Cesàro Sequence Vector Lattices. Duals and Ideals of Finite Elements

Uğur Gönüllü

Department of Mathematics and Computer Science İstanbul Kültür University Bakirköy 34156 İstanbul, Turkey Faruk Polat

Department of Mathematics

Çankiri Karatekin University 18100 Çankiri, Turkey Martin R. Weber

Fakultät Mathematik Institut für Analysis Technische Universität 01062 Dresden, Germany

Workshop on Ordered Vector Spaces and Positive Operators

Wuppertal, March 29 – April 1, 2023

Topics

- 1. Cesàro sequence vector lattices
- 2. The Cesàro vector lattices ces_p for 1
- 3. The dual d_p of ces_p
- 4. Finite elements in vector lattices
- 5. The finite elements in ces_p and in d_p
- 6. The Cesàro space ces_{∞}
- 7. Finite and self-majorizing elements in ces_{∞}
- 8. The Cesàro space ces_0 and its finite elements
- 9. Cesàro sums and their duals
- 10. Finite elements in Cesàro sums

1. Cesàro Sequence Vector Spaces

Let C be the Cesàro matrix defined by

$$c_{nm} = \begin{cases} rac{1}{n}, & ext{if } n \geq m \\ 0, & ext{if } n < m \end{cases}$$
, i.e.

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots & \dots \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \dots & \dots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & \dots & \dots \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{1}{n} & \frac{1}{n} & \dots & \dots & \dots & \dots & \dots \end{pmatrix}.$$

Then $C \geq 0$, $dom(C) = \mathbb{R}^{\mathbb{N}}$ and $Cx = \left(\frac{1}{n} \sum_{k=1}^{n} x_k\right)_{n \in \mathbb{N}}$ for all sequences $x = (x_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.

For a subset $\lambda \subset \mathbb{R}^{\mathbb{N}}$ define the set

$$sol(C^{-1}(\lambda)) = \{x \in \mathbb{R}^{\mathbb{N}} \colon C|x| \in \lambda\}$$

Properties of $sol(C^{-1}(\lambda))$ for the case that λ is an order ideal in $\mathbb{R}^{\mathbb{N}}$:

- $sol(C^{-1}(\lambda))$ is an order ideal in $\mathbb{R}^{\mathbb{N}}$,
- $sol(C^{-1}(\lambda)) \subset C^{-1}(\lambda) = \{x \in \mathbb{R}^{\mathbb{N}} : Cx \in \lambda\},\$
- $sol(C^{-1}(\lambda))$ is the largest solid subset which is contained in $C^{-1}(\lambda)$.

As an ideal $sol(C^{-1}(\lambda))$ is a vector lattice with respect to the order inherited from the natural coordinatewise order of $\mathbb{R}^{\mathbb{N}}$.

We study the ideals $sol(C^{-1}(\lambda))$ generated by the ideals

$$\lambda = \begin{cases} \ell_p, & \text{for } 0$$

Clearly, c has to be omitted since it is not an order ideal in $\mathbb{R}^{\mathbb{N}}$! The spaces $sol(C^{-1}(\lambda))$ share the properties above.

2. The Cesàro Sequence Spaces for 0

These vector lattices are defined as

$$ces_{m p}:=solig(C^{-1}(m\ell_p)ig)=\{m x\in\mathbb{R}^\mathbb{N}\colon C|m x|\inm\ell_p\}.$$

It turns out that for $0 these spaces are trivial, i.e. <math>\{0\}$.

If $1 then <math>\ell_p$ is a proper solid (normal) subset of ces_p .

Fix $m > 2 + \frac{2}{p-1}$. Then the sequence $x = (x_n)_{n \in \mathbb{N}}$ with

$$x_n = \begin{cases} k, & \text{if } n = k^m \\ 0, & \text{if } n \notin \{k^m \colon k \in \mathbb{N}\} \end{cases}. \qquad n \in \mathbb{N}$$

Then $x \notin \ell_p$, however it can be shown that Cx is in ℓ_p : For $p \geq 4$ and m = 3 take $x = (1, 0, \ldots, 0, 2, 0, \ldots, 0, 3, 0, \ldots)$. Then $Cx = (1, \frac{1}{2}, \ldots, \frac{1}{7}, \frac{3}{9}, \ldots, \frac{3}{26}, \frac{6}{27}, \ldots, \frac{6}{63}, \frac{10}{64}, \ldots) \in \ell_p$, and so $x \in ces_p$.

Norm on
$$\boldsymbol{ces_p}$$
: $\|x\|_{ces_p} := \|C\|x\|_p = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right)^p\right)^{\frac{1}{p}}$.

$$x, y, \in \ell_p, \ C \ge 0, \ |x| \le |y| \Longrightarrow C|x| \le C|y|$$
 and so

$$||x||_{ces_p} = ||C|x|||_p \le ||C|y|||_p = ||y||_{ces_p} - \text{Riesz norm}.$$

Remember:

 $\begin{array}{ll} \textit{M-}\text{norm: } x,y \geq 0 \Longrightarrow \ \|x \vee y\| = \max\{\|x\|\,,\|y\|\}. \\ \textit{L_p-}\text{norm: } x,y \geq 0 \Longrightarrow \ \|x+y\| = \|x\| + \|y\|. \end{array}$

An element $u \in E_+$, $u \neq 0$ of a vector lattice E is called an atom, whenever $0 < x, y \leq u$ and $x \wedge y = 0$ imply either x = 0 or y = 0, or equivalent: whenever $0 \leq x \leq u$ implies $x = \lambda u$ for some $\lambda \in \mathbb{R}_+$.

A vector lattice E is said to be atomic if for each x > 0, there exists an atom u, such that $0 < u \le x$.

Examples: $c_0, c, \ell^p \ (1 \leq p \leq \infty)$ are atomic vector lattices, but C([0,1]) is atomless.

Properties of $(ces_p, \|\cdot\|_{ces_p})$:

- Dedekind complete vector lattice (in particular, Archimedean)
- separable Banach lattice with respect to its norm (Shiue, 1970 and Leibowitz, 1971)
- reflexive if and only if $1 (Jagers, 1974) and so the norm of <math>ces_p$ is order continuous, i.e. $x_n \downarrow 0$ implies $||x_n|| \downarrow 0$ (Aliprantis/Border, 1994)
- atomic vector lattice, where the only atoms are the coordinate sequences $e_n = (\underbrace{0, 0, ..., 0}_{n}, 1, 0, 0, ...)$ for $\forall n \in \mathbb{N}$
- ullet neither an AM-space nor an abstract L_p -space.

3. The Dual of ces_p

The problem of the dual space ces'_p of the Banach lattices $(ces_p, ||\cdot||)$, formulated first 1971 in a Dutch Journal, was solved by Jagers (1974). We rest here on Bennett's approach (1996), which provides an explicit lattice isomorphism between ces'_p and the new constructed spaces d_q . For $0 < q < \infty$ consider

$$d_q := \Big\{ a = (a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \colon \Big(\underbrace{\sup_{k \ge n} |a_k|}_{=: \hat{a}_n} \Big)_{n \in \mathbb{N}} \in \ell_q \Big\}.$$

The sequence $\hat{a} = (\hat{a}_n)_{n \in \mathbb{N}}$ is called least decreasing majorant of a. $d_0 = c_0$ and $d_\infty = \ell_\infty$ are not of interest.

 d_q is proper subset of ℓ_q : $a = (0, \frac{1}{2^1}, 0, \frac{1}{2^2}, 0, 0, 0, \frac{1}{2^3}, \ldots) \in \ell_1$. But $\hat{a} = (\frac{1}{2^1}, \frac{1}{2^1}, \frac{1}{2^2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^3}, \frac{1}{2^3}, \frac{1}{2^3}, \frac{1}{2^4}, \ldots) \notin \ell_1$, hence $a \notin d_1$.

Norm on
$$d_q$$
: $||a||_{d_q} := ||\hat{a}||_q = \left(\sum_{n=1}^{\infty} \sup_{k \geq n} |a_k|^q\right)^{1/q}$.

Properties of $(d_q, \|\cdot\|_{d_q})$:

- $(d_q, \|\cdot\|_{d_q})$ is a Dedekind complete Banach lattice,
- $c_{00} \subsetneq d_q \subsetneq \ell_q$,
- the norm in d_q is order continuous for $1 \leq q < \infty$.

Let $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\langle a, x \rangle := \sum_{n=1}^{\infty} a_n x_n, \quad x \in ces_p, \ a \in d_q$$

is a lattice isomorphism between ces'_p and d_q .

Interesting: the identification is even isometric when ces_p is endowed with an other norm, equivalent to $\|\cdot\|_{ces_p}$ (s. Bennett, Bonet/Ricker for details).

- $ces'_0 = d_1$ with equality of norms (Curbera/Ricker),
- $ces_0'' = d_1' = ces_\infty$ with equality of the norms (Alexiewicz),
- Pettis' Theorem implies that d_q is reflexive for $1 < q < \infty$ as ces_p is for 1 .
- the norm of d_1 is order continuous (see above). However the norm of ces_{∞} is not order continuous (GPW).

4. Finite Elements in Vector Lattices

• An element φ of an Archimedean vector lattice E is called **finite** if if there is an element $z \in E$ satisfying the following condition: for any element $x \in E$ there exists a number $c_x > 0$ such that the following inequality holds

$$|x| \wedge n|arphi| \leq c_x z$$
 for $\forall n \in \mathbb{N}$.

The element z is called E-majorant of φ .

 $\Phi_1(E)$ denotes the ideal of all finite elements of E.

• $\varphi \in E$ is called **totally finite**, if there exists an E-majorant $z \in \Phi_1(E)$.

 $\Phi_2(E)$ denotes the ideal of all totally finite elements of E.

• $\varphi \in E$ is called **self-majorizing**, if $|\varphi|$ is an E-majorant of φ , i.e. $\forall x \in E$ there is $c_x > 0$ with

$$|x| \wedge n|\varphi| \le c_x |\varphi|$$
 for $\forall n \in \mathbb{N}$

S(E) denotes the set of all self-majorizing elements of E. $S_{+}(E) = S(E) \cap E_{+}$. The set $\Phi_{3}(E) = S_{+}(E) - S_{+}(E)$ is also an ideal and

$$0 \in \Phi_3(E) \subseteq \Phi_2(E) \subseteq \Phi_1(E) \subseteq E$$
.

5. The Finite Elements in ces_p and in d_p

Each atom of an Archimedean vector lattice is also a self-majorizing element.

For a normed vector lattice E denote by Γ_E the set of all atoms with the norm equal to 1. $\Gamma_E \subseteq \Phi_3(E)$ and, it consists of pairwise disjoint linearly independent elements.

Let c_{00} denote the space of all finite sequences, i.e. $x = (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ is in c_{00} if exists n_x such that $x_n = 0$ for all $n \geq n_x$. It is clear that span $(\Gamma_{ces_p}) = c_{00} \neq ces_p$.

Theorem 1.

Let be 1 . Then

- (1) $\Phi_3(ces_p) = \Phi_2(ces_p) = \Phi_1(ces_p) = c_{00}$,
- (2) the space ces_p has no order unit.

Proof. (1): For a Banach lattice E with order continuous norm by (Thm. Chen/W.,2006) there holds $\Phi_i(E) = c_{00}$, $i \in \{1, 2, 3\}$. (2): If there would be an order unit in ces_p then $\Phi_i(E) = ces_p$, $i \in \{1, 2, 3\}$, and by (1) should be $ces_p = c_{00}$, i.e. a contradiction.

Theorem 2.

Let be $1 \leq q < \infty$. Then

- (1) $\Phi_3(d_q) = \Phi_2(d_q) = \Phi_1(d_q) = c_{00}$
- (2) the space d_q has no order unit.

6. The Cesàro Space ces_{∞}

$$ces_{igotimes}:=solig(C^{-1}(oldsymbol{\ell}_{\infty})ig)=\{x\in\mathbb{R}^{\mathbb{N}}\colon C|x|\in oldsymbol{\ell}_{\infty}\}$$

with the norm
$$||x||_{ces_{\infty}} := \sup_{n} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|\right) < \infty$$
.

Properties of $(ces_{\infty}, \|\cdot\|_{ces_{\infty}})$:

- non-atomic Dedekind complete Banach lattice
- ℓ_{∞} is a proper solid subspace of ces_{∞} . For that consider the sequence $x = (x_n)_{n \in \mathbb{N}}$ with

$$x_n = \begin{cases} k, & \text{if } n = k^2 \\ 0, & \text{if } n \notin \{k^2 \colon k \in \mathbb{N}\} \end{cases}, \qquad n \in \mathbb{N}$$

then $x = (1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, \dots) \notin \ell_{\infty}$, but $Cx = (1, \frac{1}{2}, \frac{1}{3}, \frac{3}{4}, \frac{3}{5}, \dots, \frac{3}{8}, \frac{6}{9}, \frac{6}{10}, \dots)$, i.e. $Cx \in \ell_{\infty}$, and so $x \in ces_{\infty}$.

- not an AM-space, and the norm is not σ -order continuous
- vector lattice without an order unit, see also Corollary 1 below.

7. Self-majorizing and Finite Elements in ces_{∞}

For $x \in \mathbb{R}^{\mathbb{N}}$ define its support by supp $(x) = \{n \in \mathbb{N} : x_n \neq 0\}$.

Theorem 3.

Let φ be an element of ces_{∞} . Then $\varphi \in \Phi_3(ces_{\infty})$ if and only if

$$r_{\varphi} = \inf \left\{ \frac{|\varphi_n|}{n} \colon n \in \operatorname{supp}(\varphi) \right\} > 0.$$

Example: Existence of elements in $\Phi_3(ces_\infty) \setminus \ell_\infty$. Consider $x = (x_n)_{n \in \mathbb{N}}$ with

$$x_n = egin{cases} n, & ext{ if } n = 2^k \ 0, & ext{ otherwise} \end{cases}, \qquad k \in \{0\} \cup \mathbb{N}.$$

Then $x \notin \ell_{\infty}$ (all the more $x \notin c_{00}$). Let be y = Cx. Then

$$y_{2k} = (Cx)_{2k} = \frac{1}{2^k} \sum_{n=1}^{2^k} x_n = \frac{\sum_{n=1}^{2^k} 2^k}{2^k} = \frac{2^{k+1} - 1}{2^k (2-1)} = 2 - \frac{1}{2^k} \le 2$$

while, for the subscript N satisfying $2^k \leq N < 2^{k+1}$ one has

$$0 < y_N = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{N} \sum_{n=1}^{2^k} x_n \le \frac{1}{2^k} \sum_{n=1}^{2^k} x_n = y_{2^k} \le 2.$$

It is clear that $y = Cx \in \ell_{\infty}$, i.e. $x \in ces_{\infty}$.

Moreover, since $\inf \left\{ \frac{|x_n|}{n} \colon n \in \operatorname{supp}(x) \right\} = 1$, Theorem 3 $\Longrightarrow x \in \Phi_3(ces_\infty)$.

The Dedekind completeness of ces_{∞} implies that ces_{∞} has (ppp). Hence $\Phi_1(ces_{\infty}) = \Phi_2(ces_{\infty})$.

Theorem 4.

Let φ be an element of \mathbf{ces}_{∞} . The following statements are equivalent:

- (1) φ is a finite element of ces_{∞} .
- (2) $\{\varphi\}^{dd}$ has an order unit x with $\inf\{\frac{x_n}{n}: n \in \text{supp}(x)\} > 0$
- (3) The sequence $z = (z_n)_{n \in \mathbb{N}}$, where

$$z_n = \begin{cases} n, & \text{if } n \in \operatorname{supp}(\varphi) \\ 0, & \text{otherwise} \end{cases}, \qquad n \in \mathbb{N}.$$

belongs to ces_{∞} .

Theorem 5.

Let φ be an element of ces_{∞} . Let $supp(\varphi)$ be an infinite set written as an increasing sequence $(k_n)_{n\in\mathbb{N}}$.

- (1) If $\limsup \frac{k_{n+1}}{k_n} = 1$, then φ is not a finite element of ces_{∞} .
- (2) If $\lim \inf \frac{k_{n+1}}{k_n} > 1$, then φ is a finite element of ces_{∞} .

Corollary 1.

- (i) ces_{∞} has no order unit.
- (ii) Not every element of ℓ_{∞} is a finite element of \mathbf{ces}_{∞} , and therefore, ℓ_{∞} is neither a norm-closed ideal nor a band in \mathbf{ces}_{∞} .

The next characterization of finite elements uses the distribution of their supports within the intervals $[2^n, 2^{n+1})$ along the positive real numbers.

Theorem 6.

The element φ of ces_{∞} is finite if and only if

$$\beta := \sup \left\{ \beta_n \colon n \in \{0\} \cup \mathbb{N} \right\} < \infty,$$

where β_n denotes the cardinality of the set $[2^n, 2^{n+1}) \cap \text{supp}(\varphi)$ for each $n \in \{0\} \cup \mathbb{N}$.

Idea of the proof: For the finite element φ define the sequence z by $z_n = n$ if $n \in \text{supp}(\varphi)$ and $z_n = 0$ otherwise. Then Theorem 4(3) implies $z \in ces_{\infty}$, i.e. $||z||_{ces_{\infty}} = \sup_{n} \left(\frac{1}{n} \sum_{k=1}^{n} z_k\right) < \infty$. By using the so-called *blocking technique* this "series form" of the norm is transformed into its "block form".

With the parameter p = 1, the blocks

$${n \in \mathbb{N} \colon 2^n \le k < 2^{n+1}}$$

and the sequence $a = (\frac{1}{n})_{n \in \mathbb{N}}$ from some Theorem (see Grosse-Erdmann, 1998), we obtain the equivalence

$$\sup_{n} \left(\frac{1}{n} \sum_{k=1}^{n} z_{k} \right) < \infty \stackrel{(\equiv)}{\Longleftrightarrow} \varrho_{z} := \sup_{n} \left(\frac{1}{2^{n}} \sum_{k=2^{n}}^{2^{n+1}-1} z_{k} \right) < \infty.$$

By taking into consideration that $z_k = k \geq 2^n$ and so, $z_k \neq 0$ only for $k \in \text{supp}(\varphi)$ one has

$$\varrho_z \ge \frac{1}{2^n} \sum_{\substack{k=2^n \\ k \in \text{supp}(\varphi)}}^{2^{n+1}-1} z_k = \frac{1}{2^n} \sum_{\substack{k=2^n \\ k \in \text{supp}(\varphi)}}^{2^{n+1}-1} k \ge \frac{1}{2^n} 2^n \beta_n = \beta_n,$$

what implies $\beta < \infty$.

Conversely, if $\beta < \infty$ then, due to $k < 2^{n+1}$, one has

$$\frac{1}{2^n} \sum_{k=2^n}^{2^{n+1}-1} z_k = \frac{1}{2^n} \sum_{\substack{k=2^n \\ k \in \text{supp}(\varphi)}}^{2^{n+1}-1} k < \frac{1}{2^n} 2^{n+1} \beta_n = 2\beta_n \le 2\beta,$$

such that $\varrho_z < \infty$. From (\equiv) we get $z \in ces_{\infty}$ and, Theorem 4(3) implies then that φ is finite.

8. The Cesàro space ces_0 and its finite elements

$$ces_0^{}:=solig(C^{-1}(c_0)ig)=\{x\in\mathbb{R}^\mathbb{N}\colon C|x|\in extbf{c}_0\}$$

with the norm
$$||x||_{ces_0} := ||C|x|||_{\infty} = \sup_{n} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|\right)$$
.

Properties of $(ces_0, \|\cdot\|_{ces_0})$:

- it is an atomic Dedekind complete Banach lattice,
- c_0 is a proper solid subspace of ces_0 , e.g. the sequence (x_n) , where $x_n = 1$ if $n = k^2$ and $x_n = 0$ otherwise, belongs to ces_0 but not to c_0 ,
- $\ell_{\infty} \not\subset ces_0$, what is easily seen from $\mathbf{1} \in \ell_{\infty}$, but $C\mathbf{1} \notin c_0$,
- $ces_0 \not\subset \ell_{\infty}$, since y belongs to $ces_0 \setminus \ell_{\infty}$, where $y_n = k$, if $n = k^3$ and $y_n = 0$ otherwise,
- not an AM-space, although c_0 is an AM-space with order continuous norm,
- the norm is order continuous.

The finite elements in ces_0 are characterized next (the same as for ces_p).

Theorem 7.

- (1) $\Phi_3(ces_0) = \Phi_2(ces_0) = \Phi_1(ces_0) = c_{00}$,
- (2) the space ces_0 has no order unit.

9. The Cesàro sums and their duals

Let \mathfrak{X} be a sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of Banach spaces and $p \in \{0\} \cup [1, \infty]$. Define the p-Cesàro sums and d_p -sums of $\mathfrak{X} = (X_n)_{n\in\mathbb{N}}$ as follows

$$ces_p(\mathfrak{X}) := \{ x = (x_n)_{n \in \mathbb{N}} \colon x_n \in X_n, (\|x_n\|_n)_{n \in \mathbb{N}} \in ces_p \}$$
$$d_p(\mathfrak{X}) := \{ x = (x_n)_{n \in \mathbb{N}} \colon x_n \in X_n, (\|x_n\|_n)_{n \in \mathbb{N}} \in d_p \}.$$

Further on we simply write $\|\cdot\|$ instead of $\|\cdot\|_n$ and $\mathbf{0}$ for the zero vector in X_n for each $n \in \mathbb{N}$. Under the coordinatewise algebraic operations and the norms

$$|||x|||_{ces_p(\mathfrak{X})} = ||(||x_n||)_{n \in \mathbb{N}}||_{ces_p}, |||y|||_{d_p(\mathfrak{X})} = ||(||y_n||)_{n \in \mathbb{N}}||_{d_p}$$

the spaces $ces_p(\mathfrak{X})$ and $d_p(\mathfrak{X})$ are Banach spaces.

Let now all X_n be Banach lattices. Then with coordinatewise order the spaces $ces_p(\mathfrak{X})$ and $d_p(\mathfrak{X})$ are also Banach lattices.

Since $ces_1 = \{0\}$ also $ces_1(\mathfrak{X})$ is trivial.

For $p \in \{0\} \cup (1, \infty]$ define the map $J_j: X_j \to ces_p(\mathfrak{X})$ by

$$J_j x = (x_n)_{n \in \mathbb{N}} = (\mathbf{0}, \dots, \mathbf{0}, \underbrace{x}_{jth \ term}, \mathbf{0}, \dots) = \begin{cases} \mathbf{0}, n \neq j \\ x, n = j \end{cases}$$

for $x \in X_j$ and $j \in \mathbb{N}$.

Properties of the map J_j :

- a lattice isomorphism from X_j to $ces_p(\mathfrak{X})$,
- J_jX_j is a projection band in $ces_p(\mathfrak{X})$ such that
- $\bullet \ \Phi_1(J_jX_j) = J_j\Phi_1(X_j),$
- for the band projection $P_j : ces_p(\mathfrak{X}) \to J_j X_j$ one has

$$P_j(\Phi_1(ces_p(\mathfrak{X}))) = \Phi_1(J_jX_j) = J_j\Phi_1(X_j).$$

Theorem 8.

Let $\mathfrak{X} = (X_n)_{n \in \mathbb{N}}$ be a sequence of Banach lattices, $\mathfrak{X}' = (X'_n)_{n \in \mathbb{N}}$ the sequence of their dual spaces and $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Then the mapping $y'=(y'_n)_{n\in\mathbb{N}}\mapsto f_{y'}$ from $d_q(\mathfrak{X}')$ to $ces'_p(\mathfrak{X})$, defined by

$$f_{y'}(x) := \sum_{n=1}^{\infty} \langle y'_n, x_n \rangle, \quad x = (x_n)_{n \in \mathbb{N}} \in ces_p(\mathfrak{X})$$

is a vector lattice isomorphism from $d_q(\mathfrak{X}')$ onto $ces'_p(\mathfrak{X})$ and satisfies for all $y' \in d_q(\mathfrak{X}')$ the relations

$$\frac{1}{q}|||y'|||_{d_q(\mathfrak{X}')} \le ||f_{y'}|| \le (p-1)^{1/p} ||||y'|||_{d_q(\mathfrak{X}')}.$$

Similarly, we have $ces'_0(\mathfrak{X}) = d_1(\mathfrak{X}')$ with equality of the norms, i.e. $||f_{y'}|| = |||y'|||_{d_1(\mathfrak{X}')}$.

10. Finite elements in Cesàro sums

As the characterization of the finite elements in the Banach lattices $ces_p(\mathfrak{X})$ for $p \in \{0\} \cup (1, \infty]$, we get a quite direct generalization of the results for the classical cases $X_n = c_0$, ℓ_p and ℓ_∞ .

Theorem 9.

The following statements hold:

- (1) For p = 0 and $1 the element <math>\varphi_{=}(\varphi_n)_{n \in \mathbb{N}}$ is finite in $ces_p(\mathfrak{X})$ if and only if $\varphi_n \in \Phi_1(X_n)$ for all $n \in \mathbb{N}$ and $\varphi_n = \mathbf{0}$ for all but finite many $n \in \mathbb{N}$.
- (2) The element $\varphi = (\varphi_n)_{n \in \mathbb{N}}$ is finite in $ces_{\infty}(\mathfrak{X})$ if and only if there exist $w_n \in X_n^+$ such that $(n ||w_n||)_{n \in \mathbb{N}} \in ces_{\infty}$ and

$$B_{\{\varphi_n\}dd} \subset [-w_n, w_n].$$

In particular, $\varphi_n \in \Phi_1(X_n)$ for all $n \in \mathbb{N}$.

References

- [1] G.P. Curbera and W.J. Ricker. Solid extensions of the Cesàro operator on ℓ_p and c_0 , Integral Equ. Oper. Theory (2014), 80 no.1, 61–77.
- [2] U. Gönüllü, F. Polat and M.R. Weber. Cesàro Vector Lattices and their Ideals of Finite Elements, *Positivity* (2023),27, 15 pp.
- [3] U. Gönüllü, F. Polat and M.R. Weber. Duals of Cesàro Sequence Vector Lattices, Cesàro Sums of Banach Lattices and Their Finite Elements, to appear in *Archiv der Mathematik* (2023), 11 pp.
- [4] A.A. Jagers. A note on Cesáro sequence spaces, *Nieuw Arch. Wisk.* 3 (1974), 113–124.
- [5] G.M. Leibowitz. A note on Cesàro sequence spaces, *Tamkang J. Math. 2* (1971), 151–157.
- [6] W.J. Ricker. The order spectrum of convolution operators in discrete Cesàro spaces, Indag. Math. (N.S.) (2019), 30 no.4, 527–535.
- [7] J.S. Shiue. On the Cesàro sequence spaces, *Tamkang J. Math.* 1 (1970), 19–25.
- [8] M.R. Weber. Finite Elements in Vector Lattices, De Gruyter. Germany (2014).

Grazie per la vostra attenzione Obrigado pela sua atenção Dinlediğiniz için teşekkür ederim!

Dziękuję za Państwa uwagę

Thank you for your attention!! ** **

Спасибо за Ваше внимание! Danke für Ihre Aufmerksamkeit!

Hvala na pazhnji Дякую за Вашу увагу $\epsilon v \chi \alpha \varrho \iota \sigma \tau \omega$