Embeddability of positive matrices

Agnes Radl

joint work with Tanja Eisner

Workshop on Ordered Vector Spaces and Positive Operators

Wuppertal, March 29 – April 01, 2023

Problem

X suitable Banach space, $T \in \mathcal{L}(X)$

Question

Is there a

$$\begin{array}{c} 1) & - \\ 2) & Markov \\ 3) & real \\ 4) & positive \end{array} \right\} C_0 \text{-semigroup } (T(t))_{t \ge 0} \text{ such that } T(1) = T? \end{array}$$

Recall

A C_0 -semigroup is a family of bounded linear operators $(T(t))_{t\geq 0}$ on X such that

•
$$T(0) = \operatorname{Id}, T(t+s) = T(t)T(s)$$
 for all $s, t \ge 0$,

▶
$$[0,\infty) \to X$$
, $t \mapsto T(t)x$ is continuous for all $x \in X$.

Problem

X suitable Banach space, $T \in \mathcal{L}(X)$

Question

Is there a

$$\begin{array}{ccc} 1) & - \\ 2) & Markov \\ 3) & real \\ 4) & positive \end{array} \right\} C_0 \text{-semigroup } (T(t))_{t \ge 0} \text{ such that } T(1) = T? \end{array}$$

T. Eisner (2009)
 G. Elfving (1937), M. Baake and J. Sumner (2020)

```
Now 3) and 4), where X \in \{\mathbb{C}^n; c_0; \ell^p, 1 \le p < \infty\}
```

Spectrum of real-embeddable operators

Proposition (Eisner 2009)

 $\mathcal{T} \in \mathcal{L}(X)$ embeddable \Rightarrow dim ker $\mathcal{T} = 0$ or dim ker $\mathcal{T} = \infty$

Remark

 $\dim X < \infty, \ T \text{ embeddable} \Rightarrow \ T \text{ invertible}$

Example

 $\mathcal{T}=0\in\mathcal{L}(L^2[0,1])$ is real-embeddable into nilpotent shift semigroup.

Since $L^2[0,1] \cong_{\mathsf{real}} \ell^2$, $0 \in \mathcal{L}(\ell^2)$ is real-embeddable.

Spectrum of real-embeddable operators

Remark

For each compact $\emptyset \neq K \subseteq \mathbb{C}$ with $K = \overline{K}$ there exists a real-embeddable operator $T_K \in \mathcal{L}(\ell^2)$ such that $\sigma(T_K) = K$.

Proposition (sufficient condition for real-embeddability) $T \in \mathcal{L}(X)$ real operator, $\sigma(T) \subseteq \mathbb{C} \setminus (-\infty, 0]$ \downarrow

T real-embeddable into norm continuous semigroup

Proof.

Goal: Find $A \in \mathcal{L}(X)$ real such that $e^A = T$. Idea: Take a suitable path γ (symmetric, not intersecting $(-\infty, 0]$) surrounding $\sigma(T)$. Define

$$A := \log(T) = rac{1}{2\pi\,\mathrm{i}}\int_{\gamma}R(\lambda,T)\log(\lambda)\mathrm{d}\lambda = \overline{A}$$

$$\Rightarrow A \in \mathcal{L}(X) \text{ real} \Rightarrow (e^{tA})_{t \ge 0} \text{ real.} \qquad \Box$$

Spectrum of real-embeddable operators

Proposition (Culver 1966)

Let $T \in \mathbb{R}^{d \times d}, 0 \notin \sigma(T)$. Equivalent are:

(i) T real-embeddable.

(ii) T has a real root (i. e. $\exists S \in \mathbb{R}^{d \times d}$ such that $S \cdot S = T$).

(iii) The number of Jordan blocks of the same dimension of a *negative eigenvalue* is even.

Consequence

 $\mathcal{T} \in \mathbb{R}^{d imes d}$ real-embeddable $\Rightarrow \det(\mathcal{T}) > 0$

Embeddability of positive operators into positive s.g.

Proposition (dim X = 2)

Let $0 \leq T \in \mathbb{R}^{2 \times 2}$. Equivalent are:

(i) T is embeddable into a positive semigroup.

(ii) T is invertible and there exists a positive root.

(iii)
$$\sigma(T) \subseteq (0,\infty)$$
.

(iv) det(T) > 0.

(v) T is real-embeddable.

Remark

$$T := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \ge 0 \text{ is}$$
positively embeddable only into $\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)_{t \ge 0}$.
real-embeddable also into $\left(\begin{pmatrix} \cos(2\pi t) & \sin(2\pi t) \\ -\sin(2\pi t) & \cos(2\pi t) \end{pmatrix} \right)_{t \ge 0}$.

Embeddability of positive operators into positive s.g.

Proposition (dim X = 2)

Let $0 \leq T \in \mathbb{R}^{2 \times 2}$. Equivalent are:

(i) T is embeddable into a positive semigroup.

(ii) T is invertible and there exists a positive root.

(iii)
$$\sigma(T) \subseteq (0,\infty)$$
.

(iv) det(T) > 0.

(v) T is real-embeddable.

Example

$$T := \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a, b, c \ge 0. \text{ Then}$$

$$\bullet \ c \ge \frac{ab}{2} \Leftrightarrow T \text{ positively embeddable.}$$

$$\bullet \ c \ge \frac{ab}{4} \Rightarrow T \text{ has a positive root.} \Rightarrow T \text{ is real-embeddable.}$$

Necessary condition for embeddability into positive s.g.

1. in \mathbb{C}^n : \blacktriangleright det(T) > 0 • $\sigma_{per}(T) := \sigma(T) \cap \{z \in \mathbb{C} : |z| = r(T)\} = \{r(T)\}$ 2. in \mathbb{C}^n , c_0 , ℓ^p , $1 \leq p < \infty$: diagonal entries of T positive (> 0) \blacktriangleright T embeddable into positive analytic semigroup \Rightarrow T either strictly positive (each entry > 0) or reducible Idea to show that diagonal entries are > 0Let $T(t) = (a_{ii}(t))$. If $a_{ii}(t) = 0$ for some t > 0, then $0 = a_{jj}(t) \stackrel{T(t)=T\left(\frac{t}{2}\right)T\left(\frac{t}{2}\right)}{=} \sum a_{jk}\left(\frac{t}{2}\right) a_{kj}\left(\frac{t}{2}\right) \ge a_{jj}\left(\frac{t}{2}\right) a_{jj}\left(\frac{t}{2}\right) \ge 0.$ $k \in \mathbb{N}$

By induction $a_{jj}\left(\frac{t}{2^n}\right) = 0$ for all $n \in \mathbb{N}$. We obtain the contradiction

$$0 = \lim_{n \to \infty} a_{jj} \left(\frac{t}{2^n} \right) = a_{jj}(0) = 1.$$

More questions

Sufficient condition for embeddability into positive semigroups?

Remark: T invertible + existence of positive *n*-th roots of all orders $n \in \mathbb{N}$ is not enough! (see example by Kingman below)

Example: Shift by 1 on $\ell^2(\mathbb{Q})$

is invertible,

is positive,

• has positive *n*-th roots (namely shift by 1/n).

However, the diagonal entries in its matrix representation on $\ell^2 \cong_{pos.} \ell^2(\mathbb{Q})$ are all 0.

Conditions for uniqueness of embedding?

References

- M. Baake, J. Sumner, Notes on Markov embedding, Linear Algebra Appl. 594 (2020), 262–299.
- W. J. Culver, On the existence and uniqueness of the real logarithm of a matrix, Proc. Amer. Math. Soc. 17 (1966), 1146–1151.
- T. Eisner, Embedding operators into strongly continuous semigroups, Arch. Math. (Basel) 92 (2009), 451–460.
- T. Eisner, A. Radl, Embeddability of real and positive operators, Linear and Multilinear Algebra (2020).
- G. Elfving, Zur Theorie der Markoffschen Ketten, Acta Soc. Sci. Fennicae, A2 (1937), 1–17.