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Relatively uniform convergence



Relatively uniform convergence

Let X be an Archemedean vector lattice.

Definition

A net (xα) converges relatively uniformly to x ∈ X ,

(xα)
ru−→x ,

if there exists u ∈ X such that for each ε > 0 there exists α0 such

that

|xα − x | ≤ ε · u holds for all α ≥ α0.

We call such u ∈ X a regulator of (xα)α.

3



Relatively uniform convergence

Examples

1. fα
ru−→ f on Lp(Y ) ⇐⇒ fα

o−→ f (order convergence)

2. fα
ru−→ f on Cc(Ω) ⇐⇒

(i) fα
‖·‖∞−−−→ f and

(ii) there exists a compact set K ⊂ Ω and α0 such that fα|K c = 0

for all α ≥ α0.
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Relatively uniform convergence

Definition

f : R+ → X is called ru-continuous if one can find u : R+ → X

such that for each ε > 0 there exists δ > 0 such that

|f (h + t)− f (t)| ≤ ε · u(t)

holds for all t ≥ 0 and h ∈ [−min{δ, t}, δ].

We write

f (h + t)
ru−→f (t) as h→ 0 or ru- lim

h→0
f (h + t) = f (t).

ru-derivative & ru-integral

can be defined analogously
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Relatively uniform spectrum and spectral radius

Let T : X → X be linear operator.

Relatively uniform resolvent set

ρru(T ) := {λ ∈ R : (λI − T )−1 = R(λ,T ) exists and is positive}

Relatively uniform spectrum

σru(T ) := C \ ρru(T )

Spectral radius

In a Banach space: r(T ) = lim
n→∞

n
√
‖T‖n
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Relatively uniform spectrum and spectral radius

Inspired by V. Troitsky1 we define the relatively uniform spectral

radius of a linear operator T on vector lattice X by

rru(T ) := inf

{
ν > 0 :

T nx

νn
ru−→ 0 ∀x ∈ X

}

Lemma

rru(T ) = inf

{
ν > 0 :

(
T nx

νn

)
is order bounded for every x ∈ X

}

1V. G. Troitsky. Spectral radii of bounded operators on topological vector

spaces. Panam. Math. J., 11(3):1-35, 2001.
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Relatively uniform spectrum and spectral radius

Theorem

Let X be a ru-complete Archimedean vector lattice, T : X → X a

linear operator and λ > rru(T ). Then the Neumann series

∞∑
n=0

T n

λn+1

converges pointwise relatively uniform to a linear operator R0
λ

satisfying R0
λ(λI − T ) = I .

Moreover, if T is positive, then R0
λ is positive, R0

λ = R(λ,T ), and

|σru(T )| ≤ rru(T ).
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Relatively uniformly continuous semigroups

Definition

A family (T (t))t≥0 of linear operators is called a relatively

uniformly continuous semigroup if

(i) for all t, s ∈ [0,∞):

T (t + s) = T (t)T (s) and T (0) = Id ,

(ii) for every x ∈ X the mapping t 7→ T (t)x ∈ X is

ru-continuous, i.e.,

T (h + t)x
ru−→ T (t)x as h ↓ 0.

A semigroup (T (t))t≥0 is positive if each T (t) is a positive

operator on X .
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Relatively uniformly continuous semigroups

Some properties

• If (T (t))t≥0 is a positive ru-continuous semigroup on a vector

lattice X then for each s ≥ 0 and x ∈ X the set

{|T (t)x | : 0 ≤ t ≤ s}

is order bounded in X .

• A positive semigroup (T (t))t≥0 is ru-continuous ⇐⇒
T (t)x

ru−→ x as t ↓ 0 for x ∈ X+.

• Every positive ru-continuous semigroup on a Banach lattice is

strongly continuous.
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Relatively uniformly continuous semigroups

Theorem

For a positive strongly continuous semigroup (T (t))t≥0 on a

Banach lattice X the following assertions are equivalent.

(i) (T (t))t≥0 is relatively uniformly continuous.

(ii) There exists s > 0 such that for each x ∈ X the set

{|T (t)x | : t ∈ [0, s]} is order bounded in X .

(iii) For each x ∈ X and t ≥ 0 we have

T (h + t)x
o−→ T (t)x as h→ 0.
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Relatively uniformly continuous semigroups

The left translation semigroup

(Tl(t)f )(x) := f (t + x), x ∈ R

is relatively uniformly continuous on Lip(R), UC(R), Cc(R), C(R),

W1,p(R) for 1 ≤ p <∞.

Ohrstein-Uhlenbeck semigroup

(TOU(t)f )(x) :=

∫
Rn

f
(
e−tx +

√
1− e−2ty

)
dγ(y)

is relatively uniformly continuous on Lp(γ).
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Relatively uniformly continuous semigroups

Definition

The generator A of a ru-continuous semigroup (T (t))t≥0 is defined

as

Ax := ru− lim
h↓0

1

h
(T (h)x − x)

D(A) :=

{
x ∈ X | ru− lim

h↓0

1

h
(T (h)x − x) exists in X

}

The left translation semigroup

The ru-generator of (Tl(t))t≥0 on Cc(R) is A :=
d

dx
with

D(A) = {f ∈ Cc(R) | f is continuously differentiable}.
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Relatively uniformly continuous semigroups

Definition

D ⊂ X is ru-dense if for each x ∈ X there exists a sequence

(xn)n∈N ⊂ D such that xn
ru−→ x as n→∞.

We call an operator B on X

• ru-densely defined if its domain D(B) is ru-dense in X ,

• ru-closed whenever xn
ru−→ x and Bxn

ru−→ y imply that

x ∈ D(B) and Bx = y .

Proposition

Every generator of a positive ru-continuous semigroup is ru-closed

and ru-densely defined.
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Relatively uniformly continuous semigroups

Definition

(T (t))t≥0 is called exponentially order bounded if for each x ∈ X

there exists u ∈ X such that for all t ≥ 0 we have

|T (t)x | ≤ eωtu.

Let ωru(T ) be the infimum of such ω’s.

The left translation semigroup

• is exponentially order bounded on Lip(R), UC(R), and

W1,p(R),

• is not exponentially order bounded on Cc(R) and C(R).
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Relatively uniformly continuous semigroups

Relatively uniform spectral bound

sru(A) := sup{Reλ : λ ∈ σru(A)}

Proposition

Let (T (t))t≥0 be an exponentially order bounded positive ru-

continuous semigroup and A its generator. Then for each

λ > ωru(T ) one has λ ∈ ρru(A) and

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt.

Moreover, sru(A) ≤ ωru(T ).
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Relatively uniformly continuous semigroups

A vector lattice X has property (D) if for each net of linear

operators (Tα)α on X the following two assertions imply Tαx
ru−→ 0

for each x ∈ X .

(a) There exists an ru-dense subset D ⊂ X such that Tαy
ru−→ 0

for each y ∈ D.

(b) For each sequence (xn)n∈N ⊂ X with xn
ru−→ 0 there exists

u ∈ X+ such that for each ε > 0 there exist Nε ∈ N and αε

such that

|Tαxn| ≤ ε · u

holds for all n ≥ Nε and α ≥ αε.

Examples

Lip(R), UC(R), Cc(R), C(R), Lp(R) for 0 < p <∞
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(b) For each sequence (xn)n∈N ⊂ X with xn
ru−→ 0 there exists

u ∈ X+ such that for each ε > 0 there exist Nε ∈ N and αε

such that

|Tαxn| ≤ ε · u

holds for all n ≥ Nε and α ≥ αε.

Examples

Lip(R), UC(R), Cc(R), C(R), Lp(R) for 0 < p <∞

17



Relatively uniformly continuous semigroups

A vector lattice X has property (D) if for each net of linear

operators (Tα)α on X the following two assertions imply Tαx
ru−→ 0

for each x ∈ X .

(a) There exists an ru-dense subset D ⊂ X such that Tαy
ru−→ 0

for each y ∈ D.

(b) For each sequence (xn)n∈N ⊂ X with xn
ru−→ 0 there exists

u ∈ X+ such that for each ε > 0 there exist Nε ∈ N and αε

such that

|Tαxn| ≤ ε · u

holds for all n ≥ Nε and α ≥ αε.

Examples

Lip(R), UC(R), Cc(R), C(R), Lp(R) for 0 < p <∞
17



Relatively uniformly continuous semigroups

Lemma

Let X have the property (D) and (T (t))t≥0 be an exponentially

order bounded positive semigroup on X . If there exists an ru-dense

set D ⊂ X such that T (h)y
ru−→ y as h ↓ 0 holds for each y ∈ D,

then (T (t))t≥0 is relatively uniformly continuous on X .

Proposition

Let X be an ru-complete vector lattice with property (D). Every

positive exponentially order bounded ru-continuous semigroup on

X is uniquely determined by its generator.
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Relatively uniformly continuous semigroups

Theorem

Let X be an ru-complete vector lattice with property (D). Then

the following assertions are equivalent.

(i) A generates an exponentially order bounded positive

ru-continuous semigroup.

(ii) A is ru-closed, ru-densely defined, for every λ > ωru(T ) =: ω

one has λ ∈ ρru(A) and for each x ∈ X there exists u ∈ X

such that

|R(λ,A)kx | ≤ (λ− ω)−k · u for all k ∈ N.
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Operator semigroups on vector lattices

What next?

• further development of the spectral theory

• approximation and perturbation theory

• interesting applications

• continuity with respect to different convergences

• . . .

Thank you!
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