

Summer term 2023

1. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on April 11 and 12, 2023

Exercise 1 (Cones and wedges in finite dimensions).

(a) Show that $E_+ := \{0\} \cup \{(x, y) \mid x, y > 0\}$ in $E := \mathbb{R}^2$ is a wedge. Is it even a cone? Is it Archimedean?

(b) Give an example of a (non-Archimedean) cone in \mathbb{R}^2 that contains a one-dimensional affine subspace.

(c) Give an example of a closed wedge W in \mathbb{R}^3 that is not a cone and not a half space. Moreover, give an example a vector $x \neq 0$ in \mathbb{R}^3 such that $0 \leq x \leq 0$ with respect to pre-order induced by this wedge W.

(d) Consider the vectors

$$x \coloneqq \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 and $y_n \coloneqq \begin{pmatrix} 1 \\ \frac{1}{n} \end{pmatrix}$ for each $n \in \mathbb{N}$

in \mathbb{R}^2 and set $S := \{x\} \cup \{y_n \mid n \in \mathbb{N}\}.$

Determine the smallest wedge W in \mathbb{R}^2 that contains S. Is W a cone? Is the closure of W a cone?

(e) Consider the set $E_+ := \{0\} \cup \{x \in E \mid \langle x', x \rangle > 0\}$, where *E* is a non-zero real Banach space and $0 \neq x' \in E'$ is a fixed continuous linear functional. Show that E_+ is a wedge. When is it a cone? When is it Archimedean?

Exercise 2 (An ℓ^2 -ice cream cone in c_0). Let c_0 denote the space of real-valued sequences (indexed over $\mathbb{N} \coloneqq \{1, 2, ...\}$) that converge to 0. Show that

$$(c_0)_+ \coloneqq \left\{ x \in c_0 \mid \ x_1 \ge 0 \text{ and } x_1^2 \ge \sum_{n=2}^{\infty} x_n^2 \right\}$$

is a cone in c_0 . Is $(c_0)_+$ generating? Is the set $(c_0)_+$ closed in c_0 (with respect to the sup norm)?