1. Exercise Sheet in

Ordered Banach Spaces and Positive Operators

For the exercise classes on April 11 and 12, 2023

with Solutions

Exercise 1 (Cones and wedges in finite dimensions).

(a) Show that $E_{+}:=\{0\} \cup\{(x, y) \mid x, y>0\}$ in $E:=\mathbb{R}^{2}$ is a wedge. Is it even a cone? Is it Archimedean?
(b) Give an example of a (non-Archimedean) cone in \mathbb{R}^{2} that contains a one-dimensional affine subspace.
(c) Give an example of a closed wedge W in \mathbb{R}^{3} that is not a cone and not a half space. Moreover, give an example a vector $x \neq 0$ in \mathbb{R}^{3} such that $0 \leq x \leq 0$ with respect to pre-order induced by this wedge W.
(d) Consider the vectors

$$
x:=\binom{-1}{0} \quad \text { and } \quad y_{n}:=\binom{1}{\frac{1}{n}} \quad \text { for each } n \in \mathbb{N}
$$

in \mathbb{R}^{2} and set $S:=\{x\} \cup\left\{y_{n} \mid n \in \mathbb{N}\right\}$.
Determine the smallest wedge W in \mathbb{R}^{2} that contains S. Is W a cone? Is the closure of W a cone?
(e) Consider the set $E_{+}:=\{0\} \cup\left\{x \in E \mid\left\langle x^{\prime}, x\right\rangle>0\right\}$, where E is a non-zero real Banach space and $0 \neq x^{\prime} \in E^{\prime}$ is a fixed continuous linear functional.
Show that E_{+}is a wedge. When is it a cone? When is it Archimedean?

Solution:

(a) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in E_{+}$and $\alpha \geq 0$. Then we have the two cases

$$
\alpha \cdot\left(x_{1}, y_{1}\right)=\left(\alpha x_{1}, \alpha y_{1}\right)= \begin{cases}(0,0), & \text { if }\left(x_{1}=0 \wedge x_{2}=0\right) \vee \alpha=0 \\ (>0,>0), & \text { if }\left(x_{1}>0 \wedge y_{1}>0\right) \wedge \alpha>0\end{cases}
$$

Similarly

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& = \begin{cases}(0,0), & \text { if } x_{1}, x_{2}, y_{1}, y_{2}=0 \\
(>0,>0), & \text { if }\left(x_{1}>0 \wedge y_{1}>0\right) \vee\left(x_{2}>0 \wedge y_{2}>0\right)\end{cases}
\end{aligned}
$$

So $\alpha\left(x_{1}, y_{1}\right) \in E_{+}$and $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) \in E_{+}$. It follwos that E_{+}is a wedge. Moreover, $E_{+} \cap-E_{+}=\{0\}$, so E_{+}is also a cone.

Figure 1: The cone from Exercise 1 (b).

Figure 2: The wedge defined in Exercise 1 (c).

Notice that E_{+}is not Archimedean, since

$$
\binom{-1}{0} \not \leq 0 \quad \text { and } \quad\binom{-1}{0} \leq \frac{1}{n}\binom{1}{0}
$$

for all $n \in \mathbb{N}$. (The non-Archimedean property can also be see from Proposition 2.1.2 (ii) " \Rightarrow " (i), since E_{+}is not closed.)
(b) Consider the cone $E_{+}:=\{0\} \cup\{(x, y) \mid x \in \mathbb{R}, y>0\}$ in $E:=\mathbb{R}^{2}$, see Figure 1 . Then E_{+}contains the one-dimensional affine subspace $A:=\{(x, 1) \mid x \in \mathbb{R}\}$.
Notice also that E_{+}is non-Archimedean, since

$$
\binom{-1}{0} \not \leq 0 \quad \text { and } \quad\binom{-1}{0} \leq \frac{1}{n}\binom{1}{0}
$$

for all $n \in \mathbb{N}$. (Notice that the property "non-Archimedean" is in parenthesis, since there exists no Archimedean cone that contains a one-dimensional affine subspace, see Proposition 1.5.2 (i) " \Rightarrow " (iv).)
(c) Consider the set $W:=\left\{\left(x_{1}, x_{2}, x_{3}\right)\left|x_{1} \in \mathbb{R}, x_{2} \geq 0, x_{2} \geq\left|x_{3}\right|\right\}\right.$, see Figure 2 .

Notice that $\alpha W+\beta W \subseteq W$ for all $\alpha, \beta \geq 0$. So W is indeed a wedge. Moreover, $W \cap-W=\left\{\left(x_{1}, 0,0\right) \mid x_{1} \in \mathbb{R}\right\}$. From this it follows that

$$
(1,0,0) \in W \cap-W, \quad \text { and thus, } \quad 0 \leq(1,0,0) \leq 0
$$

(d) Claim. The wedge W generated by the set S is the rotated lexicographical cone

$$
W=\left\{\left(x_{1}, x_{2}\right) \mid x \in \mathbb{R}, x_{2}>0\right\} \cup\left\{\left(x_{1}, 0\right) \mid x_{1} \leq 0\right\}
$$

See Figure 3 for an image in of the points in S.

Figure 3: The points in S.

Proof. Clearly, $S \subseteq W$ and W is a wedge. Conversely, let $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ with $x_{2}>0$. Then choose $n \in \mathbb{N}$ large enough such that $n \cdot x_{2}-x_{1} \geq 0$. Set $\beta:=n \cdot x_{2}$ and $\alpha:=\beta-x_{1}$. Thus, $\alpha \cdot(-1,0)+\beta \cdot\left(1, \frac{1}{n}\right)=\left(x_{1}, x_{2}\right)$. Now let $\left(x_{1}, 0\right) \in \mathbb{R}^{2}$ with $x_{1} \leq 0$. Then the choice $\alpha=-x_{1} \geq 0$ yields $\left(x_{1}, 0\right)=\alpha \cdot(-1,0) \in E_{+}$. Hence, W is the wedge generated by S.
Moreover, W is indeed a cone, since $W \cap-W=\{0\}$.
Notice that the closure \bar{W} of W is the half space

$$
\bar{W}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in \mathbb{R}, x_{2} \geq 0\right\}
$$

which satisfies

$$
\bar{W} \cap-\bar{W}=\left\{\left(x_{1}, 0\right) \mid x_{1} \in \mathbb{R}\right\} .
$$

Thus, \bar{W} is no cone.
(e) See Figure 4 for an illustration of a cone E_{+}for $E=\mathbb{R}^{2}$.

Let $x_{1}, x_{2} \in E_{+}$and $\alpha \geq 0$.
We show that $\alpha \cdot x_{1} \in E_{+}$. If $x_{1}=0$ or $\alpha=0$, then $\alpha \cdot x_{1}=0$, and thus, $\alpha \cdot x_{1} \in E_{+}$. If $x_{1} \neq 0$ and $\alpha>0$, then $\left\langle x^{\prime}, \alpha \cdot x_{1}\right\rangle=\alpha\left\langle x^{\prime}, x_{1}\right\rangle>0$. So $\alpha \cdot x_{1} \in E_{+}$.
We show that $x_{1}+x_{2} \in E_{+}$. If $x_{1}=0$ and $x_{2}=0$, then also $x_{1}+x_{2}=0$. If w.l.o.g. $x_{1} \neq 0$, then $\left\langle x^{\prime}, x_{1}+x_{2}\right\rangle=\left\langle x^{\prime}, x_{1}\right\rangle+\left\langle x^{\prime}, x_{2}\right\rangle>0$.
It follows $\alpha E_{+}+\beta E_{+} \subseteq E_{+}$for all $\alpha, \beta \geq 0$, and thus, E_{+}is a wedge.
Clearly,

$$
E_{+} \cap-E_{+}=\{0\} \cup\left\{x \in E \mid\left\langle x^{\prime}, x\right\rangle>0,\left\langle x^{\prime},-x\right\rangle>0\right\}=\{0\},
$$

so E_{+}is a cone.
Claim. The cone E_{+}is non-Archimedean if and only if $\operatorname{dim}(E) \geq 2$.
Proof. " $\Rightarrow "$ " Let $\operatorname{dim}(E) \leq 1$. Then, since $E \neq\{0\}, \operatorname{dim}(E)=1$. It follows that $E \cong \mathbb{R}$, and thus,

$$
E_{+}=\{x \mid x \geq 0\} \quad \text { or } \quad E_{+}=\{x \mid x \leq 0\} .
$$

Thus, E_{+}is Archimedean.

Figure 4: The cone in Exercise 1 (e) in $E=\mathbb{R}^{2}$.
" \Leftarrow ": Conversely, let $\operatorname{dim}(E) \geq 2$. Then choose $x \in \operatorname{ker}\left(x^{\prime}\right)$ with $\|x\|=1$ and $y \in E$ with $\left\langle x^{\prime}, y\right\rangle>0$. This is possible, since x^{\prime} has codimension at least 1 . Then

$$
x \not \leq 0 \quad \text { and } \quad x \leq \frac{1}{n} y
$$

for all $n \in \mathbb{N}$, since $\left\langle x^{\prime}, \frac{1}{n} y-x\right\rangle>0$. It follows that E_{+}is not Archimedean.

Exercise $2\left(\right.$ An ℓ^{2}-ice cream cone in $\left.c_{0}\right)$. Let c_{0} denote the space of real-valued sequences (indexed over $\mathbb{N}:=\{1,2, \ldots\}$) that converge to 0 . Show that

$$
\left(c_{0}\right)_{+}:=\left\{x \in c_{0} \mid x_{1} \geq 0 \text { and } x_{1}^{2} \geq \sum_{n=2}^{\infty} x_{n}^{2}\right\}
$$

is a cone in c_{0}. Is $\left(c_{0}\right)_{+}$generating? Is the set $\left(c_{0}\right)_{+}$closed in c_{0} (with respect to the sup norm)?

Solution:

We show that c_{0} is a cone. Let $x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ and $\alpha, \beta \geq 0$. Define the projection $P: c_{0} \rightarrow c_{0}$ by $P x:=\left(0, x_{2}, x_{3}, \ldots\right)$ and notice that

$$
\left(c_{0}\right)_{+}=\left\{x \in c_{0} \mid x_{1} \geq\|P x\|_{2}\right\}
$$

Then

$$
\alpha \cdot x_{1}+\beta \cdot y_{1} \geq \alpha\|P x\|_{2}+\beta\|P y\|_{2} \geq\|\alpha \cdot P x+\beta \cdot P y\|_{2}=\|P(\alpha \cdot x+\beta \cdot y)\|_{2} .
$$

So $\alpha \cdot x+\beta \cdot y \in E_{+}$. Moreover,

$$
\begin{aligned}
\left(c_{0}\right)_{+} \cap-\left(c_{0}\right)_{+} & =\left\{x \in c_{0} \mid 0 \leq x_{1} \leq 0, x_{1}^{2} \geq \sum_{n=2}^{\infty} x_{n}^{2}\right\} \\
& =\left\{x \in c_{0} \mid 0 \leq x_{1} \leq 0,0 \geq \sum_{n=2}^{\infty} x_{n}^{2}\right\}=\{0\} .
\end{aligned}
$$

So E_{+}is indeed a cone.
Notice further that $\left(c_{0}\right)_{+}$is a subset of ℓ^{2}. Thus, by the triangle inequality, it follows that

$$
\left(c_{0}\right)_{+}-\left(c_{0}\right)_{+} \subseteq \ell^{2} .
$$

(It is even the case that equality holds.) Since $\ell^{2} \varsubsetneqq c_{0}$ (for example $\left(\frac{1}{\sqrt{n}}\right)_{n \in \mathbb{N}}$ is in c_{0} but not in ℓ^{2}), it follows that $\left(c_{0}\right)_{+}$is not generating ${ }^{1}$
To see that $\left(c_{0}\right)_{+}$is closed let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence in $\left(c_{0}\right)_{+}$that converges to $x \in c_{0}$. Then clearly $x_{1} \geq 0$, since $x_{1}^{(k)} \geq 0$ for all $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} x_{1}^{(k)}=x_{1}$. Define

$$
f_{(k)}(n):=\left(x_{n}^{(k)}\right)^{2} \quad \text { and } \quad f(n):=x_{n}^{2}
$$

for all $n \in \mathbb{N}$. Notice that $f_{(k)}, f \geq 0$. Then by Fatou's lemma it follows that

$$
\begin{aligned}
\sum_{n=2}^{\infty} x^{2} & =\sum_{n=2}^{\infty} f(n)=\sum_{n=2}^{\infty} \liminf _{k \rightarrow \infty} f_{(k)}(n) \\
& \leq \liminf _{k \rightarrow \infty} \sum_{n=2}^{\infty} f_{(k)}(n) \leq \liminf _{k \rightarrow \infty}\left(x_{1}^{(k)}\right)^{2}=x_{1}^{2} .
\end{aligned}
$$

Hence, it follows that $x \in\left(c_{0}\right)_{+}$and that the cone E_{+}is closed.

[^0]
[^0]: ${ }^{1}$ It is an easy exercise to show that $\overline{\left(c_{0}\right)_{+}-\left(c_{0}\right)_{+}}=c_{0}$. A cone with this property is called total, see Definition 4.3.1.

