Algebraic structures in pre-Riesz spaces

Janko Stennder

Institut für Analysis Fakultät Mathematik TU Dresden

WOVSPO 2023 31.03.2023

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

Janko Stennder

Motivation (Lattice ordered algebras)

Let A be an *I*-algebra, i.e., a vector lattice with associative multiplication \cdot such that, for all $a, b \in A_+$, we have $a \cdot b \in A_+$.

Motivation (Lattice ordered algebras)

Let A be an *I*-algebra, i.e., a vector lattice with associative multiplication \cdot such that, for all $a, b \in A_+$, we have $a \cdot b \in A_+$.

 $f\text{-algebra} \\ \forall a, b, c \in A_+ \colon a \perp b \Rightarrow a \cdot c \perp b \text{ and } c \cdot a \perp b$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Janko Stennder

Motivation (Lattice ordered algebras)

Let A be an *I*-algebra, i.e., a vector lattice with associative multiplication \cdot such that, for all $a, b \in A_+$, we have $a \cdot b \in A_+$.

$$\begin{array}{c} f\text{-algebra} \\ \forall a, b, c \in A_+ \colon a \perp b \Rightarrow a \cdot c \perp b \text{ and } c \cdot a \perp b \\ \swarrow \\ d\text{-algebra} \\ \forall a, b, c \in A_+ \colon \\ c \cdot (a \lor b) = c \cdot a \lor c \cdot b, \\ (a \lor b) \cdot c = a \cdot c \lor b \cdot c \end{array} \quad \begin{array}{c} a\text{Imost } f\text{-algebra} \\ \forall a, b \in A_+ \colon \\ a \perp b \Rightarrow a \cdot b = 0 \\ a \perp b \Rightarrow a \cdot b = 0 \end{array}$$

Janko Stennder

Algebraic structures in pre-Riesz spaces

э

Motivation Preliminaries

00

Motivation (Lattice ordered algebras)

Let K be a non-empty compact Hausdorff space and A = C(K).

$$f\text{-algebra}^{1}$$

$$\Leftrightarrow (f \cdot g)(t) = w(t)f(t)g(t)$$

$$(w \in C(K)_{+})$$

$$d\text{-algebra}^{2} \qquad \text{almost } f\text{-algebra}^{3}$$

$$\Leftrightarrow (f \cdot g)(t) = w(t)f(\alpha_{1}(t))g(\alpha_{2}(t)) \qquad \Leftrightarrow (f \cdot g)(t) = \int_{K} fg \ d\mu_{t}$$

$$(w \in C(K)_{+}, \alpha_{i} \colon K \to K) \qquad ((\mu_{t})_{t \in K} \text{ positive measures})$$

¹(Conrad, 1974) ²(Boulabiar, 2004) ³(Scheffold, 1981)

Janko Stennder

Generalizations of Riesz homomorphisms

Definition.

Let X, Y be directed povs. A linear map $T: X \to Y$ is called

(a) (van Haandel, 1993) a *Riesz* homomorphism* if, for every nonempty finite subset *F* of *X*, one has

$$T[F^{\mathrm{ul}}] \subseteq T[F]^{\mathrm{ul}},$$

Janko Stennder

э

Generalizations of Riesz homomorphisms

Definition.

Let X, Y be directed povs. A linear map $T: X \to Y$ is called

(a) (van Haandel, 1993) a *Riesz* homomorphism* if, for every nonempty finite subset *F* of *X*, one has

$$T[F^{\mathrm{ul}}]\subseteq T[F]^{\mathrm{ul}},$$

(b) (Buskes-van Rooij, 1993) a Riesz homomorphism if, for every $x,y \in X$, one has

$$T[{x, y}^{\mathrm{u}}]^{\mathrm{l}} = T[{x, y}]^{\mathrm{ul}}.$$

Pre-Riesz spaces

Definition/Theorem (van Haandel, 1993).

Let X be a povs. The following statements are equivalent:

- (i) X is a pre-Riesz space.
- (ii) There exist a Riesz space Y and a bipositive linear map $i: X \rightarrow Y$ such that i[X] is order dense in Y.

Pre-Riesz spaces

Definition/Theorem (van Haandel, 1993).

Let X be a povs. The following statements are equivalent:

- (i) X is a pre-Riesz space.
- (ii) There exist a Riesz space Y and a bipositive linear map $i: X \rightarrow Y$ such that i[X] is order dense in Y.
- (iii) There exist a Riesz space Y and a bipositive linear map $i: X \rightarrow Y$ such that i[X] is order dense in Y and generates Y as a Riesz space.

(日) (同) (日) (日)

Pre-Riesz spaces

Definition/Theorem (van Haandel, 1993).

Let X be a povs. The following statements are equivalent:

- (i) X is a pre-Riesz space.
- (ii) There exist a Riesz space Y and a bipositive linear map $i: X \rightarrow Y$ such that i[X] is order dense in Y.
- (iii) There exist a Riesz space Y and a bipositive linear map $i: X \rightarrow Y$ such that i[X] is order dense in Y and generates Y as a Riesz space.

Moreover, all Riesz spaces Y as in (iii) are isomorphic as Riesz spaces.

We call a pair (Y, i) as in (ii) a vector lattice cover of X and as in (iii) the Riesz completion of X and denote it by (X^{ρ}, i) .

Extension of Riesz* homomorphisms

Theorem (van Haandel, 1993).

Let X_1 and X_2 be pre-Riesz spaces with Riesz completions (X_1^{ρ}, i_1) and (X_2^{ρ}, i_2) , respectively. Let $T: X_1 \to X_2$ be a linear map. The following statements are equivalent:

(i) T is a Riesz* homomorphism.

イロト イヨト イヨト

Extension of Riesz* homomorphisms

Theorem (van Haandel, 1993).

Let X_1 and X_2 be pre-Riesz spaces with Riesz completions (X_1^{ρ}, i_1) and (X_2^{ρ}, i_2) , respectively. Let $T: X_1 \to X_2$ be a linear map. The following statements are equivalent:

- (i) T is a Riesz* homomorphism.
- (ii) There exists a Riesz homomorphism $S: X_1^{\rho} \to X_2^{\rho}$ satisfying $S \circ i_1 = i_2 \circ T$.

Moreover, if (i) is satisfied, then the Riesz homomorphism S in (ii) is unique.

э

Riesz* homomorphisms on spaces of continuous functions

Theorem (van Imhoff, 2018).

Let P and Q be nonempty compact Hausdorff spaces and let Xand Y be order dense subspaces of C(P) and C(Q), respectively. Let $T: X \to Y$ be linear. Then, under some mild conditions on X, the following statements are equivalent:

- (i) T is a Riesz* homomorphism
- (ii) There exist $w \in C(Q)$, $w \ge 0$, and $\alpha \colon Q \to P$ continuous on $\{q \in Q; w(q) > 0\}$ such that

$$T(x)(q) = w(q)x(\alpha(q)) \quad (x \in X).$$

Order unit spaces

Definition.

Let X be a povs.

- (a) An element $u \in X$ is called *order unit* if, for every $x \in X$, there is $\lambda \in (0, \infty)$ such that $\pm x \leq \lambda u$.
- (b) If X is, in addition, Archimedean, then we can define a norm $||x||_u := \inf\{\lambda \in (0,\infty); -\lambda u \le x \le \lambda u\} \ (x \in X) \text{ on } X.$
- (c) If X is an Archimedean povs with order unit, then we call X an order unit space.

Note: Every order unit space is pre-Riesz.

э

Functional representation

We outline the construction of (Kadison, 1951). Let X be an order unit space with order unit u. Define the weakly-* compact convex set

$$\Sigma\coloneqq \{arphi\in X';arphi$$
 positive $,arphi(u)=1\}$

and define Λ as the set of extreme points of Σ . The weak-* closure $\overline{\Lambda}$ of Λ is a compact Hausdorff space (with the weak-* topology) and the map

$$\Phi \colon X \to \mathrm{C}(\overline{\Lambda}), \quad x \mapsto (\varphi \mapsto \varphi(x)),$$

is linear and bipositive.

(ロ) (日) (日) (日) (日)

Functional representation

Theorem (Kalauch, Lemmens, van Gaans, 2014). Let X be an order unit space. Then $(C(\overline{\Lambda}), \Phi)$ is a vector lattice cover of X.

Functional representation

Theorem (Kalauch, Lemmens, van Gaans, 2014).

Let X be an order unit space. Then $(C(\overline{\Lambda}), \Phi)$ is a vector lattice cover of X.

Proposition.

Let X be an order unit space and let $\varphi \in \Sigma = \{\varphi \in X'; \varphi \text{ positive }, \varphi(u) = 1\}.$

(a) (Hayes, 1966) $\varphi \in \Lambda$ if and only if φ is Riesz homomorphism.

(b) (van Haandel, 1993) $\varphi \in \overline{\Lambda}$ if and only if φ is Riesz* homomorphism.

Motivation

Riesz* bi-morphisms

Recall: An *I*-algebra *A* is a *d*-algebra if, for all $a, b, c \in A_+$, we have $c \cdot (a \lor b) = c \cdot a \lor c \cdot b$ and $(a \lor b) \cdot c = a \cdot c \lor b \cdot c$. In other words, for each $c \in A_+$, the maps $x \mapsto c \cdot x$ and $x \mapsto x \cdot c$ are Riesz homomorphisms.

Janko Stennder Algebraic structures in pre-Riesz spaces

Riesz* bi-morphisms

Motivation

Recall: An *I*-algebra *A* is a *d*-algebra if, for all $a, b, c \in A_+$, we have $c \cdot (a \lor b) = c \cdot a \lor c \cdot b$ and $(a \lor b) \cdot c = a \cdot c \lor b \cdot c$. In other words, for each $c \in A_+$, the maps $x \mapsto c \cdot x$ and $x \mapsto x \cdot c$ are Riesz homomorphisms.

Definition.

Let X_1, X_2, Y be povs and $T: X_1 \times X_2 \to Y$ be bilinear. Then T is called a Riesz* bi-morphism (resp. Riesz bi-morphism) if, for all positive $x_1 \in X_1, x_2 \in X_2$, the linear operators $T(\cdot, x_2)$ and $T(x_1, \cdot)$ are Riesz* homomorphisms (resp. Riesz homomorphisms).

Extension of Riesz bi-morphisms

Recall: Riesz* homomorphisms between pre-Riesz spaces are exactly the operators that can be extended to a Riesz homomorphism between the Riesz completions.

Extension of Riesz bi-morphisms

Recall: Riesz* homomorphisms between pre-Riesz spaces are exactly the operators that can be extended to a Riesz homomorphism between the Riesz completions.

Question.

Do we have a similar extension result for Riesz* bi-morphisms on pre-Riesz spaces?

イロン イボン イヨン イヨン

Extension of Riesz bi-morphisms

Recall: Riesz* homomorphisms between pre-Riesz spaces are exactly the operators that can be extended to a Riesz homomorphism between the Riesz completions.

Question.

Do we have a similar extension result for Riesz* bi-morphisms on pre-Riesz spaces?

Theorem (Kalauch-Kusraeva, 2022).

Let X_1, X_2, Y be Archimedean pre-Riesz spaces with Riesz completions $X_1^{\rho}, X_2^{\rho}, Y^{\rho}$, resp., and $T: X_1 \times X_2 \to Y$ a Riesz bi-morphism. Then T has a Riesz bi-morphism extension $T^{\rho}: X_1^{\rho} \times X_2^{\rho} \to Y^{\rho}$.

Localizing on principal ideals

Let X be a povs. For $x \in X$, x > 0, we denote by I_x the principal ideal generated by x, i.e.,

$$J_x := \{y \in X; \ \exists \lambda \in \mathbb{R} \colon \pm y \le \lambda x\}$$

and let $j_x \colon I_x \to X$, $j_x = \operatorname{id}|_{I_x}$. Note that x is an order unit in I_x .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Janko Stennder Algebraic structures in pre-Riesz spaces

イロン イボン イヨン イヨン

Localizing on principal ideals

Let X be a povs. For $x \in X$, x > 0, we denote by I_x the principal ideal generated by x, i.e.,

$$J_x := \{y \in X; \ \exists \lambda \in \mathbb{R} \colon \pm y \leq \lambda x \}$$

and let $j_x \colon I_x \to X$, $j_x = \operatorname{id}|_{I_x}$. Note that x is an order unit in I_x . We say that X has property (P) if the set

 $P_X := \{x \in X; x > 0, j_x \text{ is a Riesz* homomorphism}\}$

is majorizing in X.

Algebraic structures in pre-Riesz spaces

э

Localizing on principal ideals

Observation.

Let X, Y be pre-Riesz spaces and let $T: X \to Y$ be a Riesz* homomorphism. Note that, for all $x \in P_X, y \ge T(x)$, the restriction $T|_{I_x}: I_x \to I_y$ is a Riesz* homomorphism $(T|_{I_x} = T \circ j_x)$. This is, in general, not true for restrictions to any kind of subspace!

Janko Stennder Algebraic structures in pre-Riesz spaces

Localizing on principal ideals

Observation.

Let X, Y be pre-Riesz spaces and let $T: X \to Y$ be a Riesz* homomorphism. Note that, for all $x \in P_X, y \ge T(x)$, the restriction $T|_{I_x}: I_x \to I_y$ is a Riesz* homomorphism $(T|_{I_x} = T \circ j_x)$. This is, in general, not true for restrictions to any kind of subspace!

Theorem (S., 2022).

If X has (P) and for all $x \in P_X$, $y \ge T(x)$, the restriction $T|_{I_x} \colon I_x \to I_y$ is a Riesz* homomorphism, then T is a Riesz* homomorphism.

Localizing on principal ideals

Definition.

A pre-Riesz space X with Riesz completion (X^{ρ}, i) is called *pervasive* if, for every $y \in X^{\rho}$, y > 0, there exists $x \in X$ such that $0 < i(x) \le y$.

э

Localizing on principal ideals

Definition.

A pre-Riesz space X with Riesz completion (X^{ρ}, i) is called *pervasive* if, for every $y \in X^{\rho}$, y > 0, there exists $x \in X$ such that $0 < i(x) \le y$.

Examples.

- Every order unit space with o.u. u satisfies (P) as $u \in P_X$.
- Every Archimedean pervasive pre-Riesz space satisfies (P) $(P_X = X_+ \setminus \{0\}).$
- Every pre-Riesz space with RDP satisfies (P) ($P_X = X_+ \setminus \{0\}$).

э

Localizing on principal ideals

Definition.

A pre-Riesz space X with Riesz completion (X^{ρ}, i) is called *pervasive* if, for every $y \in X^{\rho}$, y > 0, there exists $x \in X$ such that $0 < i(x) \le y$.

Examples.

- Every order unit space with o.u. u satisfies (P) as $u \in P_X$.
- Every Archimedean pervasive pre-Riesz space satisfies (P) $(P_X = X_+ \setminus \{0\}).$
- Every pre-Riesz space with RDP satisfies (P) ($P_X = X_+ \setminus \{0\}$).

There is no known example of a pre-Riesz space which does not satisfy property (P) yet!

・ロト ・同ト ・ヨト ・ヨト

Extension of Riesz* bi-morphisms

Theorem (S. 2022).

Let X_1, X_2, Y be Archimedean pre-Riesz spaces with Riesz completions $X_1^{\rho}, X_2^{\rho}, Y^{\rho}$, resp., and $T: X_1 \times X_2 \to Y$ a Riesz* bi-morphism.

(1) If $Y = \mathbb{R}$, then T has a Riesz bi-morphism extension $T^{\rho} \colon X_1^{\rho} \times X_2^{\rho} \to \mathbb{R}$.

Janko Stennder

э

Extension of Riesz* bi-morphisms

Theorem (S. 2022).

Let X_1, X_2, Y be Archimedean pre-Riesz spaces with Riesz completions $X_1^{\rho}, X_2^{\rho}, Y^{\rho}$, resp., and $T: X_1 \times X_2 \to Y$ a Riesz* bi-morphism.

(1) If $Y = \mathbb{R}$, then T has a Riesz bi-morphism extension $T^{\rho} \colon X_1^{\rho} \times X_2^{\rho} \to \mathbb{R}$.

 \Downarrow (Functional representation)

(2) If X_1, X_2, Y are order unit spaces, then T has a Riesz bi-morphism extension $T^{\rho} \colon X_1^{\rho} \times X_2^{\rho} \to Y^{\rho}$.

イロト イヨト イヨト

Extension of Riesz* bi-morphisms

Theorem (S. 2022).

Let X_1, X_2, Y be Archimedean pre-Riesz spaces with Riesz completions $X_1^{\rho}, X_2^{\rho}, Y^{\rho}$, resp., and $T: X_1 \times X_2 \to Y$ a Riesz* bi-morphism.

(1) If $Y = \mathbb{R}$, then T has a Riesz bi-morphism extension $T^{\rho}: X_{1}^{\rho} \times X_{2}^{\rho} \to \mathbb{R}.$ \downarrow (Functional representation) (2) If X_{1}, X_{2}, Y are order unit spaces, then T has a Riesz bi-morphism extension $T^{\rho}: X_{1}^{\rho} \times X_{2}^{\rho} \to Y^{\rho}.$ \downarrow (Localizing on principal ideals) (3) If X_{1}, X_{2} satisfy (P), then T has a Riesz bi-morphism extension $T^{\rho}: X_{1}^{\rho} \times X_{2}^{\rho} \to Y^{\rho}.$

3

・ロト ・同ト ・ヨト ・ヨト

Lattice ordered algebras

Let A be an *I*-algebra, i.e., a vector lattice with associative multiplication \cdot such that, for all $a, b \in A_+$, we have $a \cdot b \in A_+$.

$$\begin{array}{c} f\text{-algebra} \\ \forall a, b, c \in A_+ \colon a \perp b \Rightarrow a \cdot c \perp b \text{ and } c \cdot a \perp b \\ \swarrow \\ d\text{-algebra} \\ \forall a, b, c \in A_+ \colon \\ c \cdot (a \lor b) = c \cdot a \lor c \cdot b, \\ (a \lor b) \cdot c = a \cdot c \lor b \cdot c \end{array} \quad \begin{array}{c} almost \ f\text{-algebra} \\ \forall a, b \in A_+ \colon \\ a \perp b \Rightarrow a \cdot b = 0 \\ a \perp b \Rightarrow a \cdot b = 0 \end{array}$$

Janko Stennder

Algebraic structures in pre-Riesz spaces

э

Lattice ordered algebras

Let A be an *I*-algebra, i.e., a vector lattice with associative multiplication \cdot such that, for all $a, b \in A_+$, we have $a \cdot b \in A_+$.

$$\begin{array}{c} f\text{-algebra} \\ \forall a, b, c \in A_+ \colon a \perp b \Rightarrow a \cdot c \perp b \text{ and } c \cdot a \perp b \\ \swarrow \\ d\text{-algebra} \\ \cdot \text{ is a} \\ \\ \text{Riesz bi-morphism} \\ \end{array} \begin{array}{c} a \perp b \Rightarrow a \cdot b = 0 \end{array}$$

- * ロ * * @ * * 注 * * 注 * のへで

Janko Stennder

Disjointness in povs

Let X be a vector lattice. Two elements $x_1, x_2 \in X$ are called *disjoint*, denoted by $x_1 \perp x_2$, if $|x_1| \wedge |x_2| = 0$. Moreover,

$$x_1\perp x_2 \Leftrightarrow |x_1+x_2|=|x_1-x_2| \quad (x_1,x_2\in X).$$

Janko Stennder Algebraic structures in pre-Riesz spaces

Disjointness in povs

Let X be a vector lattice. Two elements $x_1, x_2 \in X$ are called *disjoint*, denoted by $x_1 \perp x_2$, if $|x_1| \wedge |x_2| = 0$. Moreover,

$$x_1\perp x_2 \Leftrightarrow |x_1+x_2|=|x_1-x_2| \quad (x_1,x_2\in X).$$

Definition (Kalauch, van Gaans, 2006).

Let X be a povs. Two elements $x_1, x_2 \in X$ are called *disjoint*, denoted by $x_1 \perp x_2$, if

$${x_1 + x_2, -x_1 - x_2}^u = {x_1 - x_2, -x_1 + x_2}^u.$$

Disjointness in povs

Proposition (Kalauch, van Gaans, 2006).

Let X be a pre-Riesz space with Riesz completion (X^{ρ}, i) . For all $x_1, x_2 \in X$, we have

$$x_1 \perp x_2$$
 in $X \Leftrightarrow i(x_1) \perp i(x_2)$ in X^{ρ} .

Example

The proposition allows us easily characterize disjointness in an order dense subspace X of C(K). For all $x_1, x_2 \in X$, we have

$$x_1 \perp x_2$$
 in $X \Leftrightarrow x_1(t)x_2(t) = 0 \quad \forall t \in K.$

Motivation 00	Preliminaries	Riesz* bi-morphisms 000000	Ordered algebras	References 0

o-algebras

Let X be an ordered algebra (o-algebra), i.e., a partially ordered vector space (povs) with associative multiplication \cdot such that, for all $a, b \in X_+$, we have $a \cdot b \in X_+$.

Janko Stennder

Janko Stennder

Note on disjointness

Being an o-*f*-algebra is a weaker condition in povs than in vector lattices as there might be very few or even no non-trivial pairs of positive disjoint elements.

Janko Stennder

Note on disjointness

Being an o-f-algebra is a weaker condition in povs than in vector lattices as there might be very few or even no non-trivial pairs of positive disjoint elements.

Example.

Let X = P([0,1]) be the space of all polynomials on [0,1]. Then there are no non-trivial disjoint pairs of elements. Hence, any o-algebra multiplication is already an o-*f*-algebra multiplication. E.g., consider the multiplication \odot on X given by

$$(p_1 \odot p_2)(t) = \int_0^t p_1(s)p_2(s)\mathrm{d}s$$

for $p_1, p_2 \in X$ and $t \in [0, 1]$. Then \odot is an o-*f*-algebra multiplication by the above, but not an o-*d*-algebra multiplication.

Janko Stennder

Definition.

Let K be a non-empty compact Hausdorff space and X a subspace of C(K). X has the property (SD) ('separation by disjoint elements') if, for every $t_1, t_2 \in K$, $t_1 \neq t_2$, there exist $x_1, x_2 \in X_+$, $x_1 \perp x_2$, such that $x_1(t_1) > 0$ and $x_2(t_2) > 0$.

(日) (同) (日) (日)

Definition.

Let K be a non-empty compact Hausdorff space and X a subspace of C(K). X has the property (SD) ('separation by disjoint elements') if, for every $t_1, t_2 \in K$, $t_1 \neq t_2$, there exist $x_1, x_2 \in X_+$, $x_1 \perp x_2$, such that $x_1(t_1) > 0$ and $x_2(t_2) > 0$.

Example.

- (a) $C^{k}([0,1])$ has (SD).
- (b) The Namioka space $N := \{x \in C([-1,1]); 2x(0) = x(-1) + x(1)\}$ does not have (SD).

э

・ロト ・同ト ・ヨト ・ヨト

・ロト ・同ト ・ヨト ・ヨト

Representations on subspaces of C(K)

Let K be a non-empty compact Hausdorff space and X an order dense subspace of C(K).

$$\begin{array}{c} f\text{-algebra} \\ \stackrel{(\mathrm{SD})}{\Leftrightarrow} (f \cdot g)(t) = w(t)f(t)g(t) \\ (w \in \mathrm{C}(K)_{+}) \\ \swarrow \\ d\text{-algebra} \\ \Leftrightarrow (f \cdot g)(t) = w(t)f(\alpha_{1}(t))g(\alpha_{2}(t)) \\ (w \in \mathrm{C}(K)_{+}, \alpha_{i} \colon K \to K) \\ ((\mu_{t})_{t \in K} \text{ positive measures}) \end{array}$$

Janko Stennder

Algebraic structures in pre-Riesz spaces

э

<ロ> <四> <四> <三</p>

Let X be an o-algebra with multiplication \cdot .

o-f-algebra

$$\forall a, b, c \in A_+: a \perp b \Rightarrow a \cdot c \perp b \text{ and } c \cdot a \perp b$$

 \checkmark (SD)
o-d-algebra
 $\cdot \text{ is a Riesz}$
bi-morphism
 \downarrow
o-d*-algebra
 \downarrow
is a Riesz*

Janko Stennder

.

Algebraic structures in pre-Riesz spaces

bi-morphism

æ

Markov operators

Let X, Y be o-algebras with units e_X, e_Y , resp. Define

 $\mathcal{M}(X,Y):=\{T\colon X\to Y;\ T\geq 0,\ T(e_X)=e_Y\}.$

э

<ロ> (日) (日) (日) (日) (日)

Markov operators

Let X, Y be o-algebras with units e_X, e_Y , resp. Define

$$\mathcal{M}(X,Y) := \{T \colon X \to Y; \ T \ge 0, \ T(e_X) = e_Y\}.$$

Theorem (van Putten, 1980).

Let A, B be Archimedean f-algebras with unit elements, and let $T \in \mathcal{M}(A, B)$. Then the following are equivalent:

- (i) T is an extreme point in $\mathcal{M}(A, B)$.
- (ii) T is an algebra homomorphism.
- (iii) T is a Riesz homomorphism.

э

・ロト ・同ト ・ヨト ・ヨト

Theorem (S., 2022).

Let X, Y be order dense subalgebras of $C(K_1)$ and $C(K_2)$ equipped with any *f*-algebra multiplication and units $e_1, e_2 > 0$, respectively, such that $e_1 \in X$ and $e_2 \in Y$ and X satisfies (SD).

Let $T \in \mathcal{M}(X, Y)$. Then the following are equivalent:

- (i) T is an extreme point of $\mathcal{M}(X, Y)$.
- (ii) T is an algebra homomorphism.
- (iii) T is a Riesz* homomorphism.
- (iv) T is a Riesz homomorphism.

э

・ロト ・同ト ・ヨト ・ヨト

o-d-algebras as order dense subalgebras of d-algebras

Theorem.

If X is

- (a) an Archimedean pre-Riesz o-d-algebra, or
- (b) an Archimedean pre-Riesz o- d^* -algebra with (P),

then the multiplication in X can be extended to a *d*-algebra multiplication in the Riesz completion X^{ρ} of X, i.e., X can be seen as an order dense subalgebra of X^{ρ} .

o-*d*-algebras as order dense subalgebras of *d*-algebras

Theorem.

If X is

- (a) an Archimedean pre-Riesz o-d-algebra, or
- (b) an Archimedean pre-Riesz o- d^* -algebra with (P),

then the multiplication in X can be extended to a *d*-algebra multiplication in the Riesz completion X^{ρ} of X, i.e., X can be seen as an order dense subalgebra of X^{ρ} .

Conversely, every order dense subalgebra of a d-algebra is a pre-Riesz o- d^* -algebra.

Basic results in *d*-algebras

Let A be an Archimedean d-algebra. Denote the set of nilpotent elements by $N_A := \{a \in A; \exists n \in \mathbb{N} : a^n = 0\}$. A is called semiprime if $N_A = \{0\}$.

Proposition (cf. Bernau-Huijsmans, 1990).

(a) The set of the nilpotent elements is given by $N_A = \{a \in A; a^3 = 0\}$. N_A is an order ideal and a ring ideal.

э

イロン イボン イヨン イヨン

References

イロン イ団 とくほと くほとう

Basic results in *d*-algebras

Let A be an Archimedean d-algebra. Denote the set of nilpotent elements by $N_A := \{a \in A; \exists n \in \mathbb{N} : a^n = 0\}$. A is called semiprime if $N_A = \{0\}$.

Proposition (cf. Bernau-Huijsmans, 1990).

- (a) The set of the nilpotent elements is given by $N_A = \{a \in A; a \in A\}$ $a^3 = 0$ }. N_A is an order ideal and a ring ideal.
- (b) If A has a unit e > 0, then e is a weak order unit in A. Moreover, in this case, A is already a semiprime f-algebra.

3

Basic results in *d*-algebras

Let A be an Archimedean d-algebra. Denote the set of nilpotent elements by $N_A := \{a \in A; \exists n \in \mathbb{N} : a^n = 0\}$. A is called semiprime if $N_A = \{0\}$.

Proposition (cf. Bernau-Huijsmans, 1990).

- (a) The set of the nilpotent elements is given by $N_A = \{a \in A; a^3 = 0\}$. N_A is an order ideal and a ring ideal.
- (b) If A has a unit e > 0, then e is a weak order unit in A. Moreover, in this case, A is already a semiprime f-algebra.
- (c) If A is semiprime, then A is an f-algebra.

3

・ロト ・同ト ・ヨト ・ヨト

Basic results in o-*d*-algebras

Let X be an Archimedean pre-Riesz o-d-algebra with Riesz completion (X^{ρ}, i) .

Proposition (S., 2022).

(a) The set of the nilpotent elements is given by $N_X = \{x \in X; x^3 = 0\}$. N_X is an order ideal and a ring ideal.

э

Basic results in o-*d*-algebras

Let X be an Archimedean pre-Riesz o-d-algebra with Riesz completion (X^{ρ}, i) .

Proposition (S., 2022).

- (a) The set of the nilpotent elements is given by $N_X = \{x \in X; x^3 = 0\}$. N_X is an order ideal and a ring ideal.
- (b) If X has a unit e > 0, then e is a weak order unit in X. Moreover, i(e) > 0 is a unit in X^ρ, hence X^ρ becomes a semiprime f-algebra with unit i(e) and, therefore, X is an o-f-algebra.

Basic results in o-*d*-algebras

Let X be an Archimedean pre-Riesz o-d-algebra with Riesz completion (X^{ρ}, i) .

Proposition (S., 2022).

- (a) The set of the nilpotent elements is given by $N_X = \{x \in X; x^3 = 0\}$. N_X is an order ideal and a ring ideal.
- (b) If X has a unit e > 0, then e is a weak order unit in X. Moreover, i(e) > 0 is a unit in X^ρ, hence X^ρ becomes a semiprime f-algebra with unit i(e) and, therefore, X is an o-f-algebra.
- (c) If X is, in addition, pervasive, then X is semiprime if and only if X^{ρ} is semiprime. Hence, in this case, X^{ρ} becomes a semiprime *f*-algebra and, therefore X is an o-*f*-algebra.

o-algebras

Let X be an o-algebra with multiplication \cdot .

```
o-f-algebra

\forall a, b, c \in A_+: a \perp b \Rightarrow a \cdot c \perp b \text{ and } c \cdot a \perp b

\checkmark (SD)

o-d-algebra

\cdot \text{ is a Riesz}

bi-morphism

\downarrow

o-d*-algebra

\cdot \text{ is a Riesz*}

bi-morphism
```

Image: Image:

References I

- S.J. Bernau and C.B. Huijsmans. Almost *f*-algebras and *d*-algebras. Math. Proc. Camb. Phil. Soc., **107**, 287-308 (1990).
- [2] K. Boulabiar. Representation theorems for *d*-multiplications on Archimedean unital *f*-rings. Comm. Algebra **32**(1) (2004).
- [3] G. Buskes and A.C.M. van Rooij. The vector lattice cover of certain partially ordered groups. J. Austral. Math. Soc. (Series A) 54, 352-367 (1993).
- [4] P. Conrad. The additive group of an *f*-ring. Canad. J. Math. 25,1157-1168 (1974).
- [5] A. Hayes. Indecomposable positive additive functionals. J. London Math. Soc. 41, 318-322 (1966).
- [6] A. Kalauch, B. Lemmens, and O. van Gaans. Riesz completions, functional representations, and anti-lattices. Positivity 18(1), 201-218 (2014).

э

・ロト ・同ト ・ヨト ・ヨト

References II

- [7] A. Kalauch and O. van Gaans. Disjointness in partially ordered vector spaces. Positivity 10(3), 573-589 (2006).
- [8] A. Kalauch and O. van Gaans. Pre-Riesz spaces. De Gruyter Expositions in Mathematics. De Gruyter, Berlin (2019).
- [9] E. Scheffold. FF-Banachverbandsalgebren. Math. Z. 177(2), 193-205 (1981).
- [10] J. Stennder. Extension and factorization of *n*-Riesz* homomorphisms. Preprint (2022).
- [11] J. Stennder. Pre-Riesz subspaces and principal ideals in pre-Riesz spaces. Preprint (2022).
- [12] M. van Haandel. Completions in Riesz Space Theory. PhD thesis, University of Nijmegen (1993).
- [13] H. van Imhoff. Riesz* homomorphisms on pre-Riesz spaces consisting of continuous functions. Positivity 22(2), 425-447 (2018).
- [14] B. van Putten. Disjunctive linear operators and partial multiplication in Riesz spaces. Thesis, Wageningen (1980).

Janko Stennder

Thank you a lot for your attention.

Janko Stennder Algebraic structures in pre-Riesz spaces