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1. Cesaro Sequence Vector Spaces

Let C' be the Cesaro matrix defined by
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all sequences = = (z1)ren € RY.
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For a subset A C RY define the set

sol (C7*(N\)) = {z e R": C|z| € A}

Properties of sol (C ™' (X)) for the case that A is an order ideal

in RY:

e sol(C~(N)) is an order ideal in R",

e sol(C'(N) CcC'(A\) ={x € R": Cz € A},

e sol(C7'(N)) is the largest solid subset which is contained in
C ().

As an ideal sol (C~'(N)) is a vector lattice with respect to the
order inherited from the natural coordinatewise order of RY.

We study the ideals sol (C~"(\)) generated by the ideals

.
ly, for 0 < p < oo ~ cesy
A= /., ~ CES oo
Co, ~ CESy.

\

Clearly, ¢ has to be omitted since it is not an order ideal in RN

The spaces sol (C'_l()\)) share the properties above.
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2. The Cesaro Sequence Spaces for 0 < p < o©

These vector lattices are defined as

ces, := sol (C7'(£,)) = {x € R": C|z| € £,}.

[t turns out that for 0 < p < 1 these spaces are trivial, i.e. {0}.

If1 < p < oo then Z, is a proper solid (normal) subset of ces,,.

Fix m > 2 + ]%. Then the sequence * = (@, )pnen With

k, if n=k™
€T, = . n €N
0, if n ¢ {k™: k €N}

Then = & £, however it can be shown that Cx is in £,: For
p > 4and m = 3 takex = (1,0,...0,2,0,...0,3,0,...).
_ 1 1 3 3 6 6 10
ThenCa:—(1,5,...,7,5,...,%,ﬁ,...,§,a,...)Eﬁp,

and so x € ces,.

1
Norm on cesy: e, = Iz, = ( 35 (32 feu])*)”
n=— =

x,y, €Ly, C >0, |z| < |yl = Clz| < C|y|and so

121l ces, = 1CT2I, < NCTYI, = [yl ees, — Riesz norm.

CGSp
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Remember:
Moo 2,y > 0 = |lo v y|l = max{||z|, [lyll}.
Lynorm: z,y > 0= ||z +y| = ||z| + [|y]].

An element v € FE,, u # 0 of a vector lattice E is called an
atom, whenever 0 < x,y < w and x A y = 0 imply either
x = 0 or y = 0, or equivalent: whenever 0 < x < u implies
x = Au for some A € R,.

A vector lattice E is said to be atomic if for each * > 0, there
exists an atom u, such that 0 < u < x.

Examples: ¢g, ¢, £ (1 < p < o0) are atomic vector lattices, but

C([0, 1]) is atomless.

Properties of (ces,, ||-||Cesp ):

e Dedekind complete vector lattice (in particular, Archimedean)

e scparable Banach lattice with respect to its norm (Shiue, 1970
and Leibowitz, 1971)

o reflexive if and only if 1 < p < oo (Jagers, 1974) and so the
norm of ces,, is order continuous, i.e. x, | 0implies ||x,|| O
(Aliprantis/Border, 1994)

e atomic vector lattice, where the only atoms are the coordinate
sequences e, = (0, O,\./.., 0,1,0,0,...) for Vn € N
n—1
e neither an AM-space nor an abstract L,-space.
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3. The Dual of ces,

The problem of the dual space ces; of the Banach lattices
(cesp, ||-]]), formulated first 1971 in a Dutch Journal, was solved
by Jagers (1974). We rest here on Bennett’s approach (1996), which
provides an explicit lattice isomorphism between ces; and the new
constructed spaces d,. For 0 < g < oo consider

d, := {a = (an)nen € RY . (Sup |ak|) c Eq}.
E>n neN
;\C_/

The sequence @ = (G )nen is called least decreasing majorant of
a. dp = cg and doy = £ are not of interest.

d, is proper subset of £,: a = (0, 2%, 0, 2%, 0, 0,0, 2%, ...) E

~ 1 1 1 1 1 1 1 1 1
61. But a = 2—1,2—1,2—2,2—2,2—3,2—3,2—3,2—3,2—4, ) g 61, hence

1/q
o0
Norm on dg: [|all,, = [lall, = (z sup|ak|Q> .

n=1 k>n
Properties of (d, ||'||dq ):
o (dg |||l dq) is a Dedekind complete Banach lattice,
® coo ; d, ; l,,

e the norm in d, is order continuous for 1 < g < oo.
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Let1<p,q<ooand;—)—|—% 1. Then

O
(a,x) := E AnTn, T € CeESp, a € dy
n=1
. . . . /
s a lattice isomorphism between ces,, and dg.
Interesting: the identification is even isometric when ces) is en-

dowed with an other norm, equivalent to ||-|| Bennett,

Bonet/Ricker for details).

cesp (S‘

e ces, = d; with equality of norms (Curbera/Ricker),

e ces, = d] = ceso with equality of the norms (Alexiewicz),

e Pettis’ Theorem implies that d, is reflexive for 1 < ¢ < oo
as cesp isfor 1 < p < oo.

e the norm of d; is order continuous (see above). However the
norm of cess is not order continuous (GPW).
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4. Finite Elements in Vector Lattices

e An element ¢ of an Archimedean vector lattice E is called finite
if if there is an element z € E satistying the following condition:
for any element * € FE there exists a number ¢, > 0 such that
the following inequality holds

|| A n|lp| < cpz for Vn €N,

The element z is called E-majorant of .
®, (E) denotes the ideal of all finite elements of E.

e © € F is called totally finite, if there exists an E-majorant
z & (I)l(E)
®,(E) denotes the ideal of all totally finite elements of E.

e p € F is called self-majorizing, if || is an E-majorant
of o, 1.e. Ve € E there is ¢, > 0 with

lz| An|p| < cile| for Vn €N

S(FE) denotes the set of all self-majorizing elements of F.
S{(E)=S(E)NE;. Theset P3(F) = S(E) — S+ (FE) is

also an 1deal and

0 € ®5(E) C ®,(E) C &,(E) C E.
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5. The Finite Elements in ces, and in d,

Each atom of an Archimedean vector lattice is also a self-majorizing
element.

For a normed vector lattice F/ denote by I'g the set of all atoms
with the norm equal to 1. I'g C ®3(FE) and, it consists of pair-
wise disjoint linearly independent elements.

Let cgp denote the space of all finite sequences, ie. x =
(Tn)nen € RY is in co if exists m, such that z, = O for all
n > ng. It is clear that span(Ices,) = coo # cesyp.

Theorem 1.

Let be 1 < p < oo. Then
(1) Ps(cesy,) = Pa(ces,) = Pi(ces,) = coo,
(2)  the space ces, has no order unit.

Proof. (1): For a Banach lattice EZ with order continuous norm by
(Thm. Chen/W.,2006) there holds ®;(E) = cqo, ¢ € {1, 2, 3}.
(2): If there would be an order unit in ces, then ®;(F) =
cesp, © € {1,2,3}, and by (1) should be ces, = cqo, i.e.
a contradiction.

Theorem 2.

Let be 1 < q < oo. Then
(1) ®3(dq) = P2(dq) = P1(dq) = coo.
(2)  the space dg has no order unit.

10
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6. The Cesaro Space ceso

ceso := sol(C ' (€x)) = {z € R": C|z| € £}

n
with the norm ||z, := sup (% > |azk|) < 00.
k=1

n

Properties of (cesoo, 1] cesae ):

e non-atomic Dedekind complete Banach lattice

o /. is a proper solid subspace of cesqo.
For that consider the sequence x = (&, )nen With
k, if n=Fk?

Ly = ) n €N
0, if n ¢ {k*: k € N}

then x = (1,0,0,2,0,0,0,0,3,0,0,...) ¢ {.,
but Cx = 1,%,%,%,%, ,%,g,%,...),i.e. Cx € b,

and so r € ces..
e not an AM-space, and the norm is not o-order continuous

e vector lattice without an order unit, see also Corollary 1 below.

11
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7. Self-majorizing and Finite Elements in ces.

For z € R define its support by supp(z) = {n € N: x,, # 0}.

Theorem 3.

Let ¢ be an element of cess. Then ¢ € P3(cess) if and only if

Ty = inf {M: n € SUPP(SO)} >0
mn

Example: Existence of elements in ®P3(cess) \ Loo. Consider
x = (Tn)nen with
if n=2"
e, =4 00" . ke {0}UN.

0, otherwise

Then = ¢ £ (all the more = ¢ Coo) Let be y = C'z. Then

k
2" Z 2 ok+l _ 1 1

e = (O = g5 S = = Sy =2 <2

while, for the subscript N satisfying 2¥ < N < 2*%! one has

N ok
O<yN:%Z _len§2kzxn—y2k<2

It is clear that y = Cx € £, i.e. * € ceSso.

12
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Moreover, since inf {'i—”' n € supp(a:)} = 1, Theorem 3 —
x € P3(cess).

The Dedekind completeness of cess implies that ceso, has (ppp).
Hence ®1(cess) = Pa(cess).

Theorem 4.

Let @ be an element of cess,. The following statements are equiva-
lent:

(1) @ is a finite element of cesSso.
(2) {3} has an order unit x with inf{2: n € supp(z)} > 0

(3) The sequence z = (zn)nen, where

n, if n € supp(yp)

0, otherwise

Zn = n € N.

belongs to cesqo.

Theorem 5.

Let @ be an element of cess,. Let supp(@) be an infinite set written
as an increasing sequence (kn)nen.

(1) If lim sup fntl 1, then ¢ is not a finite element of cesxo.

kn
(2) If lim inf

ki1 . .
> L then @ 1s a finite element of ceSxo.

13
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Corollary 1.

(i) cesoo has no order unit.

(it) Not every element of Lo is a finite element of ces, and there-
fore, Lo 1s neither a norm-closed ideal nor a band in cesso.

The next characterization of finite elements uses the distribution
of their supports within the intervals [2™, 2""1) along the positive
real numbers.

Theorem 6.

The element @ of cesso 15 finite if and only if

B = sup{ﬁn: n € {O}UN} < o0,

where By, denotes the cardinality of the set [2™, 2" )N supp(¢p)
for each n € {0} UN.,

Idea of the proof: For the finite element ¢ define the sequence z by
zn, = nif n € supp(p) and z, = 0 otherwise. Then Theorem

n
4(3) implies 2 € cesco, i€, ||2]] 0, = sup (% kz zk> < 0.
n =1
By using the so-called blocking technique this "series form" of the

norm is transformed into its "block form".

14
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With the parameter p = 1, the blocks
{neN:2"<Ek< 2”“}

and the sequence a = (£)nen from some Theorem (see Grosse-

Erdmann, 1998), we obtain the equivalence
ontl_y

1 — 1
sup (— g zk> < o0 <(:)> 0, :— Sup (2 g zk) < Q.
n n n
k=1 k=2m

By taking into consideration that zp = k > 2" and so, 2z # 0
only for k € supp(y) one has

2n+1_1 2n+1 1

1 1
> — 2 = — k> —2"3, = B,
02z X me=g Y k2B
k=2m k=2
kesupp(») kesupp(»)

what implies 8 < oo.
Conversely, if 8 < oo then, due to k < 2", one has

2n+1_1 2n—l—l_l

1 1 1 .y
— 2 = — k <:__2n+ n — 2 n‘< 2 )
n EE: k n EE: 2n B 5 I ﬁ
k=2 k=2m
kesupp(yp)

such that o, < oco. From (=) we get z € cess and, Theorem
4(3) implies then that ¢ is finite.

15
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8. The Cesaro space cesy and its finite elements

cesy := sol(C '(co)) = {= € R": C|z| € co}

mn
with the norm ||, = [|C |2[[|. = sup (£ 3 || ).
k=1

n

Properties of (ceso, ||- HCGSO ):

e it is an atomic Dedekind complete Banach lattice,

® Cgis a proper solid subspace of cesg, e.g. the sequence (zy,), where
Tn = lifn = k2 and xn = 0 otherwise, belongs to cesq but not to ¢,

o /., Z cesq, what is easily seen from 1 € £oo, but C1 & ¢,

® cesy ¢ £, since y belongs to cesq \ £oo, where yp, = k, if n = k3
and yn = 0 otherwise,

e not an AM-space, although cq is an A M-space with order continuous
norm,

e the norm is order continuous.

The finite elements in cesg are characterized next (the same as for
cesp).
Theorem 7.

(1) ®3(cesy) = Pa(cesy) = P1(cesy) = coo,

(2)  the space cesy has no order unit.

16
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9. The Cesaro sums and their duals

Let X be a sequence (X, ||-]|,,)nen of Banach spaces and p &€
{0} U [1, co]. Define the p-Cesaro sums and d,,-sums of X =
(X1 )nen as follows

cesp(X) 1= {x = (Tn)nen: Tn € Xy, ([[@nl],)nen € cesp}
dp(%) = {x = (Tn)nen: Tn € Xy, (Hman)nEN € dp}-

Further on we simply write ||-|| instead of ||-||,, and O for the zero
vector in X, for each n € N. Under the coordinatewise algebraic
operations and the norms

M2 lespzy = [l nenll e, » Mullayy = [HualDnenlly,

the spaces ces,(X) and d,(X) are Banach spaces.

Let now all X,, be Banach lattices. Then with coordinatewise
order the spaces ces,(X) and d,(X) are also Banach lattices.
Since ces; = {0 } also cesy(X) is trivial.

For p € {0} U (1, oo] define the map J; : X; — ces,(X) by

0,n#j
ijz(xn)neN:(Oa--wO? \\a://,O,...): :
jthterm L, =17

forx € X, and 5 € N.

17
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Properties of the map Jj:

e a lattice isomorphism from X to ces,(X),

e J, X, is a projection band in ces,(X) such that

o &,(J;X;) = J;P1(X;),

e for the band projection P;: ces,(X) — J; X, one has
Pj(®1(cesp(X))) = 1(J;X;) = J;P1(X;).

Theorem 8.

Let X = (Xp)nen be a sequence of Banach lattices, X' =
(X! Ynen the sequence of their dual spaces and 1 < p,q < 0o
with > + 2= = 1.

Then the mapping y' = (Y. )nen fy from d,(X") to
ces (X), defined by

fy/(w) P Z(y;u Tn)y T = (Tn)nen € cesp(X)

is a vector lattice isomorphism from dg(X") onto ces, (X) and
satisfies for all y' € dy(X") the relations

1
Mgy < 1l < @ = DY 191y

Similarly, we have cesy(X) = di(X") with equality of the
norms, i.c. || fy || = {[[9/[l]4, 2oy

18
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10. Finite elements in Cesaro sums

As the characterization of the finite elements in the Banach lattices
cesp(X) for p € {0} U (1, oo], we get a quite direct generaliza-
tion of the results for the classical cases X, = co, £, and .

Theorem 9.

The following statements hold:

(1) Forp = 0 and 1 < p < oo the element o—(Yn)nen S
finite in cesy(X) if and only if o, € ®1(X,,) foralln € N
and @, = 0 for all but finite many n € N.

(2) The element o = (@n)neN is finite in cesSoo(X) if and only
if there exist wy, € X7 such that (n ||wnl]),cny € C€Soo
and

B{@n}dd C [—wn, wn] .
In particular, @, € ®1(Xy,) for alln € N,

19
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