Prime ideals in vector lattices

Joint work with Mark Roelands

Marko Kandić

Fakulteta za matematiko in fiziko Univerza v Ljubljani

marko.kandic@fmf.uni-lj.si

March 31, 2023

1/22

General properties

A vector subspace J of a vector lattice E is an (order) ideal if $x \in J$ and $0 \le |y| \le |x|$ imply $y \in E$.

- The sum of a given family of ideals is an ideal.
- O The intersection of a given family of ideals is an ideal.
- **3** If $x \in E$, then the set

$$I_x = \{y \in E : \ |y| \le \lambda |x| \text{ for some } \lambda \ge 0\}$$

is an ideal in E, called the **principal ideal** generated by x.

• We have $I_x = I_{|x|}$.

• If x_1, \ldots, x_n are positive, then

$$I_{x_1+\cdots+x_n}=I_{x_1}+\cdots+I_{x_n}=I_{x_1\vee\cdots\vee x_n}.$$

Hence, every finitely generated ideal is principal.

Marko Kandić (FMF)

Examples of ideals I

Example

• In \mathbb{R}^n every ideal is of the form

$$J_A = \{ x \in \mathbb{R}^n : x_j = 0 \text{ for all } j \in A \}$$

where $A \subseteq \{1, \ldots, n\}$.

• In $c_{00}(\Omega)$ every ideal is of the form

$$J_A = \{x \in c_{00}(\Omega) : x_j = 0 \text{ for all } j \in A\}$$

where $A \subseteq \Omega$.

• Closed ideals in *C*(*K*) with *K* compact and Hausdorff are precisely of the form

$$J_F = \{f \in C(K) : f|_F \equiv 0\}$$

where $F \subseteq K$ is a closed set.

Examples of ideals II

Example

• If μ is σ -finite, then every closed ideal in $L^p(\mu)$ $(1 \le p < \infty)$ is of the form

$$J_F = \{ f \in L^p(\mu) : f \equiv 0 \text{ almost everywhere on } F \}$$

where F is a measurable subset of the ambient measurable space Ω . • If $A \subseteq \mathbb{N}$, then

$$\{x \in \ell^{\infty} : x_n = 0 \text{ for all } n \in A\}$$

is a closed ideal in ℓ^{∞} . There are many more closed ideals in ℓ^{∞} as we have an isometric isomorphism of C^* -algebras and Banach lattices:

$$\ell^{\infty} = C_b(\mathbb{N}) \cong C(\beta\mathbb{N}).$$

Maximal ideals

A proper ideal M of E is called **maximal** whenever for each ideal J satisfying $M \subseteq J \subseteq E$ it follows that either J = M or J = E.

- An ideal I of E is maximal if and only if the co-dimension of I in E is one.
- **2** The Banach lattice $L^1[0,1]$ does not have any maximal ideals.
- If a vector lattice contains a strong unit, then every proper ideal is contained in a maximal ideal. (A positive vector e in E is a strong unit if |x| ≤ λ_xe, i.e., I_e = E.)
- If E is a norm dense sublattice of C(K), then maximal ideals of E are precisely of the form

$$M_x^E = \{ f \in E : f(x) = 0 \}.$$

• In particular, maximal ideals of C(K) are precisely of the form $J_{\{x\}} = M_x^{C(K)}$.

Marko Kandić (FMF)

Prime ideals

A proper ideal $P \subset E$ is said to be **prime** whenever $x \land y \in P$ implies $x \in P$ or $y \in P$.

- Every maximal ideal is prime.
- 2 Every ideal containing a prime ideal P is also prime.
- **③** The family of all ideals containing a prime ideal P is linearly ordered.
- Every prime ideal contains a minimal prime ideal.

Theorem

For an ideal P in a vector lattice E the following conditions are equivalent.

- (i) P is prime.
- (ii) If $x \wedge y = 0$, then $x \in P$ or $y \in P$.
- (iii) The quotient vector lattice E/P is linearly ordered.

(iv) For any ideals I and J satisfying $I \cap J \subseteq P$ we have $I \subseteq P$ or $J \subseteq P$.

Algebraic and lattice ideals in C(K)

- Every order ideal is also an algebraic ideal (for f ∈ I we have |fg| ≤ ||g||∞f).
- An algebraic ideal *I* is not necessarily an order ideal.
 To see this, take K = [0, 1] and consider the ideal of all functions *f* of the form f(x) = xg(x). Then *I* is an algebraic ideal which does not contain the function *h* defined as

$$h(x) = \begin{cases} x \sin x^{-1} & : & x \neq 0 \\ 0 & : & x = 0 \end{cases}$$

Yet, $|h(x)| \leq |x|$ and the identity mapping $x \mapsto x$ is in *I*.

Algebraic and lattice ideals in C(K)

• An order prime ideal is not necessarily an algebraic prime ideal. Define

 $J = \{ f \in C[0,1] : \ |f(x)| \le \alpha_f x \text{ for all } x \text{ and some } \alpha_f > 0 \}.$

Then J is an algebraic and an order ideal. Obviously, the square root $x \mapsto x^{\frac{1}{2}}$ is not in J. By Zorn's lemma type argument there exists an order prime ideal $P \supset J$ with $x^{\frac{1}{2}} \notin P$. However, $x = x^{\frac{1}{2}} \cdot x^{\frac{1}{2}} \in J \subset P$.

- An algebraic prime ideal is an order prime ideal (for f ∈ I and |g| ≤ |f| we have g = g|f|^{-1/2} ⋅ |f|^{1/2}).
- In *C*(*K*) the classes of maximal algebraic and maximal order ideals coincide.

They are of the form $J_{\{x\}}$ for some $x \in K$.

If *E* is a norm dense sublattice of C(K), then for every prime ideal *P* of *E* there exists a unique point *x* in *K* such that $P \subseteq M_x^E$.

Proposition

Let Ω be a non-empty set. Then an ideal $I \subseteq c_{00}(\Omega)$ is maximal if and only if I is of the form

$$M_w := \{x \in c_{00}(\Omega) : x(w) = 0\}$$

for some $w \in \Omega$. Moreover, for a proper ideal I in $c_{00}(\Omega)$ the following statements are equivalent.

- (i) I is a minimal prime ideal.
- (ii) I is a prime ideal.
- (iii) I is a maximal ideal.

A vector lattice is **Archimedean** if the following holds: if the inequality $0 \le nx \le y$ holds for each $n \in \mathbb{N}$, then x = 0.

An ideal *I* in *E* is **order dense** if for each $0 \le y \in E^+$ there exists $x \in I$ such that $0 < x \le y$.

Theorem

Let I be an ideal in a vector lattice E. Consider the following statements.

- I is order dense in E.
- **2** $I^d = \{0\}.$
- **③** For each $0 \le y \in E$ we have

$$y = \sup\{x \in I : 0 \le x \le y\}.$$

Then (1) and (2) are equivalent, and (3) implies (1). If E is Archimedean, then all statements are equivalent.

Theorem

Let E be an Archimedean vector lattice.

- (i) E is atomless if and only if every prime ideal in E is order dense in E.
- (ii) None of the prime ideals are order dense in E if and only if E is equal to the linear span of its atoms.

• For each positive vector $x \in E$ consider the principal ideal

$$I_x = \{y \in E : |y| \le \lambda x \text{ for some } \lambda > 0\}.$$

- For $y \in I_x$ define $||y||_x := \inf\{\lambda : |y| \le \lambda x\}$.
- Then $\|\cdot\|_x$ is a seminorm on I_x for each x > 0.
- $(I_x, \|\cdot\|_x)$ is a normed lattice for each x > 0 if and only if E is Archimedean.
- To avoid patologies people usually work on Archimedean vector lattices.

Theorem (Kakutani – Bohnenblust – Krein)

If for some x > 0 the normed lattice $(I_x, \|\cdot\|_x)$ is a Banach lattice, then I_x is lattice isometric isomorphic to some C(K) space where $x \mapsto \mathbf{1}$.

- Via this representation, one can "generate" adequate vectors to prove theorems.
- To prove an inequality for finitely many vectors, one needs to prove the same inequality for finitely many continuous functions. Hence, for real numbers.
- The lattice structure of I_x is the same as the lattice structure of C(K).
- Sometimes some structure of *E* passes down to I_x and so to C(K).
- *I_x* is Dedekind complete if and only if *K*, in addition, is extremally disconnected.

How to guarantee that $(I_x, \|\cdot\|_x)$ is a Banach lattice?

A sequence (x_n)_{n∈ℕ} is relatively uniformly Cauchy if there exists a positive vector y such that for each ε > 0 there exists a k ∈ ℕ such that for all n, m ≥ k we have

$$|x_n-x_m|\leq \varepsilon y.$$

 If there exists a vector x such that for each ε > 0 there exists k ∈ N such that

$$|x_n-x|\leq \varepsilon y,$$

then $(x_n)_{n \in \mathbb{N}}$ converges relatively uniformly (with respect to y).

- A vector lattice *E* is relatively uniformly complete if every relatively uniformly Cauchy sequence converges relatively uniformly.
- (x_n)_{n∈N} is relatively uniformly Cauchy with respect to y if and only if (x_n)_{n∈N} is Cauchy in (I_y, || · ||_y).

Theorem

If an Archimedean vector lattice E contains finitely many minimal prime ideals, then it is finite-dimensional.

Example

The lexicographically ordered real plane \mathbb{R}^2 is not Archimedean as

$$(0,0) \leq n \cdot (0,1) \leq (1,0)$$

holds for each $n \in \mathbb{N}$.

The space of all sequences $\mathbb{R}^{\mathbb{N}}$ ordered lexicographically is infinite-dimensional and totally ordered. Hence, the zero ideal $\{0\}$ is a prime ideal, and so, it is the unique minimal prime ideal of $\mathbb{R}^{\mathbb{N}}$.

Theorem

If an Archimedean vector lattice E contains finitely many minimal prime ideals, then it is finite-dimensional.

Sketch of the proof

- Prove that I_x contains finitely many minimal prime ideals.
- C(K) contains a norm dense sublattice $(I_x, \|\cdot\|_x)$ with finitely many minimal prime ideals.
- C(K) contains finitely many minimal prime ideals.
- Every maximal ideal M_t contains a minimal prime ideal and for each prime ideal P there is a unique point t such that $P \subseteq M_t$.
- There are only finitely maximal ideals in C(K).
- K is finite $\Rightarrow C(K) \cong I_x$ is finite-dimensional.
- $E \cong c_{00}(\Omega)$ and therefore, Ω is finite.

From commutative algebra to vector lattices

Theorem

Cohen: A commutative ring is Noetherian if and only if every prime ideal is finitely generated.

Kaplansky: In a Noetherian commutative ring every ideal is principal if and only if every maximal ideal is principal.

Cohen – Kaplansky: *If every prime ideal in a commutative ring is principal, then every ideal is principal.*

A vector lattice is Noetherian if it satisfies the ascending chain condition (acc) for ideals.

Proposition

An Archimedean vector lattice is Noetherian if and only if it is finite-dimensional.

Marko Kandić (FMF)

Cohen-Kaplansky's theorem for vector lattices

Let E be a vector lattice.

- (i) *E* is finite-dimensional.
- (ii) Every proper ideal in E is principal (= finitely generated).
- (iii) Every prime ideal in E is principal (= finitely generated).

Then (i) implies (ii), (i) implies (iii), and (iii) implies (ii). Moreover, in the case where E is Archimedean, we have that (ii) implies (i), so all statements are equivalent.

- If *E* is Archimedean, then (i) and (iii) are equivalent. This is Cohen's theorem for vector lattices.
- **Cohen-Kaplansky** for vector lattices is the equivalence between (ii) and (iii).

Let $x = (x_n)_{n \in \mathbb{N}} \in c_0$ be any vector with $x_n > 0$ for each $n \in \mathbb{N}$. Define the vector lattice $E := I_x + \mathbb{R}\mathbf{1}$. Then

- *E* is not norm complete, and its norm completion is $c \cong C(\mathbb{N} \cup \{\infty\})$.
- Maximal ideals in E are of the form

$$M^E_t=M_t\cap E=\{y\in E: y(t)=0\}$$

for some $t \in \mathbb{N} \cup \{\infty\}$.

- Since x(t) > 0 for each $t \in \mathbb{N}$, we have $e_t \in E$ and so $1 e_t$ is the generator for M_t^E if $t \in \mathbb{N}$, otherwise $M_{\infty}^E = I_x$ is principal by construction.
- It turns out that there are no other principal prime ideals.
- *E* is infinite-dimensional.

A version of Kaplansky's theorem

Cohen-Kaplansky theorem for uniformly complete vector lattices

The following statements are equivalent for a uniformly complete Archimedean vector lattice E.

- (i) *E* is finite-dimensional.
- (ii) Every proper ideal in E is principal.

(iii) E contains maximal ideals, and every maximal ideal in E is principal.

Sketch of the proof

- (iii) \Rightarrow (i): It first follows that $E = I_x$ for some x > 0.
- Now $E = I_x \cong C(K)$ and since $I_f = M_t = \{f \in C(K) : f(t) = 0\}$ is principal, t is isolated (non-trivial).
- Compact space consisting of isolated points is finite.

A vector lattice *E* is said to be prime Noetherian if every ascending chain of prime ideals $P_1 \subseteq P_2 \subseteq ...$ in *E* is stationary.

Auxiliary results

- Let *E* be a vector lattice and let *F* be a vector sublattice. If *E* is prime Noetherian, then *F* is prime Noetherian.
- In a prime Noetherian vector lattice every prime ideal is contained in a prime ideal of finite co-dimension.
- Let *E* be an at least two-dimensional prime Noetherian vector lattice. Then every proper ideal of *E* is contained in a maximal ideal.

Theorem

A uniformly complete Archimedean vector lattice E is prime Noetherian if and only if it is lattice isomorphic to $c_{00}(\Omega)$ for some set Ω .

Corollary

The following assertions are equivalent for a uniformly complete prime Noetherian Archimedean vector lattice E.

- (i) E has a strong unit.
- (ii) E is lattice isomorphic to a Banach lattice.
- (iii) E is finite-dimensional.

Funny Theorem

Let X be a locally compact Hausdorff space and let M be a maximal ideal in $C_0(X)$. Then there exists an $x \in X$ such that

$$M = \{ f \in C_0(X) \colon f(x) = 0 \}.$$

If M is closed, there are no problems. Why is M closed?

- For n ∈ N let PPolⁿ([a, b]) be the vector lattice of piecewise polynomials of degree at most n that are continuous on the interval [a, b].
- The space of piecewise polynomials that are continuous on the interval [a, b] without any bound on the degree by PPol([a, b]).
- By the lattice version of the Stone-Weierstrass theorem all these spaces are uniformly dense in C([a, b]).

For $t_0 \in (a, b]$ we define

$$L_{t_0} := \left\{ f \in M_{t_0}^E \colon \text{there exists a } \delta > 0 \text{ such that } f(t) = 0 \text{ for } t \in (t_0 - \delta, t_0]
ight\}$$

and for $t_0 \in [a, b)$ we define

$$R_{t_0} := \left\{ f \in M_{t_0}^{\mathcal{E}} \colon \text{there exists a } \delta > 0 \text{ such that } f(t) = 0 \text{ for } t \in [t_0, t_0 + \delta) \right\}.$$

Lemma

Let *E* be either PPolⁿ([*a*, *b*]) or PPol([*a*, *b*]). The minimal prime ideals in *E* are precisely L_{t_0} for $t_0 \in (a, b]$ and R_{t_0} for $t_0 \in [a, b)$.

• If we write E := PPol([a, b]), then we consider

$$L_{t_0}^k := \left\{ f \in M_{t_0}^E \colon f_-^{(k)}(t_0) = f_-^{(k-1)}(t_0) = \ldots = f_-'(t_0) = 0 \right\}$$

for $t_0 \in (a,b]$ and all $k \in \mathbb{N}$ in this case, and

$$R^k_{t_0} := \left\{ f \in M^E_{t_0} \colon f^{(k)}_+(t_0) = f^{(k-1)}_+(t_0) = \ldots = f'_+(t_0) = 0
ight\}$$

for $t_0 \in [a, b)$ and all $k \in \mathbb{N}$ in this case.

• Note that $\bigcap_{k=1}^{\infty} L_{t_0}^k = L_{t_0}$ and $\bigcap_{k=1}^{\infty} R_{t_0}^k = R_{t_0}$.

Theorem

The non-maximal and non-minimal prime ideals in PPol([a, b]) are of the form $L_{t_0}^k$ for some $k \in \mathbb{N}$ and $t_0 \in (a, b]$, or are of the form $R_{t_0}^k$ for some $k \in \mathbb{N}$ and $t_0 \in [a, b]$.

Corollary

The vector lattice PPol([a, b]) is prime Noetherian and contains ascending chains of prime ideals of arbitrary finite length.

Theorem

Let E be the vector lattice $PPol^{n}([a, b])$ or PPol([a, b]). Then all non-minimal prime ideals in E are principal.