

BERGISCHE UNIVERSITÄT WUPPERTAL

Summer term 2023

3. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on April 25 and 26, 2023

Exercise 1 (Masquerade of cones, continued). Are the following two ordered vector spaces isomorphic?

- (1) The space \mathbb{R}^4 with the ice cream cone.
- (2) The space of all self-adjoint complex 2×2 -matrices with the Loewner order.

Exercise 2 (Loewner order). Let $d \in \mathbb{N}$ and let E denote the space of all self-adjoint complex $d \times d$ -matrices, endowed with the Loewner order.

(a) Show that, as claimed in Example 2.1.6(b), the set $B \coloneqq \{a \in E_+ \mid \text{ tr } a = 1\}$ is a base of E_+ .

(b) Show that, as claimed in Example 2.1.6(b), the interior points of E_+ are precisely the positive definite self-adjoint matrices.

(c) Let $b \in \mathbb{C}^{d \times d}$. Show that the mapping $E \ni a \mapsto bab^* \in E$ is positive. When is it an order isomorphism?

(d) For every $a \in E$ let $\tau_a \in E'$ be given by $\langle \tau_a, b \rangle \coloneqq \operatorname{tr}(a^*b)$ for all $b \in E$. Show that

 $\psi \colon E \to E', \qquad a \mapsto \tau_a$

is an isomorphism of (pre-)ordered vector spaces (where E' is endowed with the dual wedge).

Exercise 3 (Masquerade, Third Act). Endow the space E of self-adjoint complex 3×3 -matrices with the Loewner order and denote its positive cone by E_+ .

(a) Set $n \coloneqq \dim E$. Compute n.

(b) Show that E_+ has a face that is not a half-line and not one of the sets $\{0\}$ and E_+ .

(c) Is the ordered vector space (E, E_+) isomorphic to \mathbb{R}^n with the ice cream cone?

Exercise 4 (The ice-cream cone, again). Let $d \in \mathbb{N}$ and endow \mathbb{R}^d with the ice-cream cone \mathbb{R}^d_+ .

(a) Determine the interior points of \mathbb{R}^d_+ .

(b) Find a base of \mathbb{R}^d_+ .

(c) Let us identify \mathbb{R}^d with its own dual space in the canonical way. Show that, under this identification, the dual wedge of \mathbb{R}^d_+ is also the ice-cream cone in \mathbb{R}^d .