3. Exercise Sheet in
 Ordered Banach Spaces and Positive Operators

For the exercise classes on April 25 and 26, 2023

Exercise 1 (Masquerade of cones, continued). Are the following two ordered vector spaces isomorphic?
(1) The space \mathbb{R}^{4} with the ice cream cone.
(2) The space of all self-adjoint complex 2×2-matrices with the Loewner order.

Exercise 2 (Loewner order). Let $d \in \mathbb{N}$ and let E denote the space of all self-adjoint complex $d \times d$-matrices, endowed with the Loewner order.
(a) Show that, as claimed in Example 2.1.6(b), the set $B:=\left\{a \in E_{+} \mid \operatorname{tr} a=1\right\}$ is a base of E_{+}.
(b) Show that, as claimed in Example 2.1.6(b), the interior points of E_{+}are precisely the positive definite self-adjoint matrices.
(c) Let $b \in \mathbb{C}^{d \times d}$. Show that the mapping $E \ni a \mapsto b a b^{*} \in E$ is positive. When is it an order isomorphism?
(d) For every $a \in E$ let $\tau_{a} \in E^{\prime}$ be given by $\left\langle\tau_{a}, b\right\rangle:=\operatorname{tr}\left(a^{*} b\right)$ for all $b \in E$. Show that

$$
\psi: E \rightarrow E^{\prime}, \quad a \mapsto \tau_{a}
$$

is an isomorphism of (pre-)ordered vector spaces (where E^{\prime} is endowed with the dual wedge).

Exercise 3 (Masquerade, Third Act). Endow the space E of self-adjoint complex 3×3-matrices with the Loewner order and denote its positive cone by E_{+}.
(a) Set $n:=\operatorname{dim} E$. Compute n.
(b) Show that E_{+}has a face that is not a half-line and not one of the sets $\{0\}$ and E_{+}.
(c) Is the ordered vector space (E, E_{+}) isomorphic to \mathbb{R}^{n} with the ice cream cone?

Exercise 4 (The ice-cream cone, again). Let $d \in \mathbb{N}$ and endow \mathbb{R}^{d} with the ice-cream cone \mathbb{R}_{+}^{d}.
(a) Determine the interior points of \mathbb{R}_{+}^{d}.
(b) Find a base of \mathbb{R}_{+}^{d}.
(c) Let us identify \mathbb{R}^{d} with its own dual space in the canonical way. Show that, under this identification, the dual wedge of \mathbb{R}_{+}^{d} is also the ice-cream cone in \mathbb{R}^{d}.

