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3. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on April 25 and 26, 2023
with Solutions

Exercise 1 (Masquerade of cones, continued). Are the following two ordered
vector spaces isomorphic?

(1) The space R4 with the ice cream cone.

(2) The space of all self-adjoint complex 2× 2-matrices with the Loewner order.

Solution: We recall that the space of self-adjoint complex 2× 2-matrices is given
by

C2×2
sa =

{(
a1 a3 + ib

a3 − ib a2

)
∈ C2×2

∣∣∣∣ a1, a2, a3, b ∈ R
}
.

Also recall from linear algebra that self-adjoint matrices have real spectrum. So as it
is in the real and symmetric case, a 2× 2-matrix A ∈ C2×2

sa is in the Loewner cone if
and only if its eigenvalues are non-negative. This is the case if and only if det(A) ≥ 0
and tr(A) ≥ 0. We claim that the mapping defined by

i : R4 → C2×2
sa , x = (x1, x2, x3, x4) 7→

(
x1 + x2 x3 + ix4
x3 − ix4 x1 − x2

)
is order isomorphic.
Bijectivity is straightforward: clearly, i is injective (by Proposition 1.6.4 this even
follows from the bipositivity) and its domain and codomain both have dimension 4
(as a vector space over the reals). To show bipositivity, let x ∈ R4. Then

i(x) ≥ 0

⇔ tr i(x) ≥ 0 ∧ det i(x) ≥ 0

⇔ 2x1 ≥ 0 ∧ (x1 + x2)(x1 − x2)− (x23 + x24) ≥ 0

⇔ x1 ≥ 0 ∧ x21 ≥ x22 + x23 + x24

⇔ x ≥ 0.

Exercise 2 (Loewner order). Let d ∈ N and let E denote the space of all
self-adjoint complex d× d-matrices, endowed with the Loewner order.
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(a) Show that, as claimed in Example 2.1.6(b), the set B := {a ∈ E+ | tr a = 1} is
a base of E+.

(b) Show that, as claimed in Example 2.1.6(b), the interior points of E+ are precisely
the positive definite self-adjoint matrices.

(c) Let b ∈ Cd×d. Show that the mapping E ∋ a 7→ bab∗ ∈ E is positive. When is it
an order isomorphism?

(d) For every a ∈ E let τa ∈ E′ be given by ⟨τa, b⟩ := tr(a∗b) for all b ∈ E. Show
that

ψ : E → E′, a 7→ τa

is an isomorphism of (pre-)ordered vector spaces (where E′ is endowed with the dual
wedge).

Solution: In the following we denote by ( · | · ) the standard sesquilinear product
on Cd that is anti-linear in the first and linear in the second component.

(a) If A ∈ Cd×d
sa is positive-semidefinite, then

tr(A) =

d∑
k=1

(e(k) | Ae(k)) ≥ 0

shows that λ := tr(A) ≥ 0, tr
(

A
tr(A)

)
= 1 and A = λ A

tr(A) . Here e(k) denotes the
k-th canonical unit vector. This representation is unique. Indeed, let A1, A2 ∈ Cd×d

sa

with tr(A1) = tr(A2) = 1 and λ1, λ2 > 0 with λ1A1 = λ2A2. Then λ1 = λ1 tr(A1) =
tr(λ1A1) = tr(λ2A2) = λ2 tr(A2) = λ2; and hence, A1 = A2. It follows that B is a
base.

(b) We first show that the positive definite matrices are in the interior of the cone
E+. Let A be positive definite. Then by compactness of the unit sphere in Cd the
minimum

ϵ := min{(x | Ax) | x ∈ Cd, ∥x∥2 = 1}

exists and is positive. Choose S ∈ Cd×d
sa with ∥S∥2 <

ϵ
2 . Then, by the Cauchy-

Schwarz inequality, we have

(x | (A+ S)x) = (x | Ax) + (x | Sx)
≥ (x | Ax) + ∥x∥2 ∥Sx∥2 ≥ (x | Ax)− ϵ/2 ≥ ϵ/2

for all x in the unit sphere of Cd. Hence, A is in the interior of E+.

Conversely, if A ∈ E+ is not positive definite, then there exists x ∈ Cd with ∥x∥ = 1
and (x | Ax) ≤ 0. Let ϵ > 0 and set Sy := −ϵ(x | y)x = −ϵxx∗y. Then clearly,
∥S∥2 = ϵ and

(x | (A+ S)x) = (x | Ax) + (x | Sx) ≤ (x | Sx) = −ϵ ∥x∥22 = −ϵ < 0.

Hence, A is not in the interior of E+.
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(c) Let b ∈ Cd×d and a ∈ E+. Then for all x ∈ Cd we have

(x | bab∗x) = (b∗x | a(b∗x)) ≥ 0.

Hence, bab∗ is also positive semidefinite.

Claim. The map is an order isomorphism if and only if b is invertible.

Proof. Notice that if b is invertible, then

E ∋ a 7→ b−1a(b−1)
∗
= b−1a(b∗)−1

is the inverse of the mapping in the exercise statement and also positive.

Conversely, if b is not invertible, then b is not injective. So there exists 0 ̸= z ∈ Cd

such that (b∗x | z) = (x | bz) = 0 for all x ∈ Cd. Set a := (z | · )z = zz∗. Then
a ̸= 0 is self-adjoint and Im(a) ⊆ span{z}. Hence,

(x | bab∗x) = (b∗x | ab∗x) = 0.

Thus the map E ∋ a 7→ bab∗ is not injective.

(d) We show injectivity of the mapping a 7→ τa. Let a ∈ E such that τa = 0.
For b = (e(i) | · )e(j) = e(j)

(
e(i)

)∗. Then, since a = a∗ and the trace is cyclic,

tr(a∗b) = tr

(
ae(j)

(
e(i)

)∗)
= tr

((
e(i)

)∗
ae(j)

)
= aij . Since, τa = 0 it follows that

aij = 0 for all i, j ∈ {1, . . . , d}. Hence, a = 0. This shows the injectivity.

As E is finite dimensional dim(E) = dim(E′), and thus, the surjectivity of a 7→ τa
follows.

To show positivity, let a ∈ E+, b ∈ E+. Since any positive semidefinite matrices has
a positive semidefinite root, we can write b = b1/2b1/2 for b1/2 ∈ E+. Thus, using
that a and b1/2 are self-adjoint, we obtain

⟨τa, b⟩ = tr(a∗b) = tr
(
a∗b1/2b1/2

)
= tr

(
b1/2ab1/2

)
= tr

(
b1/2a

(
b1/2

)∗) ≥ 0,

since by (c) b1/2a
(
b1/2

)
is positive semidefinite and the diagonal entries of positive

semidefinite matrices are non-negative.

Conversely, suppose τa ∈ E′
+. Then for every x ∈ Cd define a = (x | · )x = xx∗ and

notice that a is self-adjoint and R ∋ ⟨y, ay⟩ = (y∗x)(x∗y) = (y∗x)(y∗x) ≥ 0. So a is
also positive semidefinite. It follows that

0 ≤ ⟨τa, b⟩ = tr(x∗a∗x) = x∗a∗x = (x | ax)

Hence, a ∈ E+.

Exercise 3 (Masquerade, Third Act). Endow the space E of self-adjoint com-
plex 3× 3-matrices with the Loewner order and denote its positive cone by E+.
(a) Set n := dimE. Compute n.

(b) Show that E+ has a face that is not a half-line and not one of the sets {0} and
E+.

(c) Is the ordered vector space (E,E+) isomorphic to Rn with the ice cream cone?

Solution:
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(a) It is easily checked that the complex self-adjoint 3× 3-matrices are of the form a1 a12 + ib12 a13 + ib13
a12 − ib12 a2 a23 + ib23
a13 − ib13 a23 − ib23 a3


where a1, a2, a3, a12, a13, a23, b12, b13, b23 ∈ R. So it follows that n := dim(E) = 9.

(b) Claim. We claim that the set

F := {A ∈ E+ | A11 = 0}

is a face of E+ that is neither a half-line nor trivial.

Proof. Clearly, F is a wedge. Let A ∈ F and B ∈ [0, A]. Then (e(1) | (A−B)e(1)) ≥ 0,
which shows that the entry B11 of B is non-positive. Since B is positive semi-definite,
it follows that B11 = 0. Thus, B ∈ F . It follows from Proposition 1.4.3 (ii) ⇒ (i)
that F is a face. Moreover, F is ̸= E+, {0} nor a half-line, since it contains the
matrices 0 0 0

0 1 0
0 0 0

 and

0 0 0
0 0 0
0 0 1

 but not

1 0 0
0 0 0
0 0 0

 .

(c) Claim. No.

Proof. Suppose there is an order isomorphism i : E → Rn. Then i maps faces of E+

to faces of the ice-cream cone Rn
+ (this is proved as in the solution to Exercise 2 (b)).

Moreover, {0}, the entire cone and half-lines are preserved under order isomorphisms.
Let F be as in (b). It follows that i(F ) is a face ̸= R+, {0} of the ice-cream cone. By
Example 1.4.7. (b) it follows that i(F ) must be a half-line. This is a contradiction,
since F is no half-line, as proved in (b).

Exercise 4 (The ice-cream cone, again). Let d ∈ N and endow Rd with the
ice-cream cone Rd

+.
(a) Determine the interior points of Rd

+.

(b) Find a base of Rd
+.

(c) Let us identify Rd with its own dual space in the canonical way. Show that, under
this identification, the dual wedge of Rd

+ is also the ice-cream cone in Rd.

Solution:

(a) Claim. The interior points of Rd
+ are given by the set

{x ∈ Rd | x1 ≥ 0 ∧ x21 >
d∑

n=2

x2n}
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Proof. Notice that

Rd
+ = {x ∈ Rd | x1 ≥ 0 ∧ x21 >

d∑
n=2

x2n}︸ ︷︷ ︸
A:=

∪{x ∈ Rd | x1 ≥ 0 ∧ x21 =
d∑

n=2

x2n}︸ ︷︷ ︸
B:=

and that the union is disjoint. Then B is the boundary of Rd
+. To see this, recall that

a point is in the boundary of a set if and only if every neighborhood has non-trivial
intersection with the set and its complement (if suffices to show this for ϵ-balls). Let
x ∈ B and ϵ > 0. Then the elements x and

y = (x1, x2 + sign(x2)ϵ/2, x3, . . . )

satisfy x ∈ Rd
+ and y ∈ Rd\Rd

+ and lie in the ϵ-ball about x. It follows that B ⊆ ∂Rd
+.

Clearly, A is open, so A ∩ ∂Rd
+ = ∅. Thus, ∂Rd

+ ⊆ B, and thus, B = ∂Rd
+. This

implies int(Rd
+) = Rd

+ \ ∂Rd
+ = A.

(b) Claim. The set

B := {x ∈ Rd
+ | ⟨e(1), x⟩ = 1}

is a base for Rd
+.1

Proof. Clearly B is a convex subset of Rd
+. Moreover, if x ∈ Rd

+ \{0}, it follows from
the definition of the ice-cream cone that x1 > 0. Hence, ⟨e(1), x⟩ = x1 > 0. Then for
λ = ⟨e(1), x⟩ and b := λ−1x, we have x = λb and ⟨e(1), b⟩ = 1.
It is left to show uniqueness of λ and b. Suppose that b1, b2 ∈ B and λ1, λ2 > 0 with
x = λ1b1 = λ2b2. Then it follows from λ1 = λ1⟨e(1), b1⟩ = λ2⟨e(1), b2⟩ = λ2, and
thus, b1 = λ−1

1 x = b2. It follows that B is indeed a base of R+.

(c) Recall that (
Rd
+

)′
= {x′ ∈ Rd | ∀x ∈ Rd

+ : ⟨x′, x⟩ ≥ 0}.

We show that
(
Rd
+

)′
= Rd

+.
“⊇”: Let x, x′ ∈ Rd

+ and denote by Px := (0, x2, x3, . . . ). Then it follows from the
Cauchy-Schwarz inequality that

⟨x′, x⟩ = x′1 · x1 + ⟨Px′, Px⟩ ≥ ∥Px′∥2 · ∥Px∥2 + ⟨Px′, Px⟩ ≥ 0

Since x was arbitrary, it follows that x′ ∈
(
Rd
+

)′.
“⊆”: Let x′ ∈

(
Rd
+

)′. Then ⟨x′1, e(1)⟩ ≥ 0 shows that x′1 ≥ 0, where e(1) denotes the
first canonical unit vector.
Define x by x1 := ∥Px′∥2 and xn := −x′n for all n ≥ 2. Notice that Px = −Px′ and
x1 ≥ ∥Px∥2 = ∥−Px′∥2. Hence, x ∈ Rd

+ and

x′1 · ∥Px′∥2 = x′1 · x1 = ⟨x′, x⟩ − ⟨Px′, Px⟩ ≥ ⟨Px′, Px′⟩ = ∥Px′∥22
If ∥Px′∥2 > 0, then x′1 ≥ ∥Px′∥2. If ∥Px′∥2 = 0, then x′1 ≥ 0 also implies x′1 ≥
∥Px′∥2. In any case x′ ∈ Rd

+ holds.

1Notice that B defines an affine hyperplane that is orthogonal to e(1) and shifted along the e(1)

vector by 1. Since e(1) is the rotational symmetry axis of the ice-cream cone, B is a basis of Rd
+.

Now that we have an intuitive understanding what happens geometrically, we conclude with the
rigorous proof.
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