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1. Exercise Sheet in
Ordered Banach Spaces and Positive Operators

For the exercise classes on April 11 and 12, 2023
with Solutions

Exercise 1 (Cones and wedges in finite dimensions).
(a) Show that E+ := {0} ∪ {(x, y) | x, y > 0} in E := R2 is a wedge. Is it even a
cone? Is it Archimedean?

(b) Give an example of a (non-Archimedean) cone in R2 that contains a one-dimen-
sional affine subspace.

(c) Give an example of a closed wedge W in R3 that is not a cone and not a half
space. Moreover, give an example a vector x ̸= 0 in R3 such that 0 ≤ x ≤ 0 with
respect to pre-order induced by this wedge W .

(d) Consider the vectors

x :=

(
−1
0

)
and yn :=

(
1
1
n

)
for each n ∈ N

in R2 and set S := {x} ∪ {yn | n ∈ N}.
Determine the smallest wedge W in R2 that contains S. Is W a cone? Is the closure
of W a cone?

(e) Consider the set E+ := {0} ∪ {x ∈ E | ⟨x′, x⟩ > 0}, where E is a non-zero real
Banach space and 0 ̸= x′ ∈ E′ is a fixed continuous linear functional.
Show that E+ is a wedge. When is it a cone? When is it Archimedean?

Solution:

(a) Let (x1, y1), (x2, y2) ∈ E+ and α ≥ 0. Then we have the two cases

α · (x1, y1) = (αx1, αy1) =

{
(0, 0), if (x1 = 0 ∧ x2 = 0) ∨ α = 0

(> 0, > 0), if (x1 > 0 ∧ y1 > 0) ∧ α > 0

Similarly

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

=

{
(0, 0), if x1, x2, y1, y2 = 0

(> 0, > 0), if (x1 > 0 ∧ y1 > 0) ∨ (x2 > 0 ∧ y2 > 0)

So α(x1, y1) ∈ E+ and (x1, y1) + (x2, y2) ∈ E+. It follwos that E+ is a wedge.
Moreover, E+ ∩ −E+ = {0}, so E+ is also a cone.
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Figure 1: The cone from Exercise 1 (b).
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Figure 2: The wedge defined in Exercise 1 (c).

Notice that E+ is not Archimedean, since(
−1
0

)
≰ 0 and

(
−1
0

)
≤ 1

n

(
1
0

)
for all n ∈ N. (The non-Archimedean property can also be see from Proposi-
tion 2.1.2 (ii) “⇒” (i), since E+ is not closed.)

(b) Consider the cone E+ := {0} ∪ {(x, y) | x ∈ R, y > 0} in E := R2, see Figure 1.
Then E+ contains the one-dimensional affine subspace A := {(x, 1) | x ∈ R}.
Notice also that E+ is non-Archimedean, since(

−1
0

)
≰ 0 and

(
−1
0

)
≤ 1

n

(
1
0

)
for all n ∈ N. (Notice that the property “non-Archimedean” is in parenthesis, since
there exists no Archimedean cone that contains a one-dimensional affine subspace,
see Proposition 1.5.2 (i) “⇒” (iv).)

(c) Consider the set W := {(x1, x2, x3) | x1 ∈ R, x2 ≥ 0, x2 ≥ |x3|}, see Figure 2.

Notice that αW + βW ⊆ W for all α, β ≥ 0. So W is indeed a wedge. Moreover,
W ∩ −W = {(x1, 0, 0) | x1 ∈ R}. From this it follows that

(1, 0, 0) ∈ W ∩ −W, and thus, 0 ≤ (1, 0, 0) ≤ 0.

(d) Claim. The wedge W generated by the set S is the rotated lexicographical cone

W = {(x1, x2) | x ∈ R, x2 > 0} ∪ {(x1, 0) | x1 ≤ 0}.

See Figure 3 for an image in of the points in S.
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Figure 3: The points in S.

Proof. Clearly, S ⊆ W and W is a wedge. Conversely, let (x1, x2) ∈ R2 with x2 > 0.
Then choose n ∈ N large enough such that n · x2 − x1 ≥ 0. Set β := n · x2 and
α := β − x1. Thus, α · (−1, 0) + β · (1, 1

n) = (x1, x2). Now let (x1, 0) ∈ R2 with
x1 ≤ 0. Then the choice α = −x1 ≥ 0 yields (x1, 0) = α · (−1, 0) ∈ E+. Hence, W
is the wedge generated by S.

Moreover, W is indeed a cone, since W ∩ −W = {0}.
Notice that the closure W of W is the half space

W = {(x1, x2) | x1 ∈ R, x2 ≥ 0},

which satisfies

W ∩ −W = {(x1, 0) | x1 ∈ R}.

Thus, W is no cone.

(e) See Figure 4 for an illustration of a cone E+ for E = R2.

Let x1, x2 ∈ E+ and α ≥ 0.

We show that α ·x1 ∈ E+. If x1 = 0 or α = 0, then α ·x1 = 0, and thus, α ·x1 ∈ E+.
If x1 ̸= 0 and α > 0, then ⟨x′, α · x1⟩ = α⟨x′, x1⟩ > 0. So α · x1 ∈ E+.

We show that x1 + x2 ∈ E+. If x1 = 0 and x2 = 0, then also x1 + x2 = 0. If w.l.o.g.
x1 ̸= 0, then ⟨x′, x1 + x2⟩ = ⟨x′, x1⟩+ ⟨x′, x2⟩ > 0.

It follows αE+ + βE+ ⊆ E+ for all α, β ≥ 0, and thus, E+ is a wedge.

Clearly,

E+ ∩ −E+ = {0} ∪ {x ∈ E | ⟨x′, x⟩ > 0, ⟨x′,−x⟩ > 0} = {0},

so E+ is a cone.

Claim. The cone E+ is non-Archimedean if and only if dim(E) ≥ 2.

Proof. “⇒”: Let dim(E) ≤ 1. Then, since E ̸= {0}, dim(E) = 1. It follows that
E ∼= R, and thus,

E+ = {x | x ≥ 0} or E+ = {x | x ≤ 0}.

Thus, E+ is Archimedean.
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Figure 4: The cone in Exercise 1 (e) in E = R2.

“⇐”: Conversely, let dim(E) ≥ 2. Then choose x ∈ ker(x′) with ∥x∥ = 1 and y ∈ E
with ⟨x′, y⟩ > 0. This is possible, since x′ has codimension at least 1. Then

x ≰ 0 and x ≤ 1
ny

for all n ∈ N, since ⟨x′, 1
ny − x⟩ > 0. It follows that E+ is not Archimedean.

Exercise 2 (An ℓ2-ice cream cone in c0). Let c0 denote the space of real-valued
sequences (indexed over N := {1, 2, . . . }) that converge to 0. Show that

(c0)+ :=
{
x ∈ c0 | x1 ≥ 0 and x21 ≥

∞∑
n=2

x2n
}

is a cone in c0. Is (c0)+ generating? Is the set (c0)+ closed in c0 (with respect to the
sup norm)?

Solution:

We show that c0 is a cone. Let x = (xn)n∈N, y = (yn)n∈N ∈ c0 and α, β ≥ 0. Define
the projection P : c0 → c0 by Px := (0, x2, x3, . . . ) and notice that

(c0)+ = {x ∈ c0 | x1 ≥ ∥Px∥2}

Then

α · x1 + β · y1 ≥ α∥Px∥2 + β∥Py∥2 ≥ ∥α · Px+ β · Py∥2 = ∥P (α · x+ β · y)∥2.

So α · x+ β · y ∈ E+. Moreover,

(c0)+ ∩ −(c0)+ = {x ∈ c0 | 0 ≤ x1 ≤ 0, x21 ≥
∞∑
n=2

x2n}

= {x ∈ c0 | 0 ≤ x1 ≤ 0, 0 ≥
∞∑
n=2

x2n} = {0}.
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So E+ is indeed a cone.
Notice further that (c0)+ is a subset of ℓ2. Thus, by the triangle inequality, it follows
that

(c0)+ − (c0)+ ⊆ ℓ2.

(It is even the case that equality holds.) Since ℓ2 ⫋ c0 (for example ( 1√
n
)
n∈N

is in c0

but not in ℓ2), it follows that (c0)+ is not generating.1

To see that (c0)+ is closed let (x(k))k∈N be a sequence in (c0)+ that converges to
x ∈ c0. Then clearly x1 ≥ 0, since x

(k)
1 ≥ 0 for all k ∈ N and limk→∞ x

(k)
1 = x1.

Define

f(k)(n) :=
(
x(k)n

)2
and f(n) := x2n

for all n ∈ N. Notice that f(k), f ≥ 0. Then by Fatou’s lemma it follows that

∞∑
n=2

x2 =

∞∑
n=2

f(n) =

∞∑
n=2

lim inf
k→∞

f(k)(n)

≤ lim inf
k→∞

∞∑
n=2

f(k)(n) ≤ lim inf
k→∞

(
x
(k)
1

)2
= x21.

Hence, it follows that x ∈ (c0)+ and that the cone E+ is closed.

1It is an easy exercise to show that (c0)+ − (c0)+ = c0. A cone with this property is called total,
see Definition 4.3.1.

Jochen Glück and Julian Hölz (Wuppertal)
Anke Kalauch and Florian Boisen (Dresden)

Page 5 of 5


