2. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on April 18 and 19, 2023

with Solutions

Exercise 1 (Extreme rays).

(a) Determine the extreme rays of the standard cone in ℓ^{p} for $p \in[1, \infty]$.
(b) Determine the extreme rays of the standard cone in $L^{p}([0,1])$ for $p \in[1, \infty]$.

Solution:

(a) Claim. The extreme rays of $\left(\ell^{p}\right)_{+}$are the sets $[0, \infty) e^{(k)}$, where $e^{(k)}$ are the canonical unit vectors.

Proof. Fix $k \in \mathbb{N}$. To prove that $[0, \infty) e^{(k)}$ is an extreme ray we show that the conditions in Proposition 1.4.6 (iii) are satisfied. Clearly $[0, \infty) e^{(k)}$ is a cone. Moreover, let $r \in[0, \infty) e^{(k)}$ and $v \in[0, r]$. If $r=0$, then $v=0=0 \cdot r$. So we may assume that $r \neq 0$. Then for every $l \in \mathbb{N} \backslash\{k\}$ we have $0 \leq v_{l} \leq r_{l}=0$. Hence, $v \in[0, \infty) e^{(k)}$ and there exists $\lambda \in[0, \infty)$ such that $v=\lambda \cdot r$. Now Proposition 1.4.6 (iii) \Rightarrow (i) implies that $[0, \infty) e^{(k)}$ is an extreme ray.
Conversely, let $R \subseteq\left(\ell^{p}\right)_{+}$be an extreme ray. By definition there exists $0 \neq a \in\left(\ell^{p}\right)_{+}$ such that $R=[0, \infty) a$. If there exist distinct $k_{1}, k_{2} \in \mathbb{N}$ such that $a_{k_{1}}, a_{k_{2}}>0$, then $a_{k_{1}} e^{\left(k_{1}\right)}$ and $a_{k_{2}} e^{\left(k_{2}\right)}$ are both in $[0, a]$. Thus, by Proposition 1.4.6 (i) \Rightarrow (iii), there exist $\lambda_{1}, \lambda_{2} \in[0, \infty)$ such that

$$
\lambda_{1} \cdot a_{k_{1}} \cdot e^{\left(k_{1}\right)}=a=\lambda_{2} \cdot a_{k_{2}} \cdot e^{\left(k_{2}\right)} .
$$

This can only happen, when $\lambda_{1}=\lambda_{2}=0$, implying that $a=0$. This is a contradiction and shows that $a \in(0, \infty) e^{(k)}$ for some $k \in \mathbb{N}$. Hence, $R=[0, \infty) e^{(k)}$.
(b) Claim. The cone $\left(L^{p}\right)_{+}$does not have any extreme rays.

Proof. To see this, suppose $R=[0, \infty) a$ is an extreme ray with $0 \neq a \in\left(L^{p}\right)_{+}$. Since the map $\gamma(t):=\int_{0}^{t} a(x) \mathrm{d} x$ is continuous by the monotone convergence theorem and satisfies $\gamma(0)=0$ and $\gamma(1)>0$. There exists, by the intermediate value theorem, a $t \in[0,1]$ such that $\gamma(t)=\frac{1}{2} \gamma(1)$. Then the functions $a_{1}:=2 a \cdot \mathbb{1}_{[0, t]}$ and $a_{2}:=2 a \cdot \mathbb{1}_{[t, 1]}$ satisfy $a=\frac{1}{2} a_{1}+\frac{1}{2} a_{2}$. Since R is a face, it follows that $a_{1}, a_{2} \in R$. As a_{1} and a_{2} are linearly independent, it follows that R spans a subspace of at least dimension 2. This contradicts Proposition 1.4.6 (i) \Rightarrow (ii).

Exercise 2 (Cones in \mathbb{R}^{d}).

(a) Let E_{+}be a closed and generating cone in $E:=\mathbb{R}^{2}$. Show that the ordered vector space (E, E_{+}) is isomorphic to \mathbb{R}^{2} with the standard cone.
(b) Give an example of a closed and generating cone E_{+}in $E:=\mathbb{R}^{3}$ such that the ordered vector space (E, E_{+}) is not isomorphic to \mathbb{R}^{3} with the standard cone.
(c) Endow \mathbb{R}^{2} with the standard cone and let $x \in \mathbb{R}_{+}^{2}$. Does $[0,1] x=[0, x]$ hold?

Solution:

(a) Claim. There exist elements a and b that are linearly independent and generate the cone E_{+}.
It the claim holds then it follows immediately that defines a mapping

$$
i: \mathbb{R}^{2} \rightarrow E, \quad\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{ll}
a & b
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

is an order isomorphism between \mathbb{R}^{2} with the standard cone \mathbb{R}_{+}^{2} and $\left(E, E_{+}\right)$. Clearly, i is bijective and positive, since $x_{1} E_{+}+x_{2} E_{+} \subseteq E_{+}$. That i^{-1} is positive follows from the fact that a, b generate E_{+}.
Proof of the Claim. Since the cone E_{+}is generating, by Proposition 2.1.1, it has non-empty interior. So $\partial E_{+} \neq \emptyset,\{0\}$. Thus, we are able to pick $0 \neq a \in \partial E_{+}$. Since E_{+}is closed, it follows that $a \in E_{+}$, and thus, $[0, \infty) a \subseteq E_{+}$. Notice that, since E_{+}has non-empty interior, $\partial E_{+} \backslash[0, \infty) a$ is non-empty. If every $b \in \partial E_{+} \backslash[0, \infty) a$ is linearly dependent on a, then E_{+}contains the linear subspace spanned by a. This contradicts the fact that E_{+}is a cone. So it follows that a and b are linearly independent and in ∂E_{+}.
It remains to show that a and b generate E_{+}. To see this let $z \in E_{+}$. Since a and b are a basis for E, there exist $x_{1}, x_{2} \in \mathbb{R}$ such that $z=x_{1} a+x_{2} b$. If $x_{1}, x_{2}<0$, then $-z \in E_{+}$, implying that $z=0$. By linear independence $x_{1}=x_{2}=0$. This is a contradiction. If w.l.o.g. $x_{1}<0$ and $x_{2} \geq 0$. We show that b is not in the boundary of E_{+}. Clearly for every $\epsilon \in(0,1)$ the set $(1-\epsilon, 1+\epsilon) b$ is contained in E_{+}. Moreover, since $x_{1}<0$ we find $0<\delta<-x_{1}$ such that $(-\delta, \delta) a+(1-\epsilon, 1+\epsilon) b \subseteq E_{+}$. This shows that b is in the interior of E_{+}. This is a contradiction. Thus, we have shown that $x_{1}, x_{2} \geq 0$. It follows that every $z \in E_{+}$can be represented as $z=x_{1} a+x_{2} b$ with $x_{1}, x_{2} \geq 0$. So a and b generate the cone E_{+}.
(b) Claim. We claim that (E, E_{+}), where E_{+}is the ice-cream cone, is not isomorphic to \mathbb{R}^{3} endowed with the standard cone.
Proof. Notice that it follows from Example 1.4.7 (b) that the ice-cream cone has infinitely many extremal rays. From part (a) of the example it follows that the standard cone in \mathbb{R}^{3} only has three extremal rays. So it suffices to show that an order isomorphism maps extremal rays to extremal rays.
Clearly an order isomorphism $i: E \rightarrow F$ maps $i([0, \infty) a)=[0, \infty) i(a)$ for each $0 \neq a \in E_{+}$, so it suffices to show that i maps faces to faces. Let A be a face in E. Let further $x, y \in F$ and suppose there exists $\lambda \in(0,1)$ such that $\lambda x+(1-\lambda) y \in i(A)$. Then $\lambda i^{-1}(x)-(1-\lambda) i^{-1}(y) \in A$, and thus, $i^{-1}(x), i^{-1}(y) \in A$. This implies that $x, y \in i(A)$. So $i(A)$ in indeed a face.

Figure 1: The transform described in the solution of Exercise 2 (a).
(c) No.

Counterexample. Pick $x=(1,1)$. Then $[0, x]=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid 0 \leq y_{1}, y_{2} \leq 1\right\}$, whereas $[0,1] x=\left\{(y, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1\right\}$. So, in particular, the element $(0,1) \in$ $[0, x]$ but $(0,1) \notin[0,1] x$.

Exercise 3 (Masquerade of cones). Show that the following ordered vector spaces are isomorphic:
(1) The space \mathbb{R}^{3} with the ice cream cone.
(2) The space of all symmetric real 2×2-matrices with the Loewner order.
(3) The span of the three real-valued functions $\mathbb{1}, \operatorname{Re}, \operatorname{Im}$ on \mathbb{T} with the pointwise order. Here, $\mathbb{T}:=\{z \in \mathbb{C}| | z \mid=1\}$ denotes the complex unit circle.
(4) The span of the functions $\mathbb{1}, \cos , \sin$ on $[0,2 \pi]$ with the pointwise order.
(5) The space of all polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$ of degree at most 2 with the pointwise order.

Solution:

" (1) " \cong " (2) ": Denote by $\mathbb{R}_{\text {sym }}^{2 \times 2}$ the space of symmetric matrices and by $\left(\mathbb{R}_{\text {sym }}^{2 \times 2}\right)_{+}$the Loewner cone. Notice that a symmetric matrix is positive semidefinite if and only if all its eigenvalues are non-negative. For a matrix $A \in \mathbb{R}_{\text {sym }}^{2 \times 2}$ this is equivalent to $\operatorname{det} A \geq 0$ and $\operatorname{tr} A \geq 0$. We claim that the mapping defined by

$$
i: \mathbb{R}^{3} \rightarrow \mathbb{R}_{\mathrm{sym}}^{2 \times 2}, \quad x=\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\begin{array}{cc}
x_{1}+x_{2} & x_{3} \\
x_{3} & x_{1}-x_{2}
\end{array}\right)
$$

is an order isomorphism.

Bijectivity is straightforward: clearly, i is injective and its domain and codomain both have dimension 3. To show bipositivity, let $x \in \mathbb{R}^{3}$. Then

$$
\begin{array}{llll}
& i(x) \geq 0 & & \\
\Leftrightarrow & \operatorname{tr} i(x) \geq 0 & \wedge & \operatorname{det} i(x) \geq 0 \\
\Leftrightarrow & 2 x_{1} \geq 0 & \wedge & \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)-x_{3}^{2} \geq 0 \\
\Leftrightarrow & x_{1} \geq 0 & \wedge & x_{1}^{2} \geq x_{2}^{2}+x_{3}^{2} \\
\Leftrightarrow & x \geq 0 . & &
\end{array}
$$

" (3) " $\cong "(4)$ " : It is easily checked that the linear extension of the mapping

$$
\mathbb{1} \mapsto \mathbb{1}, \quad \operatorname{Re} \mapsto \cos , \quad \operatorname{Im} \mapsto \sin
$$

is the restriction of the bijective and bi-positive mapping

$$
T: L^{1}(\mathbb{T}) \rightarrow L^{1}([0,2 \pi]), \quad T f(x):=f\left(\mathrm{e}^{i x}\right)
$$

to the three-dimensional space spanned by $\{\mathbb{1}, \cos , \sin \}$.
$"(1) " \cong "(4) ":$ Define the mapping

$$
i: \mathbb{R}^{3} \rightarrow \operatorname{span}\{\mathbb{1}, \cos , \sin \}, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1} \mathbb{1}+x_{2} \cos +x_{3} \sin .
$$

Then i is clearly bijective.
If $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ is in the ice-cream cone, then by Cauchy-Schwarz

$$
\left|x_{2} \cdot \cos (t)+x_{3} \sin (t)\right| \leq\left\|\left(x_{2}, x_{3}\right)\right\|_{2}\|(\cos (t), \sin (t))\|_{2} \leq x_{1}
$$

for all $t \in[0,2 \pi]$. Thus, $x_{1} \mathbb{1}+x_{2} \cos +x_{3} \sin \geq 0$.
Conversely, let $x_{1} \mathbb{1}+x_{2} \cos +x_{3} \sin \geq 0$. If $x_{2}=x_{3}=0$, then $x \in \mathbb{R}_{+}^{3}$. Otherwise, choose $t \in[0,2 \pi]$ such that

$$
(\cos (t), \sin (t))=\frac{1}{\left\|\left(x_{2}, x_{3}\right)\right\|_{2}}\left(x_{2}, x_{3}\right) .
$$

Then $x_{1}-\left\|\left(x_{2}, x_{3}\right)\right\|_{2}=x_{1}-\left\|\left(x_{2}, x_{3}\right)\right\|_{2} \cos (t)^{2}-\left\|\left(x_{2}, x_{3}\right)\right\|_{2} \sin (t)^{2} \geq 0$. Hence, $\left(x_{1}, x_{2}, x_{3}\right)$ is in the ice-cream cone.
" (2) " $\cong(5)$ " : Denote by $\mathbb{R}_{2}[X]$ the space of all polynomial of degree at most 2 with real coefficients. Note that a polynomial $a_{1} x^{2}+a_{2} x+a_{3}$ takes only non-negative values if and only if either
(i) $a_{1}>0$ and $a_{2}^{2}-4 a_{1} a_{3} \leq 0$, or
(ii) $a_{1}=a_{2}=0$ and $a_{3} \geq 0$.

The mapping

$$
i: \mathbb{R}_{\mathrm{sym}}^{2 \times 2} \rightarrow \mathbb{R}_{2}[X], \quad A=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) \mapsto a x^{2}+2 c x+b
$$

is clearly bijective and we show now that it is an order isomorphism.

Let A be positive. Then $a+b=\operatorname{trace}(A) \geq 0$ and $a b-c^{2}=\operatorname{det}(A) \geq 0$. Thus, if $a=0$, then $-c^{2} \geq 0$, and thus, $2 c=0$. It follows that $i(A)$ only takes non-negative values by (ii). We now assume that $a>0$. Then $(2 c)^{2}-4 a b=4\left(c^{2}-a b\right) \leq 0$. Hence, $i(A)$ only takes non-negative values by (i).
Conversely, let $p:=a_{1} x^{2}+a_{2} x+a_{3}$ satisfy (i). Then

$$
\operatorname{det}\left(i^{-1}(p)\right)=a_{1} a_{3}-\frac{1}{4} a_{2}^{2}=\frac{1}{4}\left(4 a_{1} a_{3}-a_{2}^{2}\right) \geq 0
$$

And since $a_{1}>0$ and $a_{2}^{2} \geq 0$ we conclude that $a_{3} \geq 0$. It follows that trace $\left(i^{-1}(p)\right)=$ $a_{1}+a_{3} \geq 0$. If p satisfies (ii), then

$$
\operatorname{det}\left(i^{-1}(p)\right)=0 \quad \text { and } \quad \operatorname{trace}\left(i^{-1}(p)\right)=a_{3} \geq 0
$$

In every case, $i^{-1}(p) \in\left(\mathbb{R}_{\mathrm{sym}}^{2 \times 2}\right)_{+}$.

Exercise 4 (Closed faces of the cone in function spaces).

(a) Determine all closed faces of the standard cone in $L^{p}(\mathbb{R})$ for $p \in[1, \infty)$.
(b) Determine all closed faces of the standard cone in $C([0,1])$.

Solution:

(a) Claim. The closed faces of $\left(L^{p}\right)_{+}$are exactly the sets

$$
I_{A}:=\left\{f \in\left(L^{p}(\mathbb{R})\right)_{+} \mid f \cdot \mathbb{1}_{A}=0\right\}
$$

where A is a measurable set.
Proof. Fix a measurable set A. To show that I_{A} is a face, let $f, g \in I_{A}$. Then every element $h \in[0, f+g]$ also satisfies $h \cdot \mathbb{1}_{A}=0$. So it follows from Proposition 1.4.3 (iii) \Rightarrow (i) that I_{A} is indeed a face. Moreover, I_{A} is clearly closed.
Converse, let Let G be a closed face of $\left(L^{p}\right)_{+}$. As $L^{p}(\mathbb{R})$ is a separable metric space, so is G. So we can choose a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $G \backslash\{0\}$ that is dense in G. Define

$$
g:=\sum_{n \in \mathbb{N}} 2^{-n} \frac{f_{n}}{\left\|f_{n}\right\|}
$$

Then $g \in L^{p}$ since the sum is absolutely convergent. Let \hat{g} be a representative of g and set $A:=\{x \in \mathbb{R} \mid \hat{g}(x)=0\}$. We show that $G=I_{A}$.
" $G \subseteq I_{A}$ ": Since for every $n \in \mathbb{N}$ satisfies $f_{n} \cdot \mathbb{1}_{A}=0$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ is dense in G, it follows that $g \cdot \mathbb{1}_{A}=0$ for every $g \in G$.
" $G \supseteq I_{A}$ ": Let $h \in I_{A}$. For $n \in \mathbb{N}$ define $h_{n}:=h \wedge(n \cdot g){ }^{1}$ Then, $h_{n} \in[0, n \cdot g] \subseteq G$ and $\left(h_{n}\right)_{n \in \mathbb{N}}$ converges almost everywher $\underbrace{2}$ as well as monotonously ${ }^{3}$ to h. Thus, it follows from the monotone convergence theorem that $\left(h_{n}\right)_{n \in \mathbb{N}}$ converges in norm to h. Since G is closed, $h \in G$.

[^0](b) Claim. The closed faces of $C([0,1])_{+}$are exactly the sets
$$
I_{A}:=\left\{f \in C([0,1])_{+}:\left.f\right|_{A}=0\right\},
$$
where A is a closed subset of $[0,1]$.
Proof. Fix A closed and let $f, g \in I_{A}$. Then every element in $[0, f+g]$ also vanishes on A. So $[0, f+g] \subseteq I_{A}$. Hence, by Proposition 1.4.3 (iii) \Rightarrow (i), the set I_{A} is a face. Moreover, I_{A} is clearly closed.
Conversely, let G be a face of $C([0,1])$.
$$
A:=\{x \in[0,1] \mid \forall f \in G: f(x)=0\}
$$

Then clearly $G \subseteq I_{A}$.
To show the converse inclusion, notice that $C([0,1])$ is separable ${ }^{-1}$ Thus, we find a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $G \backslash\{0\}$ that is dense in G. Then the function

$$
g:=\sum_{n \in \mathbb{N}} 2^{-n} \frac{f_{n}}{\left\|f_{n}\right\|}
$$

is again in $C([0,1])$. Let $h \in I_{A}$. Then $h_{n}:=h \wedge(n \cdot g)$ defines a monotone increasing sequence that converges pointwisely to h, since h vanishes on A. Since h is continuous, it follows from Dini's theorem that this convergence is even uniform. As $h_{n} \in[0, n \cdot g] \subseteq G$ it follows from the closedness of G that $h \in G$.

[^1]
[^0]: ${ }^{1}$ Here the symbol \wedge denotes the minimum of the two functions. This is defined pointwise on the representatives.
 ${ }^{2}$ This follows as h vanishes outside of A.
 ${ }^{3}$ This is clear.

[^1]: ${ }^{4}$ Recall that, if K is a compact Hausdorff space, the space $C(K)$ is separable if and only if K is metrizable. For the space $C([0,1])$ this follows more easily, since by the Weierstraß approximation theorem, the polynomials are a countable and dense set in $C([0,1])$.

