

BERGISCHE UNIVERSITÄT WUPPERTAL

Summer term 2023



2. Exercise Sheet in

# Ordered Banach Spaces and Positive Operators

For the exercise classes on April 18 and 19, 2023

with Solutions

# Exercise 1 (Extreme rays).

- (a) Determine the extreme rays of the standard cone in  $\ell^p$  for  $p \in [1, \infty]$ .
- (b) Determine the extreme rays of the standard cone in  $L^p([0,1])$  for  $p \in [1,\infty]$ .

# Solution:

(a) *Claim.* The extreme rays of  $(\ell^p)_+$  are the sets  $[0, \infty) e^{(k)}$ , where  $e^{(k)}$  are the canonical unit vectors.

*Proof.* Fix  $k \in \mathbb{N}$ . To prove that  $[0, \infty) e^{(k)}$  is an extreme ray we show that the conditions in Proposition 1.4.6 (iii) are satisfied. Clearly  $[0, \infty) e^{(k)}$  is a cone. Moreover, let  $r \in [0, \infty) e^{(k)}$  and  $v \in [0, r]$ . If r = 0, then  $v = 0 = 0 \cdot r$ . So we may assume that  $r \neq 0$ . Then for every  $l \in \mathbb{N} \setminus \{k\}$  we have  $0 \leq v_l \leq r_l = 0$ . Hence,  $v \in [0, \infty) e^{(k)}$  and there exists  $\lambda \in [0, \infty)$  such that  $v = \lambda \cdot r$ . Now Proposition 1.4.6 (iii)  $\Rightarrow$  (i) implies that  $[0, \infty) e^{(k)}$  is an extreme ray.

Conversely, let  $R \subseteq (\ell^p)_+$  be an extreme ray. By definition there exists  $0 \neq a \in (\ell^p)_+$ such that  $R = [0, \infty) a$ . If there exist distinct  $k_1, k_2 \in \mathbb{N}$  such that  $a_{k_1}, a_{k_2} > 0$ , then  $a_{k_1}e^{(k_1)}$  and  $a_{k_2}e^{(k_2)}$  are both in [0, a]. Thus, by Proposition 1.4.6 (i)  $\Rightarrow$  (iii), there exist  $\lambda_1, \lambda_2 \in [0, \infty)$  such that

$$\lambda_1 \cdot a_{k_1} \cdot e^{(k_1)} = a = \lambda_2 \cdot a_{k_2} \cdot e^{(k_2)}.$$

This can only happen, when  $\lambda_1 = \lambda_2 = 0$ , implying that a = 0. This is a contradiction and shows that  $a \in (0, \infty) e^{(k)}$  for some  $k \in \mathbb{N}$ . Hence,  $R = [0, \infty) e^{(k)}$ .

(b) Claim. The cone  $(L^p)_+$  does not have any extreme rays.

Proof. To see this, suppose  $R = [0, \infty) a$  is an extreme ray with  $0 \neq a \in (L^p)_+$ . Since the map  $\gamma(t) := \int_0^t a(x) dx$  is continuous by the monotone convergence theorem and satisfies  $\gamma(0) = 0$  and  $\gamma(1) > 0$ . There exists, by the intermediate value theorem, a  $t \in [0, 1]$  such that  $\gamma(t) = \frac{1}{2}\gamma(1)$ . Then the functions  $a_1 := 2a \cdot \mathbb{1}_{[0,t]}$  and  $a_2 := 2a \cdot \mathbb{1}_{[t,1]}$ satisfy  $a = \frac{1}{2}a_1 + \frac{1}{2}a_2$ . Since R is a face, it follows that  $a_1, a_2 \in R$ . As  $a_1$  and  $a_2$ are linearly independent, it follows that R spans a subspace of at least dimension 2. This contradicts Proposition 1.4.6 (i)  $\Rightarrow$  (ii).

## Exercise 2 (Cones in $\mathbb{R}^d$ ).

(a) Let  $E_+$  be a closed and generating cone in  $E := \mathbb{R}^2$ . Show that the ordered vector space  $(E, E_+)$  is isomorphic to  $\mathbb{R}^2$  with the standard cone.

(b) Give an example of a closed and generating cone  $E_+$  in  $E := \mathbb{R}^3$  such that the ordered vector space  $(E, E_+)$  is not isomorphic to  $\mathbb{R}^3$  with the standard cone.

(c) Endow  $\mathbb{R}^2$  with the standard cone and let  $x \in \mathbb{R}^2_+$ . Does [0,1] x = [0,x] hold?

### Solution:

(a) Claim. There exist elements a and b that are linearly independent and generate the cone  $E_+$ .

It the claim holds then it follows immediately that defines a mapping

$$i: \mathbb{R}^2 \to E, \quad \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix}$$

is an order isomorphism between  $\mathbb{R}^2$  with the standard cone  $\mathbb{R}^2_+$  and  $(E, E_+)$ . Clearly, i is bijective and positive, since  $x_1E_+ + x_2E_+ \subseteq E_+$ . That  $i^{-1}$  is positive follows from the fact that a, b generate  $E_+$ .

Proof of the Claim. Since the cone  $E_+$  is generating, by Proposition 2.1.1, it has non-empty interior. So  $\partial E_+ \neq \emptyset$ , {0}. Thus, we are able to pick  $0 \neq a \in \partial E_+$ . Since  $E_+$  is closed, it follows that  $a \in E_+$ , and thus,  $[0, \infty) a \subseteq E_+$ . Notice that, since  $E_+$  has non-empty interior,  $\partial E_+ \setminus [0, \infty) a$  is non-empty. If every  $b \in \partial E_+ \setminus [0, \infty) a$ is linearly dependent on a, then  $E_+$  contains the linear subspace spanned by a. This contradicts the fact that  $E_+$  is a cone. So it follows that a and b are linearly independent and in  $\partial E_+$ .

It remains to show that a and b generate  $E_+$ . To see this let  $z \in E_+$ . Since a and b are a basis for E, there exist  $x_1, x_2 \in \mathbb{R}$  such that  $z = x_1a + x_2b$ . If  $x_1, x_2 < 0$ , then  $-z \in E_+$ , implying that z = 0. By linear independence  $x_1 = x_2 = 0$ . This is a contradiction. If w.l.o.g.  $x_1 < 0$  and  $x_2 \ge 0$ . We show that b is not in the boundary of  $E_+$ . Clearly for every  $\epsilon \in (0, 1)$  the set  $(1 - \epsilon, 1 + \epsilon)b$  is contained in  $E_+$ . Moreover, since  $x_1 < 0$  we find  $0 < \delta < -x_1$  such that  $(-\delta, \delta)a + (1 - \epsilon, 1 + \epsilon)b \subseteq E_+$ . This shows that b is in the interior of  $E_+$ . This is a contradiction. Thus, we have shown that  $x_1, x_2 \ge 0$ . It follows that every  $z \in E_+$  can be represented as  $z = x_1a + x_2b$  with  $x_1, x_2 \ge 0$ . So a and b generate the cone  $E_+$ .

(b) Claim. We claim that  $(E, E_+)$ , where  $E_+$  is the ice-cream cone, is not isomorphic to  $\mathbb{R}^3$  endowed with the standard cone.

*Proof.* Notice that it follows from Example 1.4.7 (b) that the ice-cream cone has infinitely many extremal rays. From part (a) of the example it follows that the standard cone in  $\mathbb{R}^3$  only has three extremal rays. So it suffices to show that an order isomorphism maps extremal rays to extremal rays.

Clearly an order isomorphism  $i : E \to F$  maps  $i([0, \infty) a) = [0, \infty) i(a)$  for each  $0 \neq a \in E_+$ , so it suffices to show that i maps faces to faces. Let A be a face in E. Let further  $x, y \in F$  and suppose there exists  $\lambda \in (0, 1)$  such that  $\lambda x + (1-\lambda)y \in i(A)$ . Then  $\lambda i^{-1}(x) - (1-\lambda)i^{-1}(y) \in A$ , and thus,  $i^{-1}(x), i^{-1}(y) \in A$ . This implies that  $x, y \in i(A)$ . So i(A) in indeed a face.



Figure 1: The transform described in the solution of Exercise 2 (a).

(c) No.

Counterexample. Pick x = (1, 1). Then  $[0, x] = \{(y_1, y_2) \in \mathbb{R}^2 \mid 0 \le y_1, y_2 \le 1\}$ , whereas  $[0, 1] x = \{(y, y) \in \mathbb{R}^2 \mid 0 \le y \le 1\}$ . So, in particular, the element  $(0, 1) \in [0, x]$  but  $(0, 1) \notin [0, 1] x$ .

**Exercise 3 (Masquerade of cones).** Show that the following ordered vector spaces are isomorphic:

- (1) The space  $\mathbb{R}^3$  with the ice cream cone.
- (2) The space of all symmetric real  $2 \times 2$ -matrices with the Loewner order.
- (3) The span of the three real-valued functions  $\mathbb{1}$ , Re, Im on  $\mathbb{T}$  with the pointwise order. Here,  $\mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$  denotes the complex unit circle.
- (4) The span of the functions  $1, \cos, \sin$  on  $[0, 2\pi]$  with the pointwise order.
- (5) The space of all polynomial functions  $\mathbb{R} \to \mathbb{R}$  of degree at most 2 with the pointwise order.

#### Solution:

"(1)"  $\cong$  "(2)": Denote by  $\mathbb{R}^{2\times 2}_{\text{sym}}$  the space of symmetric matrices and by  $(\mathbb{R}^{2\times 2}_{\text{sym}})_+$  the Loewner cone. Notice that a symmetric matrix is positive semidefinite if and only if all its eigenvalues are non-negative. For a matrix  $A \in \mathbb{R}^{2\times 2}_{\text{sym}}$  this is equivalent to det  $A \geq 0$  and tr  $A \geq 0$ . We claim that the mapping defined by

$$i: \mathbb{R}^3 \to \mathbb{R}^{2 \times 2}_{\text{sym}}, \quad x = (x_1, x_2, x_3) \mapsto \begin{pmatrix} x_1 + x_2 & x_3 \\ x_3 & x_1 - x_2 \end{pmatrix}$$

is an order isomorphism.

Bijectivity is straightforward: clearly, i is injective and its domain and codomain both have dimension 3. To show bipositivity, let  $x \in \mathbb{R}^3$ . Then

$$\begin{split} i(x) &\geq 0 \\ \Leftrightarrow & \operatorname{tr} i(x) \geq 0 & \wedge & \det i(x) \geq 0 \\ \Leftrightarrow & 2x_1 \geq 0 & \wedge & (x_1 + x_2)(x_1 - x_2) - x_3^2 \geq 0 \\ \Leftrightarrow & x_1 \geq 0 & \wedge & x_1^2 \geq x_2^2 + x_3^2 \\ \Leftrightarrow & x > 0. \end{split}$$

 $``(3)"\cong ``(4)"$  : It is easily checked that the linear extension of the mapping

 $\mathbb{1} \mapsto \mathbb{1}, \quad \mathrm{Re} \mapsto \cos, \quad \mathrm{Im} \mapsto \sin$ 

is the restriction of the bijective and bi-positive mapping

$$T: L^1(\mathbb{T}) \to L^1([0, 2\pi]), \quad Tf(x) := f(e^{ix})$$

to the three-dimensional space spanned by  $\{1, \cos, \sin\}$ .

"(1)"  $\cong$  "(4)" : Define the mapping

$$i: \mathbb{R}^3 \to \operatorname{span}\{\mathbb{1}, \cos, \sin\}, \quad (x_1, x_2, x_3) \mapsto x_1 \,\mathbbm{1} + x_2 \cos + x_3 \sin .$$

Then i is clearly bijective.

If  $(x_1, x_2, x_3) \in \mathbb{R}^3$  is in the ice-cream cone, then by Cauchy-Schwarz

$$|x_2 \cdot \cos(t) + x_3 \sin(t)| \le ||(x_2, x_3)||_2 ||(\cos(t), \sin(t))||_2 \le x_1$$

for all  $t \in [0, 2\pi]$ . Thus,  $x_1 \mathbb{1} + x_2 \cos + x_3 \sin \ge 0$ .

Conversely, let  $x_1 \ \mathbb{1} + x_2 \cos + x_3 \sin \ge 0$ . If  $x_2 = x_3 = 0$ , then  $x \in \mathbb{R}^3_+$ . Otherwise, choose  $t \in [0, 2\pi]$  such that

$$(\cos(t), \sin(t)) = \frac{1}{\|(x_2, x_3)\|_2} (x_2, x_3).$$

Then  $x_1 - \|(x_2, x_3)\|_2 = x_1 - \|(x_2, x_3)\|_2 \cos(t)^2 - \|(x_2, x_3)\|_2 \sin(t)^2 \ge 0$ . Hence,  $(x_1, x_2, x_3)$  is in the ice-cream cone.

"(2)"  $\cong$  "(5)" : Denote by  $\mathbb{R}_2[X]$  the space of all polynomial of degree at most 2 with real coefficients. Note that a polynomial  $a_1x^2 + a_2x + a_3$  takes only non-negative values if and only if either

- (i)  $a_1 > 0$  and  $a_2^2 4a_1a_3 \le 0$ , or
- (ii)  $a_1 = a_2 = 0$  and  $a_3 \ge 0$ .

The mapping

$$i: \mathbb{R}^{2 \times 2}_{\text{sym}} \to \mathbb{R}_2[X], \quad A = \begin{pmatrix} a & c \\ c & b \end{pmatrix} \mapsto ax^2 + 2cx + b$$

is clearly bijective and we show now that it is an order isomorphism.

Let A be positive. Then  $a + b = \operatorname{trace}(A) \ge 0$  and  $ab - c^2 = \det(A) \ge 0$ . Thus, if a = 0, then  $-c^2 \ge 0$ , and thus, 2c = 0. It follows that i(A) only takes non-negative values by (ii). We now assume that a > 0. Then  $(2c)^2 - 4ab = 4(c^2 - ab) \le 0$ . Hence, i(A) only takes non-negative values by (i).

Conversely, let  $p := a_1x^2 + a_2x + a_3$  satisfy (i). Then

$$\det(i^{-1}(p)) = a_1 a_3 - \frac{1}{4}a_2^2 = \frac{1}{4}(4a_1 a_3 - a_2^2) \ge 0.$$

And since  $a_1 > 0$  and  $a_2^2 \ge 0$  we conclude that  $a_3 \ge 0$ . It follows that trace $(i^{-1}(p)) = a_1 + a_3 \ge 0$ . If p satisfies (ii), then

$$\det(i^{-1}(p)) = 0$$
 and  $\operatorname{trace}(i^{-1}(p)) = a_3 \ge 0.$ 

In every case,  $i^{-1}(p) \in \left(\mathbb{R}^{2 \times 2}_{\text{sym}}\right)_+$ .

#### Exercise 4 (Closed faces of the cone in function spaces).

- (a) Determine all closed faces of the standard cone in  $L^p(\mathbb{R})$  for  $p \in [1, \infty)$ .
- (b) Determine all closed faces of the standard cone in C([0, 1]).

#### Solution:

(a) Claim. The closed faces of  $(L^p)_+$  are exactly the sets

$$I_A := \{ f \in \left( L^p(\mathbb{R}) \right)_+ \mid f \cdot \mathbb{1}_A = 0 \},$$

where A is a measurable set.

*Proof.* Fix a measurable set A. To show that  $I_A$  is a face, let  $f, g \in I_A$ . Then every element  $h \in [0, f + g]$  also satisfies  $h \cdot \mathbb{1}_A = 0$ . So it follows from Proposition 1.4.3 (iii)  $\Rightarrow$  (i) that  $I_A$  is indeed a face. Moreover,  $I_A$  is clearly closed.

Converse, let Let G be a closed face of  $(L^p)_+$ . As  $L^p(\mathbb{R})$  is a separable metric space, so is G. So we can choose a sequence  $(f_n)_{n\in\mathbb{N}}$  in  $G\setminus\{0\}$  that is dense in G. Define

$$g := \sum_{n \in \mathbb{N}} 2^{-n} \frac{f_n}{\|f_n\|}$$

Then  $g \in L^p$  since the sum is absolutely convergent. Let  $\hat{g}$  be a representative of g and set  $A := \{x \in \mathbb{R} \mid \hat{g}(x) = 0\}$ . We show that  $G = I_A$ .

" $G \subseteq I_A$ ": Since for every  $n \in \mathbb{N}$  satisfies  $f_n \cdot \mathbb{1}_A = 0$  and  $(f_n)_{n \in \mathbb{N}}$  is dense in G, it follows that  $g \cdot \mathbb{1}_A = 0$  for every  $g \in G$ .

" $G \supseteq I_A$ ": Let  $h \in I_A$ . For  $n \in \mathbb{N}$  define  $h_n := h \wedge (n \cdot g)$ .<sup>1</sup> Then,  $h_n \in [0, n \cdot g] \subseteq G$ and  $(h_n)_{n \in \mathbb{N}}$  converges almost everywhere<sup>2</sup> as well as monotonously<sup>3</sup> to h. Thus, it follows from the monotone convergence theorem that  $(h_n)_{n \in \mathbb{N}}$  converges in norm to h. Since G is closed,  $h \in G$ .

<sup>&</sup>lt;sup>1</sup>Here the symbol  $\wedge$  denotes the minimum of the two functions. This is defined pointwise on the representatives.

<sup>&</sup>lt;sup>2</sup>This follows as h vanishes outside of A.

<sup>&</sup>lt;sup>3</sup>This is clear.

(b) Claim. The closed faces of  $C([0,1])_+$  are exactly the sets

$$I_A := \{ f \in C([0,1])_+ : f|_A = 0 \},\$$

where A is a closed subset of [0, 1].

*Proof.* Fix A closed and let  $f, g \in I_A$ . Then every element in [0, f + g] also vanishes on A. So  $[0, f + g] \subseteq I_A$ . Hence, by Proposition 1.4.3 (iii)  $\Rightarrow$  (i), the set  $I_A$  is a face. Moreover,  $I_A$  is clearly closed.

Conversely, let G be a face of C([0, 1]).

$$A := \{ x \in [0, 1] \mid \forall f \in G : f(x) = 0 \}$$

Then clearly  $G \subseteq I_A$ .

To show the converse inclusion, notice that C([0,1]) is separable.<sup>4</sup> Thus, we find a sequence  $(f_n)_{n\in\mathbb{N}}$  in  $G\setminus\{0\}$  that is dense in G. Then the function

$$g := \sum_{n \in \mathbb{N}} 2^{-n} \frac{f_n}{\|f_n\|}$$

is again in C([0,1]). Let  $h \in I_A$ . Then  $h_n := h \wedge (n \cdot g)$  defines a monotone increasing sequence that converges pointwisely to h, since h vanishes on A. Since his continuous, it follows from Dini's theorem that this convergence is even uniform. As  $h_n \in [0, n \cdot g] \subseteq G$  it follows from the closedness of G that  $h \in G$ .

<sup>&</sup>lt;sup>4</sup>Recall that, if K is a compact Hausdorff space, the space C(K) is separable if and only if K is metrizable. For the space C([0, 1]) this follows more easily, since by the Weierstraß approximation theorem, the polynomials are a countable and dense set in C([0, 1]).