Positive Dilation in order integrals

Xingni Jiang Sichuan University

Workshop on Ordered Vector Spaces and Positive Operators Wuppertal 31 March 2023

Joint work with Rui Liu

Dilation of operators

Algebraic dilations

Let \mathcal{A} be a unital algebra with identity e and X, Y be vector spaces. For any linear operator $T : \mathcal{A} \to L(X, Y)$, there exist a vector space Z, a unital algebra homomorphism $\pi : \mathcal{A} \to L(Z)$, and linear operators $\tau \in L(X, Z)$, $\alpha \in L(Z, Y)$ such that

 $T(a) = \alpha \pi(a) \tau \,\, \forall a \in \mathcal{A}.$

Dilation of operators

Algebraic dilations

Let \mathcal{A} be a unital algebra with identity e and X, Y be vector spaces. For any linear operator $T : \mathcal{A} \to L(X, Y)$, there exist a vector space Z, a unital algebra homomorphism $\pi : \mathcal{A} \to L(Z)$, and linear operators $\tau \in L(X, Z)$, $\alpha \in L(Z, Y)$ such that

$$T(a) = \alpha \pi(a) \tau \,\, \forall a \in \mathcal{A}.$$

•
$$Z = L(\mathcal{A}, Y)$$
,

• $\tau: x \to T_x$ for $x \in X$, where $T_x = T()x$,

• $\alpha \colon \psi \to \psi(e)$ for $\psi \in L(\mathcal{A}, Y)$

π(a)ψ = ψR_a for a ∈ A, ψ ∈ L(A, Y), where R is the right regular representation of A (i.e. R_a(b) = ba).

Dilation of operators

Dilation in order context

Let \mathcal{A} be a unital Riesz algebra with positive identity e and X, Y be Riesz spaces. For any regular operator $T \colon \mathcal{A} \to L_r(X, Y)$, there exist a Riesz space Z, a unital algebra homomorphism $\pi \colon \mathcal{A} \to L_r(Z)$, and regular operators $\tau \in L(X, Z)$, $\alpha \in L_r(Z, Y)$ such that

$$T(a) = \alpha \pi(a) \tau \,\, \forall a \in \mathcal{A}.$$

- $Z = L_r(\mathcal{A}, Y)$,
- α is positive,
- π is positive,
- if T is positive, then τ is positive.

Executive summary

Dilation theory <	Dilation of operators
	Dilation of operators Dilation of operator valued measures
Order integrals 〈	Measures taking values in patially ordered vector space
	Integrals of such measures (regular operators) Representation theorems
	Representation theorems

Executive summary

Dilation theory <	Dilation of operators
	Dilation of operators Dilation of operator valued measures
	Measures taking values in patially ordered vector space
Order integrals 〈	Measures taking values in patially ordered vector space Integrals of such measures (regular operators) Representation theorems
	Representation theorems

Question:

What is the relation between dilation of measures and dilation of operators in the order context ?

Executive summary

Dilation theory <	Dilation of operators
	Dilation of operators Dilation of operator valued measures
	Measures taking values in patially ordered vector space
Order integrals 〈	Measures taking values in patially ordered vector space Integrals of such measures (regular operators) Representation theorems
	Representation theorems

Question:

- What is the relation between dilation of measures and dilation of operators in the order context ?
- In the framework of order integrals, will there be more properties to say about a dilation system?

- Measures taking values in partially ordered vector space
- Dilation of measures taking values in Riesz space
- Order integrals
- Relation between dilation of measures and dilation of order integrals

Measures taking values in P.O.V. (positive case)

Let *E* be a σ -monotone complete partially ordered vector space, i.e. if every increasing net in *E* that is bounded from above in *E* has a supremum in *E*. We can extend *E* by adjoin one point ∞ to *E* such that $x \leq \infty$ for all $x \in E$. Let $\overline{E^+} = E^+ \cup \{\infty\}$.

Definition (J.D.M. Wright 1969)

Let (X, Ω) be a measurable space, and let E be a σ -monotone complete partially ordered vector space. An $\overline{E^+}$ -valued measure is a map $\mu: \Omega \to \overline{E^+}$ such that:

• whenever $\{A_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence in Ω , then

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\bigvee_{N=1}^{\infty}\sum_{n=1}^{N}\mu(A_n) \text{ in } \overline{E^+}.$$

We say that μ is finite if $\mu(\Omega) \subseteq E^+$.

Measures taking values in P.O.V. (positive case)

 $M(X, \Omega, \overline{E^+}) = \{\mu : \mu \text{ is an } \overline{E^+}\text{-valued measure on } (X, \Omega)\}$ $M(\Omega, E^+) = \{\mu : \mu \text{ is an } E^+\text{-valued measure on } (X, \Omega)\}$

A natural partial ordering on $M(X, \Omega, E^+)$:

$$\mu_1 \leq \mu_2 \iff \mu_1(A) \leq \mu_2(A) \ \forall A \in \Omega.$$

Proposition (M.de Jeu, X. Jiang)

•
$$M(\Omega, E^+) \subseteq M(X, \Omega, \overline{E^+}).$$

- $M(X, \Omega, \overline{E^+})$ and $M(\Omega, E^+)$ are convex cones.
- If E is a Dedekind complete Riesz space, then M(Ω, E⁺) is a lattice cone, where for all A ∈ Ω

$$(\mu_1 \lor \mu_2)(A) = \bigvee \{\mu_1(B) + \mu_2(A \setminus B) \colon B \subseteq A, \ B \in \Omega\}$$

$$(\mu_1 \wedge \mu_2)(A) = \bigwedge \{\mu_1(B) + \mu_2(A \setminus B) \colon B \subseteq A, \ B \in \Omega\}.$$

Definition (M. de Jeu, X. Jiang)

Let (X, Ω) be a measurable space, and let E be a σ -Dedekind complete Riesz space. An *E-valued signed measure* is a map $\mu : \Omega \to E$ such that:

- μ(Ø) = 0;
- whenever $\{A_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence in Ω , then

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=o-\lim_{N\to\infty}\sum_{n=1}^{N}\mu(A_n)$$

in E.

 $M_0(X, \Omega, E) = \{\mu \colon \mu \text{ is an } E \text{-valued signed measure on } (X, \Omega)\}$

Properties of E-valued signed measures

- $M(\Omega, E^+) \subseteq M_0(X, \Omega, E)$.
- If *E* is Dedekind complete, then for any $\mu \in M_0(X, \Omega, E)$, there exist μ^+ and μ^- in $M(X, \Omega, \overline{E^+})$ such that $\mu^+ = \mu + \mu^-$.

Properties of *E*-valued signed measures

- $M(\Omega, E^+) \subseteq M_0(X, \Omega, E).$
- If *E* is Dedekind complete, then for any $\mu \in M_0(X, \Omega, E)$, there exist μ^+ and μ^- in $M(X, \Omega, \overline{E^+})$ such that $\mu^+ = \mu + \mu^-$. Moreover, if one of μ^{\pm} is finite, then the other one is finite and

$$\mu = \mu^+ - \mu^-, \ \mu^+ \wedge \mu^- = 0.$$

Properties of E-valued signed measures

• $M(\Omega, E^+) \subseteq M_0(X, \Omega, E).$

• If *E* is Dedekind complete, then for any $\mu \in M_0(X, \Omega, E)$, there exist μ^+ and μ^- in $M(X, \Omega, \overline{E^+})$ such that $\mu^+ = \mu + \mu^-$. Moreover, if one of μ^{\pm} is finite, then the other one is finite and

$$\mu = \mu^+ - \mu^-, \ \mu^+ \wedge \mu^- = 0.$$

Let $M(X, \Omega, E) = \{ \mu \in M_0(X, \Omega, E) : \text{ at least one of } \mu^{\pm} \text{ is finite} \}.$

Proposition (M. de Jeu, X. Jiang)

If E is Dedekind complete, then $M(X, \Omega, E)$ is a Dedekind complete Riesz space with positive cone $M(\Omega, E^+)$.

Let *E* be a Dedekind complete Riesz space, and we consider an $L_r(E)$ -valued signed measure μ .

- 1. μ is called a probability measure if $\mu(X) = \mathbf{I}_E$
- 2. μ is called a spectral measure if $\mu(A_1 \cap A_2) = \mu(A_1)\mu(A_2)$

Let *E* be a Dedekind complete Riesz space, and we consider an $L_r(E)$ -valued signed measure μ .

- 1. μ is called a probability measure if $\mu(X) = \mathbf{I}_E$
- 2. μ is called a spectral measure if $\mu(A_1 \cap A_2) = \mu(A_1)\mu(A_2)$

Question

Given a $L_r(F, E)$ -valued signed measure μ , can we transform it into a spectral measure?

Let *E* be a Dedekind complete Riesz space, and we consider an $L_r(E)$ -valued signed measure μ .

- 1. μ is called a probability measure if $\mu(X) = \mathbf{I}_E$
- 2. μ is called a spectral measure if $\mu(A_1 \cap A_2) = \mu(A_1)\mu(A_2)$

Question

Given a $L_r(F, E)$ -valued signed measure μ , can we transform it into a spectral measure? I.e. do there exist a Riesz space Z, a spectral measure $P: \Omega \to L_r(Z), \tau \in L_r(F, Z)$ and $\alpha \in L_r(Z, E)$ such that for any $A \in \Omega$,

 $\mu(A) = \alpha P(A)\tau.$

If it exist, then (P, Z, τ, α) is called a *dilation system of* μ .

Let *E* be a Dedekind complete Riesz space, and we consider an $L_r(E)$ -valued signed measure μ .

- 1. μ is called a probability measure if $\mu(X) = \mathbf{I}_E$
- 2. μ is called a spectral measure if $\mu(A_1 \cap A_2) = \mu(A_1)\mu(A_2)$

Question

Given a $L_r(F, E)$ -valued signed measure μ , can we transform it into a spectral measure? I.e. do there exist a Riesz space Z, a spectral measure $P: \Omega \to L_r(Z), \tau \in L_r(F, Z)$ and $\alpha \in L_r(Z, E)$ such that for any $A \in \Omega$,

 $\mu(A) = \alpha P(A)\tau.$

If it exist, then (P, Z, τ, α) is called a *dilation system of* μ .

In the Banach space case, the answer is affirmative. (σ -additivity is defined by the strong operator topology)

Theorem (X.Jiang, R.Liu)

Let F and E be Riesz spaces. If E is Dedekind complete, then every $\mu \in M(X, \Omega, L_r(F, E))$ has a dilation system (P, Z, τ, α) where

- 1. $Z = M(X, \Omega, E)$,
- 2. $\tau : x \mapsto \mu_x$, for every $x \in F$, where $\mu_x = \mu()x$,
- 3. $\alpha \colon \nu \mapsto \nu(X)$, for every $\nu \in M(X, \Omega, E)$,
- 4. $P(A)\nu = \nu^A$, for every $\nu \in M(X, \Omega, E)$, where $\nu^A(B) = \nu(A \cap B)$ for every $B \in \Omega$.

In this case, α is positive and P is a positive probability measure. Moreover:

- if μ is positive, then τ is positive,
- 2) if $\mu(\Omega) \subseteq Hom(F, E)$, then τ is a Riesz homomorphism.

Dilation of operator valued measures

$$F \xrightarrow{\mu(A)} E \qquad x \xrightarrow{\mu(A)} \mu(A)x$$

$$\tau \downarrow \qquad \uparrow \alpha \qquad \tau \downarrow \qquad \uparrow \alpha$$

$$M(X, \Omega, E) \xrightarrow{P(A)} M(X, \Omega, E) \qquad \mu_x \xrightarrow{P(A)} \mu_x^A$$

$$P(A \cap B)\nu = \nu^{A \cap B} = P(A)\nu^B = P(A)P(B)\nu. \qquad \mu_x(B) = \mu(B)x$$

$$\alpha(\nu) = \nu(X) \qquad \qquad \mu_x^A(B) = \mu(A \cap B)x$$

Remark

P is positive and $P(X) = I \implies$ each idempotent $P(A) \le I$.

Something more about the dilation spectral measure

The dilated spectral measure $P \colon \Omega \to L_r(M(X, \Omega, E))$ satisfies

$$P(A \cap B) = P(A)P(B) = P(A) \wedge P(B),$$

 $P(A \cup B) = P(A) \vee P(B).$

The integral operator generated by such a spectral measure is a Riesz homomorphism as well.

Definition of order integral w.r.t. a positive measure μ :

• If $\varphi = \sum_{i=1}^{n} r_i \chi_{A_i}$ is an elementary function, where the A_i are pairwise disjoint, then we define its order integral, which is an element of $\overline{E^+}$, by

$$\int_X^{\mathrm{o}} \varphi \,\mathrm{d}\mu := \sum_{i=1}^n r_i \mu(A_i)$$

- If $f: X \to \mathbb{R}^+ \cup \{\infty\}$ is measurable, then there exists a sequence $\{\varphi_n\}_{n=1}^{\infty}$ of elementary functions such that $\varphi_n \uparrow f$ pointwise in $\mathbb{R}^+ \cup \{\infty\}$
- We define the (order) integral of f, which is an element of $\overline{E^+}$, by

$$\int_{X}^{o} f \, \mathrm{d}\mu := \bigvee_{n=1}^{\infty} \int_{X}^{o} \varphi_n \, \mathrm{d}\mu.$$

This is well defined

Definition of order integral w.r.t. a positive measure μ :

• If $f : X \to \mathbb{R}$ is measurable, write $f = f^+ - f^-$ • If $\int_X^0 f^+ d\mu \in E^+$ and $\int_X^0 f^- d\mu \in E^+$, define

$$\int_{X}^{o} f \, \mathrm{d}\mu := \int_{X}^{o} f^{+} \, \mathrm{d}\mu - \int_{X}^{o} f^{-} \, \mathrm{d}\mu$$

*L*¹(μ)

Definition of order integral w.r.t. a positive measure μ :

• If
$$f: X \to \mathbb{R}$$
 is measurable, write $f = f^+ - f^-$
• If $\int_X^0 f^+ d\mu \in E^+$ and $\int_X^0 f^- d\mu \in E^+$, define

$$\int_X^{\mathrm{o}} f \,\mathrm{d}\mu := \int_X^{\mathrm{o}} f^+ \,\mathrm{d}\mu - \int_X^{\mathrm{o}} f^- \,\mathrm{d}\mu$$

•
$$\mathcal{L}^1(\mu)$$

Definition of order integral w.r.t. a signed measure $\mu \in M(X, \Omega, E)$:

•
$$\mu = \mu^+ - \mu^-$$

•
$$\mathcal{L}^{1}(\mu) = \mathcal{L}^{1}(X, \Omega, \mu^{+}; \mathbb{R}) \cap \mathcal{L}^{1}(X, \Omega, \mu^{-}; \mathbb{R})$$

•
$$\int_X^{\mathrm{o}} f \,\mathrm{d}\mu := \int_X^{\mathrm{o}} f \,\mathrm{d}\mu^+ - \int_X^{\mathrm{o}} f \,\mathrm{d}\mu^-$$

Theorem (M.de Jeu, X. Jiang)

Let E be a Dedekind complete Riesz space, (X, Ω) be a measurable space. Then for any $\mu \in M(X, \Omega, E)$, $\mathcal{L}^{1}(\mu)$ is a σ -Dedekind complete Riesz space and the order integral $\int_{X}^{\circ} \cdot d\mu \colon \mathcal{L}^{1}(\mu) \to E$ is a σ -order continuous operator.

- $\mathcal{B}(X) \subseteq \mathcal{L}^1(\mu)$ for any $\mu \in \mathrm{M}(X, \Omega, E)$.
- If μ is positive, then the order integral w.r.t. μ is a positive operator.
- If µ(A ∩ B) = µ(A) ∧ µ(B) for all A, B ∈ Ω, then the order integral w.r.t to µ is a Riesz homomorphism.
- If $P: \Omega \to L_{\sigma c}(E)$ is a spectral measure, then the order integral w.r.t. P is an algebra homomorphism.

Representation theorems of $\mathcal{B}(X)$

- Let $\mathcal{I}_{\mu}(f) = \int_X^{\mathrm{o}} f \,\mathrm{d}\mu$ for every $f \in \mathcal{B}(X)$
- Define $\mathcal{I} : \mathrm{M}(X, \Omega, E) \to \mathrm{L}_{\sigma \mathsf{c}}(\mathcal{B}(X), E)$ by $\mathcal{I}(\mu) = \mathcal{I}_{\mu}$ for each $\mu \in \mathrm{M}(X, \Omega, E)$.
- \mathcal{I} is positive and linear.

Theorem (M. de Jeu, X. Jiang)

Let E be a Dedekind complete Riesz space and (X, Ω) a measurable space. Then for any $T \in L_{\sigma c}(\mathcal{B}(X), E)$, there exists a unique $\mu \in M(X, \Omega, E)$ such that $T = \mathcal{I}_{\mu}$. Furthermore, if T is positive, so is μ .

Corollary (M. de Jeu, X. Jiang)

 $\mathcal{I} \colon \mathrm{M}(X,\Omega,E) \to \mathrm{L}_{\sigma\mathsf{c}}(\mathcal{B}(X),E)$ is a Riesz isomomorphism.

We are interested in the dilation of regular operator

$$T: \mathcal{B}(X) \to \mathrm{L}_{\mathrm{r}}(F, E)$$

We are interested in the dilation of regular operator

$$T: \mathcal{B}(X) \to \mathrm{L}_{\mathrm{r}}(F, E)$$

where F and E are Riesz spaces.

• Dilation system of T: $(L_r(\mathcal{B}(X), E), \pi, \tau_T, \alpha_T)$

We are interested in the dilation of regular operator

$$T: \mathcal{B}(X) \to \mathrm{L}_{\mathrm{r}}(F, E)$$

- Dilation system of T: (L_r($\mathcal{B}(X), E$), π, τ_T, α_T)
- *E* is Dedekind complete, *T* is σ -order continuous, there exists $\mu \in M(X, \Omega, E)$ such that $T = \mathcal{I}_{\mu}$.

We are interested in the dilation of regular operator

$$T: \mathcal{B}(X) \to \mathrm{L}_{\mathrm{r}}(F, E)$$

- Dilation system of T: (L_r($\mathcal{B}(X), E$), π, τ_T, α_T)
- *E* is Dedekind complete, *T* is σ -order continuous, there exists $\mu \in M(X, \Omega, E)$ such that $T = \mathcal{I}_{\mu}$.
- Dilation system of μ : (M(X, Ω, E), P, τ_{μ}, α_{μ})

We are interested in the dilation of regular operator

$$T: \mathcal{B}(X) \to \mathrm{L}_{\mathrm{r}}(F, E)$$

- Dilation system of T: (L_r($\mathcal{B}(X), E$), π, τ_T, α_T)
- *E* is Dedekind complete, *T* is σ -order continuous, there exists $\mu \in M(X, \Omega, E)$ such that $T = \mathcal{I}_{\mu}$.
- Dilation system of μ : (M(X, \Omega, E), P, τ_{μ}, α_{μ})
- How are they related? Something more about the dilated operator π ?

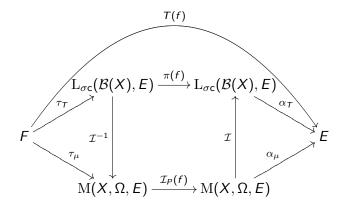
Relation between dilation systems

If $T: \mathcal{B}(X) \to L_{\sigma c}(F, E)$ is a σ -order continuous operator, then the following digram commutes.



Relation between dilation systems

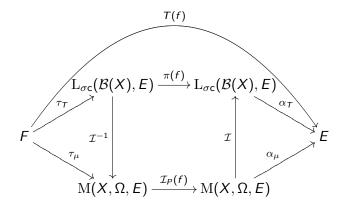
If $T: \mathcal{B}(X) \to L_{\sigma c}(F, E)$ is a σ -order continuous operator, then the following digram commutes.



• $\mathcal{I}_{P}(f)\nu = fd\nu : A \to \mathcal{I}_{\nu}(f\chi_{A})$, for any $A \in \Omega$, $f \in \mathcal{B}(X)$, $\nu \in M(X, \Omega, E)$.

Relation between dilation systems

If $T: \mathcal{B}(X) \to L_{\sigma c}(F, E)$ is a σ -order continuous operator, then the following digram commutes.



- $\mathcal{I}_{P}(f)\nu = fd\nu : A \to \mathcal{I}_{\nu}(f\chi_{A})$, for any $A \in \Omega$, $f \in \mathcal{B}(X)$, $\nu \in M(X, \Omega, E)$.
- \mathcal{I}_P is Riesz homomorphism $\implies \pi$ is Riesz homomorphism.

Questions

- C(K), $C_0(X)$
- Minimal dilation system (order basis, positive frame,...)
- Lattice embeddings (an operator au that is a lattice homomorphism)
- Banach space, Banach lattice,

Thank you

References:

- J.D.M. Wright. Stone-algebra-valued measures and integrals. Proc. London Math. Soc. 19, 107-122. (1969)
- 2. M. de Jeu, X. Jiang. Order integrals. Positivity 26, no. 2, Paper No. 32 (2022)
- 3. M.de Jeu, X. Jiang. Signed measures and full Riesz representation theorems (In preparation)
- 4. M.de Jeu, X. Jiang. Riesz representation theorems for positive algebra homomorphisms. arXiv:2109.10690. (2022)
- 5. B. Liu, D. Han, D. R. Larson and R. Lui. Operator-valued measures, Dilations, and the Theory of Frames, Memoirs of AMS, volume 229 (2014)