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Exercise 1 (Extreme rays).
(a) Determine the extreme rays of the standard cone in ℓp for p ∈ [1,∞].

(b) Determine the extreme rays of the standard cone in Lp([0, 1]) for p ∈ [1,∞].

Solution:

(a) Claim. The extreme rays of (ℓp)+ are the sets [0,∞) e(k), where e(k) are the
canonical unit vectors.

Proof. Fix k ∈ N. To prove that [0,∞) e(k) is an extreme ray we show that the con-
ditions in Proposition 1.4.6 (iii) are satisfied. Clearly [0,∞) e(k) is a cone. Moreover,
let r ∈ [0,∞) e(k) and v ∈ [0, r]. If r = 0, then v = 0 = 0 · r. So we may assume that
r ̸= 0. Then for every l ∈ N \ {k} we have 0 ≤ vl ≤ rl = 0. Hence, v ∈ [0,∞) e(k)

and there exists λ ∈ [0,∞) such that v = λ · r. Now Proposition 1.4.6 (iii) ⇒ (i)
implies that [0,∞) e(k) is an extreme ray.

Conversely, let R ⊆ (ℓp)+ be an extreme ray. By definition there exists 0 ̸= a ∈ (ℓp)+
such that R = [0,∞) a. If there exist distinct k1, k2 ∈ N such that ak1 , ak2 > 0, then
ak1e

(k1) and ak2e
(k2) are both in [0, a]. Thus, by Proposition 1.4.6 (i) ⇒ (iii), there

exist λ1, λ2 ∈ [0,∞) such that

λ1 · ak1 · e(k1) = a = λ2 · ak2 · e(k2).

This can only happen, when λ1 = λ2 = 0, implying that a = 0. This is a contradic-
tion and shows that a ∈ (0,∞) e(k) for some k ∈ N. Hence, R = [0,∞) e(k).

(b) Claim. The cone (Lp)+ does not have any extreme rays.

Proof. To see this, suppose R = [0,∞) a is an extreme ray with 0 ̸= a ∈ (Lp)+. Since
the map γ(t) :=

∫ t
0 a(x) dx is continuous by the monotone convergence theorem and

satisfies γ(0) = 0 and γ(1) > 0. There exists, by the intermediate value theorem, a
t ∈ [0, 1] such that γ(t) = 1

2γ(1). Then the functions a1 := 2a·1[0,t] and a2 := 2a·1[t,1]
satisfy a = 1

2a1 +
1
2a2. Since R is a face, it follows that a1, a2 ∈ R. As a1 and a2

are linearly independent, it follows that R spans a subspace of at least dimension 2.
This contradicts Proposition 1.4.6 (i) ⇒ (ii).
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Exercise 2 (Cones in Rd).
(a) Let E+ be a closed and generating cone in E := R2. Show that the ordered
vector space (E,E+) is isomorphic to R2 with the standard cone.

(b) Give an example of a closed and generating cone E+ in E := R3 such that the
ordered vector space (E,E+) is not isomorphic to R3 with the standard cone.

(c) Endow R2 with the standard cone and let x ∈ R2
+. Does [0, 1]x = [0, x] hold?

Solution:

(a) Claim. There exist elements a and b that are linearly independent and generate
the cone E+.

It the claim holds then it follows immediately that defines a mapping

i : R2 → E,

(
x1
x2

)
7→

(
a b

)(x1
x2

)
is an order isomorphism between R2 with the standard cone R2

+ and (E,E+). Clearly,
i is bijective and positive, since x1E+ + x2E+ ⊆ E+. That i−1 is positive follows
from the fact that a, b generate E+.

Proof of the Claim. Since the cone E+ is generating, by Proposition 2.1.1, it has
non-empty interior. So ∂E+ ̸= ∅, {0}. Thus, we are able to pick 0 ̸= a ∈ ∂E+. Since
E+ is closed, it follows that a ∈ E+, and thus, [0,∞) a ⊆ E+. Notice that, since
E+ has non-empty interior, ∂E+ \ [0,∞) a is non-empty. If every b ∈ ∂E+ \ [0,∞) a
is linearly dependent on a, then E+ contains the linear subspace spanned by a.
This contradicts the fact that E+ is a cone. So it follows that a and b are linearly
independent and in ∂E+.

It remains to show that a and b generate E+. To see this let z ∈ E+. Since a and
b are a basis for E, there exist x1, x2 ∈ R such that z = x1a + x2b. If x1, x2 < 0,
then −z ∈ E+, implying that z = 0. By linear independence x1 = x2 = 0. This is a
contradiction. If w.l.o.g. x1 < 0 and x2 ≥ 0. We show that b is not in the boundary
of E+. Clearly for every ϵ ∈ (0, 1) the set (1−ϵ, 1+ϵ)b is contained in E+. Moreover,
since x1 < 0 we find 0 < δ < −x1 such that (−δ, δ)a + (1 − ϵ, 1 + ϵ)b ⊆ E+. This
shows that b is in the interior of E+. This is a contradiction. Thus, we have shown
that x1, x2 ≥ 0. It follows that every z ∈ E+ can be represented as z = x1a + x2b
with x1, x2 ≥ 0. So a and b generate the cone E+.

(b) Claim. We claim that (E,E+), where E+ is the ice-cream cone, is not isomorphic
to R3 endowed with the standard cone.

Proof. Notice that it follows from Example 1.4.7 (b) that the ice-cream cone has
infinitely many extremal rays. From part (a) of the example it follows that the
standard cone in R3 only has three extremal rays. So it suffices to show that an
order isomorphism maps extremal rays to extremal rays.

Clearly an order isomorphism i : E → F maps i([0,∞) a) = [0,∞) i(a) for each
0 ̸= a ∈ E+, so it suffices to show that i maps faces to faces. Let A be a face in E.
Let further x, y ∈ F and suppose there exists λ ∈ (0, 1) such that λx+(1−λ)y ∈ i(A).
Then λi−1(x) − (1 − λ)i−1(y) ∈ A, and thus, i−1(x), i−1(y) ∈ A. This implies that
x, y ∈ i(A). So i(A) in indeed a face.

Jochen Glück and Julian Hölz (Wuppertal)
Anke Kalauch and Florian Boisen (Dresden)

Page 2 of 6



v 

Figure 1: The transform described in the solution of Exercise 2 (a).

(c) No.

Counterexample. Pick x = (1, 1). Then [0, x] = {(y1, y2) ∈ R2 | 0 ≤ y1, y2 ≤ 1},
whereas [0, 1]x = {(y, y) ∈ R2 | 0 ≤ y ≤ 1}. So, in particular, the element (0, 1) ∈
[0, x] but (0, 1) ̸∈ [0, 1]x.

Exercise 3 (Masquerade of cones). Show that the following ordered vector
spaces are isomorphic:

(1) The space R3 with the ice cream cone.

(2) The space of all symmetric real 2× 2-matrices with the Loewner order.

(3) The span of the three real-valued functions 1, Re, Im on T with the pointwise
order. Here, T := {z ∈ C | |z| = 1} denotes the complex unit circle.

(4) The span of the functions 1, cos, sin on [0, 2π] with the pointwise order.

(5) The space of all polynomial functions R → R of degree at most 2 with the
pointwise order.

Solution:

“(1)” ∼= “(2)” : Denote by R2×2
sym the space of symmetric matrices and by

(
R2×2
sym

)
+

the
Loewner cone. Notice that a symmetric matrix is positive semidefinite if and only
if all its eigenvalues are non-negative. For a matrix A ∈ R2×2

sym this is equivalent to
detA ≥ 0 and trA ≥ 0. We claim that the mapping defined by

i : R3 → R2×2
sym, x = (x1, x2, x3) 7→

(
x1 + x2 x3

x3 x1 − x2

)
is an order isomorphism.

Jochen Glück and Julian Hölz (Wuppertal)
Anke Kalauch and Florian Boisen (Dresden)

Page 3 of 6



Bijectivity is straightforward: clearly, i is injective and its domain and codomain
both have dimension 3. To show bipositivity, let x ∈ R3. Then

i(x) ≥ 0

⇔ tr i(x) ≥ 0 ∧ det i(x) ≥ 0

⇔ 2x1 ≥ 0 ∧ (x1 + x2)(x1 − x2)− x23 ≥ 0

⇔ x1 ≥ 0 ∧ x21 ≥ x22 + x23

⇔ x ≥ 0.

“(3)” ∼= “(4)” : It is easily checked that the linear extension of the mapping

1 7→ 1, Re 7→ cos, Im 7→ sin

is the restriction of the bijective and bi-positive mapping

T : L1(T) → L1([0, 2π]), T f(x) := f(eix)

to the three-dimensional space spanned by {1, cos, sin}.

“(1)” ∼= “(4)” : Define the mapping

i : R3 → span{1, cos, sin}, (x1, x2, x3) 7→ x1 1+x2 cos + x3 sin .

Then i is clearly bijective.

If (x1, x2, x3) ∈ R3 is in the ice-cream cone, then by Cauchy-Schwarz

|x2 · cos(t) + x3 sin(t)| ≤ ∥(x2, x3)∥2∥(cos(t), sin(t))∥2 ≤ x1

for all t ∈ [0, 2π]. Thus, x1 1+x2 cos + x3 sin ≥ 0.

Conversely, let x1 1+x2 cos + x3 sin ≥ 0. If x2 = x3 = 0, then x ∈ R3
+. Otherwise,

choose t ∈ [0, 2π] such that

(cos(t), sin(t)) =
1

∥(x2, x3)∥2
(x2, x3).

Then x1 − ∥(x2, x3)∥2 = x1 − ∥(x2, x3)∥2 cos(t)2 − ∥(x2, x3)∥2 sin(t)2 ≥ 0. Hence,
(x1, x2, x3) is in the ice-cream cone.

“(2)” ∼= “(5)” : Denote by R2[X] the space of all polynomial of degree at most 2 with
real coefficients. Note that a polynomial a1x2 + a2x + a3 takes only non-negative
values if and only if either

(i) a1 > 0 and a22 − 4a1a3 ≤ 0, or

(ii) a1 = a2 = 0 and a3 ≥ 0.

The mapping

i : R2×2
sym → R2[X], A =

(
a c
c b

)
7→ ax2 + 2cx+ b

is clearly bijective and we show now that it is an order isomorphism.
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Let A be positive. Then a + b = trace(A) ≥ 0 and ab − c2 = det(A) ≥ 0. Thus, if
a = 0, then −c2 ≥ 0, and thus, 2c = 0. It follows that i(A) only takes non-negative
values by (ii). We now assume that a > 0. Then (2c)2−4ab = 4(c2−ab) ≤ 0. Hence,
i(A) only takes non-negative values by (i).

Conversely, let p := a1x
2 + a2x+ a3 satisfy (i). Then

det(i−1(p)) = a1a3 − 1
4a

2
2 =

1
4(4a1a3 − a22) ≥ 0.

And since a1 > 0 and a22 ≥ 0 we conclude that a3 ≥ 0. It follows that trace(i−1(p)) =
a1 + a3 ≥ 0. If p satisfies (ii), then

det(i−1(p)) = 0 and trace(i−1(p)) = a3 ≥ 0.

In every case, i−1(p) ∈
(
R2×2
sym

)
+
.

Exercise 4 (Closed faces of the cone in function spaces).
(a) Determine all closed faces of the standard cone in Lp(R) for p ∈ [1,∞).

(b) Determine all closed faces of the standard cone in C([0, 1]).

Solution:

(a) Claim. The closed faces of (Lp)+ are exactly the sets

IA := {f ∈
(
Lp(R)

)
+
| f · 1A = 0},

where A is a measurable set.

Proof. Fix a measurable set A. To show that IA is a face, let f, g ∈ IA. Then
every element h ∈ [0, f + g] also satisfies h · 1A = 0. So it follows from Proposi-
tion 1.4.3 (iii) ⇒ (i) that IA is indeed a face. Moreover, IA is clearly closed.

Converse, let Let G be a closed face of (Lp)+. As Lp(R) is a separable metric space,
so is G. So we can choose a sequence (fn)n∈N in G \ {0} that is dense in G. Define

g :=
∑
n∈N

2−n fn
∥fn∥

Then g ∈ Lp since the sum is absolutely convergent. Let ĝ be a representative of g
and set A := {x ∈ R | ĝ(x) = 0}. We show that G = IA.

“G ⊆ IA”: Since for every n ∈ N satisfies fn · 1A = 0 and (fn)n∈N is dense in G, it
follows that g · 1A = 0 for every g ∈ G.

“G ⊇ IA”: Let h ∈ IA. For n ∈ N define hn := h ∧ (n · g).1 Then, hn ∈ [0, n · g] ⊆ G
and (hn)n∈N converges almost everywhere2 as well as monotonously3 to h. Thus, it
follows from the monotone convergence theorem that (hn)n∈N converges in norm to
h. Since G is closed, h ∈ G.

1Here the symbol ∧ denotes the minimum of the two functions. This is defined pointwise on the
representatives.

2This follows as h vanishes outside of A.
3This is clear.
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(b) Claim. The closed faces of C([0, 1])+ are exactly the sets

IA := {f ∈ C([0, 1])+ : f |A = 0},

where A is a closed subset of [0, 1].

Proof. Fix A closed and let f, g ∈ IA. Then every element in [0, f + g] also vanishes
on A. So [0, f + g] ⊆ IA. Hence, by Proposition 1.4.3 (iii) ⇒ (i), the set IA is a face.
Moreover, IA is clearly closed.

Conversely, let G be a face of C([0, 1]).

A := {x ∈ [0, 1] | ∀f ∈ G : f(x) = 0}

Then clearly G ⊆ IA.

To show the converse inclusion, notice that C([0, 1]) is separable.4 Thus, we find a
sequence (fn)n∈N in G \ {0} that is dense in G. Then the function

g :=
∑
n∈N

2−n fn
∥fn∥

is again in C([0, 1]). Let h ∈ IA. Then hn := h ∧ (n · g) defines a monotone
increasing sequence that converges pointwisely to h, since h vanishes on A. Since h
is continuous, it follows from Dini’s theorem that this convergence is even uniform.
As hn ∈ [0, n · g] ⊆ G it follows from the closedness of G that h ∈ G.

4Recall that, if K is a compact Hausdorff space, the space C(K) is separable if and only if K is
metrizable. For the space C([0, 1]) this follows more easily, since by the Weierstraß approximation
theorem, the polynomials are a countable and dense set in C([0, 1]).
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