Show that E_{+}has a face that is not a half-line and not one of the sets $\{0\}$ and E_{+}.
(c) Is the ordered vector space (E, E_{+}) isomorphic to \mathbb{R}^{n} with the ice cream cone?

Solution:

(a) It is easily checked that the complex self-adjoint 3×3-matrices are of the form

$$
\left(\begin{array}{ccc}
a_{1} & a_{12}+i b_{12} & a_{13}+i b_{13} \\
a_{12}-i b_{12} & a_{2} & a_{23}+i b_{23} \\
a_{13}-i b_{13} & a_{23}-i b_{23} & a_{3}
\end{array}\right)
$$

where $a_{1}, a_{2}, a_{3}, a_{12}, a_{13}, a_{23}, b_{12}, b_{13}, b_{23} \in \mathbb{R}$. So it follows that $n:=\operatorname{dim}(E)=9$.
(b) Claim. We claim that the set

$$
F:=\left\{A \in E_{+} \mid A_{11}=0\right\}
$$

is a face of E_{+}that is neither a half-line nor trivial.
Proof. Clearly, F is a wedge. Let $A \in F$ and $B \in[0, A]$. Then $\left(e^{(1)} \mid(A-B) e^{(1)}\right) \geq 0$, which shows that the entry B_{11} of B is non-positive. Since B is positive semi-definite, it follows that $B_{11}=0$. Thus, $B \in F$. It follows from Proposition 1.4.3 (ii) \Rightarrow (i) that F is a face. Moreover, F is $\neq E_{+},\{0\}$ nor a half-line, since it contains the matrices

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { but not }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

(c) Claim. No.

Proof. Suppose there is an order isomorphism $i: E \rightarrow \mathbb{R}^{n}$. Then i maps faces of E_{+} to faces of the ice-cream cone \mathbb{R}_{+}^{n} (this is proved as in the solution to Exercise 2 (b)). Moreover, $\{0\}$, the entire cone and half-lines are preserved under order isomorphisms. Let F be as in (b). It follows that $i(F)$ is a face $\neq \mathbb{R}_{+},\{0\}$ of the ice-cream cone. By Example 1.4.7. (b) it follows that $i(F)$ must be a half-line. This is a contradiction, since F is no half-line, as proved in (b).

Exercise 4 (The ice-cream cone, again). Let $d \in \mathbb{N}$ and endow \mathbb{R}^{d} with the ice-cream cone \mathbb{R}_{+}^{d}.
(a) Determine the interior points of \mathbb{R}_{+}^{d}.
(b) Find a base of \mathbb{R}_{+}^{d}.
(c) Let us identify \mathbb{R}^{d} with its own dual space in the canonical way. Show that, under this identification, the dual wedge of \mathbb{R}_{+}^{d} is also the ice-cream cone in \mathbb{R}^{d}.

Solution:

(a) Claim. The interior points of \mathbb{R}_{+}^{d} are given by the set

$$
\left\{x \in \mathbb{R}^{d} \mid x_{1} \geq 0 \wedge x_{1}^{2}>\sum_{n=2}^{d} x_{n}^{2}\right\}
$$

Proof. Notice that

$$
\mathbb{R}_{+}^{d}=\underbrace{\left\{x \in \mathbb{R}^{d} \mid x_{1} \geq 0 \wedge x_{1}^{2}>\sum_{n=2}^{d} x_{n}^{2}\right\}}_{A:=} \cup \underbrace{\left\{x \in \mathbb{R}^{d} \mid x_{1} \geq 0 \wedge x_{1}^{2}=\sum_{n=2}^{d} x_{n}^{2}\right\}}_{B:=}
$$

and that the union is disjoint. Then B is the boundary of \mathbb{R}_{+}^{d}. To see this, recall that a point is in the boundary of a set if and only if every neighborhood has non-trivial intersection with the set and its complement (if suffices to show this for ϵ-balls). Let $x \in B$ and $\epsilon>0$. Then the elements x and

$$
y=\left(x_{1}, x_{2}+\operatorname{sign}\left(x_{2}\right) \epsilon / 2, x_{3}, \ldots\right)
$$

satisfy $x \in \mathbb{R}_{+}^{d}$ and $y \in \mathbb{R}^{d} \backslash \mathbb{R}_{+}^{d}$ and lie in the ϵ-ball about x. It follows that $B \subseteq \partial \mathbb{R}_{+}^{d}$. Clearly, A is open, so $A \cap \partial \mathbb{R}_{+}^{d}=\emptyset$. Thus, $\partial \mathbb{R}_{+}^{d} \subseteq B$, and thus, $B=\partial \mathbb{R}_{+}^{d}$. This implies $\operatorname{int}\left(\mathbb{R}_{+}^{d}\right)=\mathbb{R}_{+}^{d} \backslash \partial \mathbb{R}_{+}^{d}=A$.
(b) Claim. The set

$$
B:=\left\{x \in \mathbb{R}_{+}^{d} \mid\left\langle e^{(1)}, x\right\rangle=1\right\}
$$

is a base for $\mathbb{R}_{+}^{d}{ }^{1}$
Proof. Clearly B is a convex subset of \mathbb{R}_{+}^{d}. Moreover, if $x \in \mathbb{R}_{+}^{d} \backslash\{0\}$, it follows from the definition of the ice-cream cone that $x_{1}>0$. Hence, $\left\langle e^{(1)}, x\right\rangle=x_{1}>0$. Then for $\lambda=\left\langle e^{(1)}, x\right\rangle$ and $b:=\lambda^{-1} x$, we have $x=\lambda b$ and $\left\langle e^{(1)}, b\right\rangle=1$.
It is left to show uniqueness of λ and b. Suppose that $b_{1}, b_{2} \in B$ and $\lambda_{1}, \lambda_{2}>0$ with $x=\lambda_{1} b_{1}=\lambda_{2} b_{2}$. Then it follows from $\lambda_{1}=\lambda_{1}\left\langle e^{(1)}, b_{1}\right\rangle=\lambda_{2}\left\langle e^{(1)}, b_{2}\right\rangle=\lambda_{2}$, and thus, $b_{1}=\lambda_{1}^{-1} x=b_{2}$. It follows that B is indeed a base of \mathbb{R}_{+}.
(c) Recall that

$$
\left(\mathbb{R}_{+}^{d}\right)^{\prime}=\left\{x^{\prime} \in \mathbb{R}^{d} \mid \forall x \in \mathbb{R}_{+}^{d}:\left\langle x^{\prime}, x\right\rangle \geq 0\right\}
$$

We show that $\left(\mathbb{R}_{+}^{d}\right)^{\prime}=\mathbb{R}_{+}^{d}$.
"?": Let $x, x^{\prime} \in \mathbb{R}_{+}^{d}$ and denote by $P x:=\left(0, x_{2}, x_{3}, \ldots\right)$. Then it follows from the Cauchy-Schwarz inequality that

$$
\left\langle x^{\prime}, x\right\rangle=x_{1}^{\prime} \cdot x_{1}+\left\langle P x^{\prime}, P x\right\rangle \geq\left\|P x^{\prime}\right\|_{2} \cdot\|P x\|_{2}+\left\langle P x^{\prime}, P x\right\rangle \geq 0
$$

Since x was arbitrary, it follows that $x^{\prime} \in\left(\mathbb{R}_{+}^{d}\right)^{\prime}$.
$" \subseteq$ ": Let $x^{\prime} \in\left(\mathbb{R}_{+}^{d}\right)^{\prime}$. Then $\left\langle x_{1}^{\prime}, e^{(1)}\right\rangle \geq 0$ shows that $x_{1}^{\prime} \geq 0$, where $e^{(1)}$ denotes the first canonical unit vector.
Define x by $x_{1}:=\left\|P x^{\prime}\right\|_{2}$ and $x_{n}:=-x_{n}^{\prime}$ for all $n \geq 2$. Notice that $P x=-P x^{\prime}$ and $x_{1} \geq\|P x\|_{2}=\left\|-P x^{\prime}\right\|_{2}$. Hence, $x \in \mathbb{R}_{+}^{d}$ and

$$
x_{1}^{\prime} \cdot\left\|P x^{\prime}\right\|_{2}=x_{1}^{\prime} \cdot x_{1}=\left\langle x^{\prime}, x\right\rangle-\left\langle P x^{\prime}, P x\right\rangle \geq\left\langle P x^{\prime}, P x^{\prime}\right\rangle=\left\|P x^{\prime}\right\|_{2}^{2}
$$

If $\left\|P x^{\prime}\right\|_{2}>0$, then $x_{1}^{\prime} \geq\left\|P x^{\prime}\right\|_{2}$. If $\left\|P x^{\prime}\right\|_{2}=0$, then $x_{1}^{\prime} \geq 0$ also implies $x_{1}^{\prime} \geq$ $\left\|P x^{\prime}\right\|_{2}$. In any case $x^{\prime} \in \mathbb{R}_{+}^{d}$ holds.

[^0]
[^0]: ${ }^{1}$ Notice that B defines an affine hyperplane that is orthogonal to $e^{(1)}$ and shifted along the $e^{(1)}$ vector by 1 . Since $e^{(1)}$ is the rotational symmetry axis of the ice-cream cone, B is a basis of \mathbb{R}_{+}^{d}. Now that we have an intuitive understanding what happens geometrically, we conclude with the rigorous proof.

