Relatively uniform spectral theory for operators on vector lattices

Workshop on Ordered Vector Spaces and Positive Operators,

Wuppertal, March 29 - April 01, 2023

Marjeta Kramar Fijavž, University of Ljubljana, Slovenia

Institute of Mathematics, Physics and Mechanics

Mathematical models for interacting dynamics on networks

- - M. Kandić and M. Kaplin. *Relatively uniformly continuous semigroups on vector lattices*, J. Math. Anal. Appl. **489** (2020), 124139.

- M. Kandić and M. Kaplin. Relatively uniformly continuous semigroups on vector lattices, J. Math. Anal. Appl. 489 (2020), 124139.
- M. Kaplin and MKF, Generation of relatively uniformly continuous semigroups on vector lattices, Analysis Math. 46 (2020), 293–322.

- M. Kandić and M. Kaplin. Relatively uniformly continuous semigroups on vector lattices, J. Math. Anal. Appl. 489 (2020), 124139.
- M. Kaplin and MKF, Generation of relatively uniformly continuous semigroups on vector lattices, Analysis Math. 46 (2020), 293–322.
- J. Glück and M. Kaplin. Order boundedness and order continuity properties of positive operator semigroups, arxiv.org/abs/2212.00076, preprint 2022.

- M. Kandić and M. Kaplin. Relatively uniformly continuous semigroups on vector lattices, J. Math. Anal. Appl. 489 (2020), 124139.
- M. Kaplin and MKF, Generation of relatively uniformly continuous semigroups on vector lattices, Analysis Math. 46 (2020), 293–322.
- J. Glück and M. Kaplin. Order boundedness and order continuity properties of positive operator semigroups, arxiv.org/abs/2212.00076, preprint 2022.
- C. Budde, MKF, *Perturbations of relatively uniformly continuous semigroups*, work in progress.

Relatively uniform convergence

Let X be an Archemedean vector lattice.

Definition

A net (x_{α}) converges relatively uniformly to $x \in X$,

$$(x_{\alpha}) \xrightarrow{\mathsf{ru}} x,$$

if there exists $u \in X$ such that for each $\varepsilon > 0$ there exists α_0 such that

$$|x_{\alpha} - x| \leq \varepsilon \cdot u$$
 holds for all $\alpha \geq \alpha_0$.

We call such $u \in X$ a *regulator* of $(x_{\alpha})_{\alpha}$.

1.
$$f_{\alpha} \xrightarrow{\mathsf{ru}} f$$
 on $L^{p}(Y) \iff f_{\alpha} \xrightarrow{o} f$ (order convergence)

1.
$$f_{\alpha} \xrightarrow{\operatorname{ru}} f$$
 on $L^{p}(Y) \iff f_{\alpha} \xrightarrow{o} f$ (order convergence)
2. $f_{\alpha} \xrightarrow{\operatorname{ru}} f$ on $C_{c}(\Omega) \iff$

1.
$$f_{\alpha} \xrightarrow{\operatorname{ru}} f$$
 on $L^{p}(Y) \iff f_{\alpha} \xrightarrow{o} f$ (order convergence)
2. $f_{\alpha} \xrightarrow{\operatorname{ru}} f$ on $C_{c}(\Omega) \iff$
(i) $f_{\alpha} \xrightarrow{\|\cdot\|_{\infty}} f$ and

- 1. $f_{\alpha} \xrightarrow{\mathsf{ru}} f$ on $L^{p}(Y) \iff f_{\alpha} \xrightarrow{o} f$ (order convergence)
- 2. $f_{\alpha} \xrightarrow{\mathsf{ru}} f$ on $C_c(\Omega) \iff$
 - (i) $f_{\alpha} \xrightarrow{\|\cdot\|_{\infty}} f$ and
 - (ii) there exists a compact set $K \subset \Omega$ and α_0 such that $f_{\alpha}|_{K^c} = 0$ for all $\alpha \ge \alpha_0$.

Definition

 $f: \mathbb{R}_+ \to X$ is called ru-*continuous* if one can find $u: \mathbb{R}_+ \to X$ such that for each $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(h+t)-f(t)|\leq \varepsilon\cdot u(t)$$

holds for all $t \ge 0$ and $h \in [-\min\{\delta, t\}, \delta]$.

We write

 $f(h+t) \xrightarrow{\mathsf{ru}} f(t)$ as $h \to 0$ or $\operatorname{ru-} \lim_{h \to 0} f(h+t) = f(t)$.

Definition

 $f: \mathbb{R}_+ \to X$ is called ru-*continuous* if one can find $u: \mathbb{R}_+ \to X$ such that for each $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(h+t)-f(t)|\leq \varepsilon\cdot u(t)$$

holds for all $t \ge 0$ and $h \in [-\min\{\delta, t\}, \delta]$.

We write

$$f(h+t) \xrightarrow{\mathsf{ru}} f(t)$$
 as $h \to 0$ or $\operatorname{ru-} \lim_{h \to 0} f(h+t) = f(t)$.

ru-derivative & ru-integral

can be defined analogously

Relatively uniform spectrum and spectral radius

Let $T: X \to X$ be linear operator.

Relatively uniform resolvent set

 $\rho_{\mathsf{ru}}(T) := \{\lambda \in \mathbb{R} : (\lambda I - T)^{-1} = R(\lambda, T) \text{ exists and is positive}\}$

Let $T: X \to X$ be linear operator.

Relatively uniform resolvent set

$$\rho_{\mathsf{ru}}(\mathsf{T}) := \{\lambda \in \mathbb{R} : (\lambda I - \mathsf{T})^{-1} = \mathsf{R}(\lambda, \mathsf{T}) \text{ exists and is positive}\}$$

Relatively uniform spectrum

$$\sigma_{\mathsf{ru}}(\mathsf{T}) := \mathbb{C} \setminus \rho_{\mathsf{ru}}(\mathsf{T})$$

Let $T: X \to X$ be linear operator.

Relatively uniform resolvent set

$$\rho_{\mathsf{ru}}(\mathsf{T}) := \{\lambda \in \mathbb{R} : (\lambda I - \mathsf{T})^{-1} = \mathsf{R}(\lambda, \mathsf{T}) \text{ exists and is positive}\}$$

Relatively uniform spectrum

$$\sigma_{\mathsf{ru}}(\mathsf{T}) := \mathbb{C} \setminus \rho_{\mathsf{ru}}(\mathsf{T})$$

Spectral radius

In a Banach space:
$$\mathrm{r}(\,T) = \lim_{n o \infty} \sqrt[n]{\|\,T\|^n}$$

Inspired by V. Troitsky¹ we define the *relatively uniform spectral* radius of a linear operator T on vector lattice X by

$$\mathbf{r}_{\mathsf{ru}}(\mathcal{T}) := \inf \left\{ \nu > 0 : \ \frac{\mathcal{T}^n x}{\nu^n} \xrightarrow{\mathsf{ru}} 0 \ \forall x \in X \right\}$$

¹V. G. Troitsky. Spectral radii of bounded operators on topological vector spaces. Panam. Math. J., 11(3):1-35, 2001.

Inspired by V. Troitsky¹ we define the *relatively uniform spectral* radius of a linear operator T on vector lattice X by

$$\mathbf{r}_{\mathsf{ru}}(\mathcal{T}) := \inf \left\{ \nu > 0 : \frac{\mathcal{T}^n x}{\nu^n} \xrightarrow{\mathsf{ru}} 0 \ \forall x \in X \right\}$$

Lemma

$$r_{ru}(T) = \inf \left\{ \nu > 0 : \left(\frac{T^n x}{\nu^n} \right) \text{ is order bounded for every } x \in X \right\}$$

¹V. G. Troitsky. Spectral radii of bounded operators on topological vector spaces. Panam. Math. J., 11(3):1-35, 2001.

Let X be a ru-complete Archimedean vector lattice, $T: X \to X$ a linear operator and $\lambda > r_{ru}(T)$. Then the Neumann series

$$\sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$$

converges pointwise relatively uniform to a linear operator R_{λ}^{0} satisfying $R_{\lambda}^{0}(\lambda I - T) = I$.

Moreover, if T is positive, then R_{λ}^{0} is positive, $R_{\lambda}^{0} = R(\lambda, T)$, and $|\sigma_{ru}(T)| \leq r_{ru}(T)$.

Definition

A family $(T(t))_{t\geq 0}$ of linear operators is called a *relatively uniformly continuous semigroup* if

Definition

A family $(T(t))_{t\geq 0}$ of linear operators is called a *relatively uniformly continuous semigroup* if

(i) for all
$$t, s \in [0, \infty)$$
:
 $T(t+s) = T(t)T(s)$ and $T(0) = Id$,

Definition

A family $(T(t))_{t\geq 0}$ of linear operators is called a *relatively uniformly continuous semigroup* if

$$T(h+t)x \xrightarrow{\operatorname{ru}} T(t)x$$
 as $h \downarrow 0$.

Definition

A family $(T(t))_{t\geq 0}$ of linear operators is called a *relatively uniformly continuous semigroup* if

$$T(h+t) x \xrightarrow{\operatorname{ru}} T(t) x$$
 as $h \downarrow 0$.

A semigroup $(T(t))_{t\geq 0}$ is *positive* if each T(t) is a positive operator on X.

 If (T(t))_{t≥0} is a positive ru-continuous semigroup on a vector lattice X then for each s ≥ 0 and x ∈ X the set

 $\{|T(t)x| : 0 \le t \le s\}$

is order bounded in X.

 If (T(t))_{t≥0} is a positive ru-continuous semigroup on a vector lattice X then for each s ≥ 0 and x ∈ X the set

 $\{|T(t)x|: 0 \le t \le s\}$

is order bounded in X.

• A positive semigroup $(T(t))_{t\geq 0}$ is ru-continuous \iff $T(t)x \xrightarrow{\text{ru}} x$ as $t \downarrow 0$ for $x \in X_+$.

 If (T(t))_{t≥0} is a positive ru-continuous semigroup on a vector lattice X then for each s ≥ 0 and x ∈ X the set

 $\{|T(t)x|: 0 \le t \le s\}$

is order bounded in X.

- A positive semigroup $(T(t))_{t\geq 0}$ is ru-continuous \iff $T(t)x \xrightarrow{ru} x$ as $t \downarrow 0$ for $x \in X_+$.
- Every positive ru-continuous semigroup on a Banach lattice is strongly continuous.

For a positive strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach lattice X the following assertions are equivalent.

For a positive strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach lattice X the following assertions are equivalent.

(i) $(T(t))_{t\geq 0}$ is relatively uniformly continuous.

For a positive strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach lattice X the following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is relatively uniformly continuous.
- (ii) There exists s > 0 such that for each $x \in X$ the set $\{|T(t)x| : t \in [0, s]\}$ is order bounded in X.

For a positive strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach lattice X the following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is relatively uniformly continuous.
- (ii) There exists s > 0 such that for each $x \in X$ the set $\{|T(t)x| : t \in [0, s]\}$ is order bounded in X.
- (iii) For each $x \in X$ and $t \ge 0$ we have

$$T(h+t)x \stackrel{o}{\longrightarrow} T(t)x$$
 as $h \rightarrow 0$.

The left translation semigroup

$$(T_l(t)f)(x) := f(t+x), \quad x \in \mathbb{R}$$

is relatively uniformly continuous on Lip(\mathbb{R}), UC(\mathbb{R}), C_c(\mathbb{R}), C(\mathbb{R}), W^{1,p}(\mathbb{R}) for $1 \leq p < \infty$.

The left translation semigroup

$$(T_l(t)f)(x) := f(t+x), \quad x \in \mathbb{R}$$

is relatively uniformly continuous on Lip(\mathbb{R}), UC(\mathbb{R}), C_c(\mathbb{R}), C(\mathbb{R}), W^{1,p}(\mathbb{R}) for $1 \leq p < \infty$.

Ohrstein-Uhlenbeck semigroup

$$(T_{OU}(t)f)(x) := \int_{\mathbb{R}^n} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) d\gamma(y)$$

is relatively uniformly continuous on $L^{p}(\gamma)$.

Definition

The generator A of a ru-continuous semigroup $(T(t))_{t\geq 0}$ is defined as

$$Ax := \operatorname{ru} - \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x)$$
$$D(A) := \left\{ x \in X \mid \operatorname{ru} - \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x) \text{ exists in } X \right\}$$

Definition

The generator A of a ru-continuous semigroup $(T(t))_{t\geq 0}$ is defined as

$$Ax := \operatorname{ru} - \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x)$$
$$D(A) := \left\{ x \in X \mid \operatorname{ru} - \lim_{h \downarrow 0} \frac{1}{h} (T(h)x - x) \text{ exists in } X \right\}$$

The left translation semigroup

The ru-generator of $(T_l(t))_{t\geq 0}$ on $C_c(\mathbb{R})$ is $A:=rac{\mathsf{d}}{\mathsf{d}x}$ with

 $D(A) = \{ f \in C_c(\mathbb{R}) \mid f \text{ is continuously differentiable} \}.$

 $D \subset X$ is ru-dense if for each $x \in X$ there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset D$ such that $x_n \xrightarrow{\text{ru}} x$ as $n \to \infty$.

We call an operator B on X

 $D \subset X$ is ru-dense if for each $x \in X$ there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset D$ such that $x_n \xrightarrow{\text{ru}} x$ as $n \to \infty$.

We call an operator B on X

• ru-densely defined if its domain D(B) is ru-dense in X,

 $D \subset X$ is ru-dense if for each $x \in X$ there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset D$ such that $x_n \xrightarrow{\text{ru}} x$ as $n \to \infty$.

We call an operator B on X

- ru-densely defined if its domain D(B) is ru-dense in X,
- ru-closed whenever $x_n \xrightarrow{ru} x$ and $Bx_n \xrightarrow{ru} y$ imply that $x \in D(B)$ and Bx = y.

 $D \subset X$ is ru-dense if for each $x \in X$ there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset D$ such that $x_n \xrightarrow{ru} x$ as $n \to \infty$.

We call an operator B on X

- ru-densely defined if its domain D(B) is ru-dense in X,
- ru-closed whenever $x_n \xrightarrow{ru} x$ and $Bx_n \xrightarrow{ru} y$ imply that $x \in D(B)$ and Bx = y.

Proposition

Every generator of a positive ru-continuous semigroup is ru-closed and ru-densely defined.

 $(T(t))_{t\geq 0}$ is called *exponentially order bounded* if for each $x \in X$ there exists $u \in X$ such that for all $t \geq 0$ we have

 $|T(t)x| \le e^{\omega t}u.$

Let $\omega_{ru}(T)$ be the infimum of such ω 's.

 $(T(t))_{t\geq 0}$ is called *exponentially order bounded* if for each $x \in X$ there exists $u \in X$ such that for all $t \geq 0$ we have

 $|T(t)x| \le e^{\omega t}u.$

Let $\omega_{ru}(T)$ be the infimum of such ω 's.

The left translation semigroup

 $(T(t))_{t\geq 0}$ is called *exponentially order bounded* if for each $x \in X$ there exists $u \in X$ such that for all $t \geq 0$ we have

 $|T(t)x| \le e^{\omega t}u.$

Let $\omega_{ru}(T)$ be the infimum of such ω 's.

The left translation semigroup

• is exponentially order bounded on Lip($\mathbb{R}),$ UC($\mathbb{R}),$ and $W^{1,p}(\mathbb{R}),$

 $(T(t))_{t\geq 0}$ is called *exponentially order bounded* if for each $x \in X$ there exists $u \in X$ such that for all $t \geq 0$ we have

 $|T(t)x| \le e^{\omega t}u.$

Let $\omega_{ru}(T)$ be the infimum of such ω 's.

The left translation semigroup

- is exponentially order bounded on Lip($\mathbb{R}),$ UC($\mathbb{R}),$ and W^{1,\rho}($\mathbb{R}),$
- is not exponentially order bounded on $C_c(\mathbb{R})$ and $C(\mathbb{R})$.

Relatively uniform spectral bound

$$\mathrm{s}_{\mathsf{ru}}(\mathsf{A}) := \mathsf{sup}\{\mathsf{Re}\lambda : \lambda \in \sigma_{\mathsf{ru}}(\mathsf{A})\}$$

Relatively uniform spectral bound

$$\operatorname{s}_{\mathsf{ru}}(A) := \sup\{\operatorname{\mathsf{Re}}\lambda : \lambda \in \sigma_{\mathsf{ru}}(A)\}$$

Proposition

Let $(T(t))_{t\geq 0}$ be an exponentially order bounded positive rucontinuous semigroup and A its generator. Then for each $\lambda > \omega_{ru}(T)$ one has $\lambda \in \rho_{ru}(A)$ and

$$R(\lambda, A)x = \int_0^\infty e^{-\lambda t} T(t)x \, \mathrm{d}t.$$

Moreover, $s_{ru}(A) \leq \omega_{ru}(T)$.

A vector lattice X has property (D) if for each net of linear operators $(T_{\alpha})_{\alpha}$ on X the following two assertions imply $T_{\alpha}x \xrightarrow{\text{ru}} 0$ for each $x \in X$.

A vector lattice X has property (D) if for each net of linear operators $(T_{\alpha})_{\alpha}$ on X the following two assertions imply $T_{\alpha}x \xrightarrow{\text{ru}} 0$ for each $x \in X$.

(a) There exists an ru-dense subset $D \subset X$ such that $T_{\alpha}y \xrightarrow{ru} 0$ for each $y \in D$.

A vector lattice X has property (D) if for each net of linear operators $(T_{\alpha})_{\alpha}$ on X the following two assertions imply $T_{\alpha}x \xrightarrow{\text{ru}} 0$ for each $x \in X$.

- (a) There exists an ru-dense subset $D \subset X$ such that $T_{\alpha}y \xrightarrow{ru} 0$ for each $y \in D$.
- (b) For each sequence $(x_n)_{n \in \mathbb{N}} \subset X$ with $x_n \xrightarrow{ru} 0$ there exists $u \in X_+$ such that for each $\varepsilon > 0$ there exist $N_{\varepsilon} \in \mathbb{N}$ and α_{ε} such that

$$|T_{\alpha}x_n| \leq \varepsilon \cdot u$$

holds for all $n \geq N_{\varepsilon}$ and $\alpha \geq \alpha_{\varepsilon}$.

A vector lattice X has property (D) if for each net of linear operators $(T_{\alpha})_{\alpha}$ on X the following two assertions imply $T_{\alpha}x \xrightarrow{\text{ru}} 0$ for each $x \in X$.

- (a) There exists an ru-dense subset $D \subset X$ such that $T_{\alpha}y \xrightarrow{ru} 0$ for each $y \in D$.
- (b) For each sequence $(x_n)_{n \in \mathbb{N}} \subset X$ with $x_n \xrightarrow{ru} 0$ there exists $u \in X_+$ such that for each $\varepsilon > 0$ there exist $N_{\varepsilon} \in \mathbb{N}$ and α_{ε} such that

$$|T_{\alpha}x_n| \leq \varepsilon \cdot u$$

holds for all $n \geq N_{\varepsilon}$ and $\alpha \geq \alpha_{\varepsilon}$.

Examples

 $Lip(\mathbb{R})$, UC(\mathbb{R}), C_c(\mathbb{R}), C(\mathbb{R}), L^p(\mathbb{R}) for 0 \infty

Lemma

Let X have the property (D) and $(T(t))_{t\geq 0}$ be an exponentially order bounded positive semigroup on X. If there exists an ru-dense set $D \subset X$ such that $T(h)y \xrightarrow{ru} y$ as $h \downarrow 0$ holds for each $y \in D$, then $(T(t))_{t\geq 0}$ is relatively uniformly continuous on X.

Lemma

Let X have the property (D) and $(T(t))_{t\geq 0}$ be an exponentially order bounded positive semigroup on X. If there exists an ru-dense set $D \subset X$ such that $T(h)y \xrightarrow{ru} y$ as $h \downarrow 0$ holds for each $y \in D$, then $(T(t))_{t\geq 0}$ is relatively uniformly continuous on X.

Proposition

Let X be an ru-complete vector lattice with property (D). Every positive exponentially order bounded ru-continuous semigroup on X is uniquely determined by its generator.

Theorem

Let X be an ru-complete vector lattice with property (D). Then the following assertions are equivalent.

Theorem

Let X be an ru-complete vector lattice with property (D). Then the following assertions are equivalent.

(i) A generates an exponentially order bounded positive ru-continuous semigroup.

Theorem

Let X be an ru-complete vector lattice with property (D). Then the following assertions are equivalent.

- (i) A generates an exponentially order bounded positive ru-continuous semigroup.
- (ii) A is ru-closed, ru-densely defined, for every λ > ω_{ru}(T) =: ω one has λ ∈ ρ_{ru}(A) and for each x ∈ X there exists u ∈ X such that

$$|R(\lambda, A)^k x| \le (\lambda - \omega)^{-k} \cdot u$$
 for all $k \in \mathbb{N}$.

• further development of the spectral theory

- further development of the spectral theory
- approximation and perturbation theory

- further development of the spectral theory
- approximation and perturbation theory
- interesting applications

- further development of the spectral theory
- approximation and perturbation theory
- interesting applications
- continuity with respect to different convergences

- further development of the spectral theory
- approximation and perturbation theory
- interesting applications
- continuity with respect to different convergences
- . . .

- further development of the spectral theory
- approximation and perturbation theory
- interesting applications
- continuity with respect to different convergences
- ...

Thank you!