The Huijsmans–de Pagter problem in ordered Banach algebras

Roman Drnovšek

University of Ljubljana, Slovenia

WOVSPO - Wuppertal 2023

-≣⇒

1/14

If *T* is a positive operator on a complex Banach lattice *E* with the spectrum $\sigma(T) = \{1\}$, does it follow that *T* is greater than or equal to the identity operator *I*?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is affirmative. One of the proofs is the following.

Since T - I is nilpotent, we have $tr((T - I)^2) = 0$. If the matrix of T is $[t_{ij}]_{i,j=1}^n$, then we obtain that

$$\sum_{i=1}^{n} (t_{ii} - 1)^2 + \text{ nonnegative terms } = 0.$$

It follows that $t_{ii} = 1$ for all *i*, showing that $T \ge I$.

● 注)
◆ 注)
● 注)
● 2 / 14

If *T* is a positive operator on a complex Banach lattice *E* with the spectrum $\sigma(T) = \{1\}$, does it follow that *T* is greater than or equal to the identity operator *I*?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is affirmative. One of the proofs is the following.

Since T - I is nilpotent, we have $tr((T - I)^2) = 0$. If the matrix of T is $[t_{ij}]_{i,j=1}^n$, then we obtain that

$$\sum_{i=1}^{n} (t_{ii} - 1)^2 + \text{ nonnegative terms } = 0.$$

It follows that $t_{ii} = 1$ for all *i*, showing that $T \ge I$.

If *T* is a positive operator on a complex Banach lattice *E* with the spectrum $\sigma(T) = \{1\}$, does it follow that *T* is greater than or equal to the identity operator *I*?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is affirmative. One of the proofs is the following.

Since T - I is nilpotent, we have $tr((T - I)^2) = 0$. If the matrix of T is $[t_{ij}]_{i,j=1}^n$, then we obtain that

$$\sum_{i=1}^{n} (t_{ii} - 1)^2 + \text{ nonnegative terms } = 0.$$

If *T* is a positive operator on a complex Banach lattice *E* with the spectrum $\sigma(T) = \{1\}$, does it follow that *T* is greater than or equal to the identity operator *I*?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is affirmative. One of the proofs is the following.

Since T - I is nilpotent, we have $tr((T - I)^2) = 0$. If the matrix of T is $[t_{ij}]_{i,j=1}^n$, then we obtain that

$$\sum_{i=1}^{n} (t_{ii} - 1)^2 + \text{ nonnegative terms } = 0.$$

If *T* is a positive operator on a complex Banach lattice *E* with the spectrum $\sigma(T) = \{1\}$, does it follow that *T* is greater than or equal to the identity operator *I*?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is affirmative. One of the proofs is the following.

Since T - I is nilpotent, we have $tr((T - I)^2) = 0$. If the matrix of T is $[t_{ij}]_{i,j=1}^n$, then we obtain that

$$\sum_{i=1}^{n} (t_{ii} - 1)^2 + \text{ nonnegative terms } = 0.$$

If *T* is a positive operator on a complex Banach lattice *E* with the spectrum $\sigma(T) = \{1\}$, does it follow that *T* is greater than or equal to the identity operator *I*?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is affirmative. One of the proofs is the following.

Since T - I is nilpotent, we have $tr((T - I)^2) = 0$. If the matrix of T is $[t_{ij}]_{i,j=1}^n$, then we obtain that

$$\sum_{i=1}^{n} (t_{ii} - 1)^2 + \text{ nonnegative terms } = 0.$$

The answer to HdP question is affirmative if we assume in addition that there exist $\alpha \in (0, \frac{1}{2})$ and a constant $c \ge 0$ such that $||T^{-n}|| = O(\exp(cn^{\alpha}))$ as $n \to \infty$.

Theorem (Drnovšek, 2007)

A positive operator T on E is greater than or equal to the identity operator I provided

$$\lim_{n\to\infty}n\|(T-I)^n\|^{1/n}=0.$$

In the proof of this theorem we define the operator valued entire function that is of minimal type with respect to the order 1 and is bounded on the real axis. We then use the Phragmén-Lindelöf theorem to conclude that the function is necessarily constant.

◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
<p

The answer to HdP question is affirmative if we assume in addition that there exist $\alpha \in (0, \frac{1}{2})$ and a constant $c \ge 0$ such that $||T^{-n}|| = O(\exp(cn^{\alpha}))$ as $n \to \infty$.

Theorem (Drnovšek, 2007)

A positive operator T on E is greater than or equal to the identity operator I provided

 $\lim_{n\to\infty}n\|(T-I)^n\|^{1/n}=0.$

In the proof of this theorem we define the operator valued entire function that is of minimal type with respect to the order 1 and is bounded on the real axis. We then use the Phragmén-Lindelöf theorem to conclude that the function is necessarily constant.

◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
● □ →
○ ○ ○
○ ○ ○
○ ○ ○

The answer to HdP question is affirmative if we assume in addition that there exist $\alpha \in (0, \frac{1}{2})$ and a constant $c \ge 0$ such that $||T^{-n}|| = O(\exp(cn^{\alpha}))$ as $n \to \infty$.

Theorem (Drnovšek, 2007)

A positive operator T on E is greater than or equal to the identity operator I provided

$$\lim_{n\to\infty}n\|(T-I)^n\|^{1/n}=0.$$

In the proof of this theorem we define the operator valued entire function that is of minimal type with respect to the order 1 and is bounded on the real axis. We then use the Phragmén-Lindelöf theorem to conclude that the function is necessarily constant.

◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
◆ □ →
<p

The answer to HdP question is affirmative if we assume in addition that there exist $\alpha \in (0, \frac{1}{2})$ and a constant $c \ge 0$ such that $||T^{-n}|| = O(\exp(cn^{\alpha}))$ as $n \to \infty$.

Theorem (Drnovšek, 2007)

A positive operator T on E is greater than or equal to the identity operator I provided

$$\lim_{n\to\infty}n\|(T-I)^n\|^{1/n}=0.$$

In the proof of this theorem we define the operator valued entire function that is of minimal type with respect to the order 1 and is bounded on the real axis. We then use the Phragmén-Lindelöf theorem to conclude that the function is necessarily constant.

◆ □ →
◆ □ →
◆ □ →
◆ □ →
○ ○
○ ○
○ ○
○ ○

In general this problem that is important for the spectral theory of positive operators is still open.

30 years ago, Zhang also proved the following theorem.

Theorem (Zhang, 1993)

Let T be a positive operator on a complex Banach lattice E with the spectrum $\sigma(T) = \{1\}$. If $\varepsilon \in (0,1)$, then there exists a positive integer n such that

$$T^n \geq (1-\varepsilon)^n I$$
.

In 2003, Mouton investigated this question in the context of ordered Banach algebras.

Let \mathscr{A} be a complex Banach algebra with unit *e*. A nonempty set *C* is called a *cone* of \mathscr{A} if $C + C \subseteq C$ and $\lambda C \subseteq C$ for all $\lambda \ge 0$. If, in addition, $C \cap (-C) = \{0\}$, then *C* is said to be a *proper* cone. A cone *C* of \mathscr{A} is *closed* if it is a closed subset of \mathscr{A} .

Any proper cone *C* induces an ordering \leq in the following way:

$$a \leq b \iff b - a \in C.$$

It is easy to see that this ordering is a partial order (reflexive, antisymmetric, and transitive). Clearly, $C = \{a \in \mathscr{A} : a \ge 0\}$, and so elements of *C* are called *positive*.

5/14

In 2003, Mouton investigated this question in the context of ordered Banach algebras.

Let \mathscr{A} be a complex Banach algebra with unit *e*. A nonempty set *C* is called a *cone* of \mathscr{A} if $C + C \subseteq C$ and $\lambda C \subseteq C$ for all $\lambda \ge 0$. If, in addition, $C \cap (-C) = \{0\}$, then *C* is said to be a *proper* cone. A cone *C* of \mathscr{A} is *closed* if it is a closed subset of \mathscr{A} .

Any proper cone *C* induces an ordering \leq in the following way:

$$a \leq b \iff b - a \in C.$$

It is easy to see that this ordering is a partial order (reflexive, antisymmetric, and transitive). Clearly, $C = \{a \in \mathscr{A} : a \ge 0\}$, and so elements of *C* are called *positive*.

5/14

A cone *C* of \mathscr{A} is *normal* if there exists a constant $\alpha \ge 1$ such that it follows from $0 \le a \le b$ that $||a|| \le \alpha ||b||$. If we can take $\alpha = 1$, then we say that the norm is *monotone*.

A cone *C* is called an *algebra cone* of \mathscr{A} if $C \cdot C \subseteq C$ and $e \in C$. In this case \mathscr{A} is called an *ordered Banach algebra*. It is not hard to show that if *C* is a normal algebra cone, then it is proper.

A cone *C* of \mathscr{A} is *normal* if there exists a constant $\alpha \ge 1$ such that it follows from $0 \le a \le b$ that $||a|| \le \alpha ||b||$. If we can take $\alpha = 1$, then we say that the norm is *monotone*. A cone *C* is called an *algebra cone* of \mathscr{A} if $C \cdot C \subseteq C$ and $e \in C$. In this case \mathscr{A} is called an *ordered Banach algebra*. It is not hard to show that if *C* is a normal algebra cone, then it is proper.

A cone *C* of *A* is *normal* if there exists a constant $\alpha \ge 1$ such that it follows from $0 \le a \le b$ that $||a|| \le \alpha ||b||$. If we can take $\alpha = 1$, then we say that the norm is *monotone*. A cone *C* is called an *algebra cone* of *A* if $C \cdot C \subseteq C$ and $e \in C$. In this case *A* is called an *ordered Banach algebra*. It is not hard to show that if *C* is a normal algebra cone, then it is proper.

A cone *C* of \mathscr{A} is *normal* if there exists a constant $\alpha \ge 1$ such that it follows from $0 \le a \le b$ that $||a|| \le \alpha ||b||$. If we can take $\alpha = 1$, then we say that the norm is *monotone*. A cone *C* is called an *algebra cone* of \mathscr{A} if $C \cdot C \subseteq C$ and $e \in C$. In this case \mathscr{A} is called an *ordered Banach algebra*. It is not hard to show that if *C* is a normal algebra cone, then it is proper.

Let \mathscr{B} be a complex unital Banach algebra with unit *e*, and let \mathscr{A} be the algebra $\mathscr{B} \times \mathbb{C}$ endowed with multiplication $(a,\xi) \cdot (b,\eta) = (ab,\xi\eta)$. If we define the norm on the algebra \mathscr{A} by $||(a,\xi)|| = \max\{||a||, |\xi|\}$, then \mathscr{A} becomes a unital complex Banach algebra with the unit (e, 1).

Observe that $\sigma((a,\xi)) = \sigma(a) \cup \{\xi\}$ for all $a \in \mathscr{B}$ and $\xi \in \mathbb{C}$. Furthermore, if \mathscr{B} is a C^* -algebra, then \mathscr{A} is also a C^* -algebra with the involution defined by $(a,\xi)^* = (a^*, \overline{\xi})$.

Let \mathscr{B} be a complex unital Banach algebra with unit e, and let \mathscr{A} be the algebra $\mathscr{B} \times \mathbb{C}$ endowed with multiplication $(a,\xi) \cdot (b,\eta) = (ab,\xi\eta)$. If we define the norm on the algebra \mathscr{A} by $||(a,\xi)|| = \max\{||a||, |\xi|\}$, then \mathscr{A} becomes a unital complex Banach algebra with the unit (e, 1). Observe that $\sigma((a,\xi)) = \sigma(a) \cup \{\xi\}$ for all $a \in \mathscr{B}$ and $\xi \in \mathbb{C}$. Furthermore, if \mathscr{B} is a *C**-algebra, then \mathscr{A} is also a *C**-algebra with the involution defined by $(a,\xi)^* = (a^*, \overline{\xi})$.

Lemma

The Banach algebra \mathscr{A} is an ordered Banach algebra with the algebra cone

$${\sf K}=\{({\sf a},\xi)\in \mathscr{A}:\|{\sf a}\|\leq \xi\}$$

that is proper, closed and normal. Furthermore, if $e \neq a \in \mathscr{B}$, ||a|| = 1 and $\sigma(a) = \{1\}$, then $(a, 1) \in K$, $\sigma((a, 1)) = \{1\}$ and $(a, 1) - (e, 1) \notin K$.

Proof.

It is easy to see that *K* is an algebra cone that is proper and closed. To show its normality, assume $0 \le (a,\xi) \le (b,\eta)$, so that $||a|| \le \xi$ and $||b-a|| \le \eta - \xi$. Then $||a|| \le \xi \le \eta$, and so $||(a,\xi)|| \le \eta \le ||(b,\eta)||$. This shows that *K* is a normal cone. Assume that $e \ne a \in \mathscr{B}$, ||a|| = 1 and $\sigma(a) = \{1\}$. Then $(a,1) \in K$, $\sigma((a,1)) = \sigma(a) \cup \{1\} = \{1\}$ and $(a,1) - (e,1) = (a-e,0) \notin K$, since ||a-e|| > 0.

8/14

Lemma

The Banach algebra \mathscr{A} is an ordered Banach algebra with the algebra cone

$${\sf K}=\{({\sf a},\xi)\in \mathscr{A}:\|{\sf a}\|\leq \xi\}$$

that is proper, closed and normal. Furthermore, if $e \neq a \in \mathscr{B}$, ||a|| = 1 and $\sigma(a) = \{1\}$, then $(a, 1) \in K$, $\sigma((a, 1)) = \{1\}$ and $(a, 1) - (e, 1) \notin K$.

Proof.

It is easy to see that *K* is an algebra cone that is proper and closed. To show its normality, assume $0 \le (a,\xi) \le (b,\eta)$, so that $||a|| \le \xi$ and $||b-a|| \le \eta - \xi$. Then $||a|| \le \xi \le \eta$, and so $||(a,\xi)|| \le \eta \le ||(b,\eta)||$. This shows that *K* is a normal cone. Assume that $e \ne a \in \mathscr{B}$, ||a|| = 1 and $\sigma(a) = \{1\}$. Then $(a,1) \in K$, $\sigma((a,1)) = \sigma(a) \cup \{1\} = \{1\}$ and $(a,1) - (e,1) = (a-e,0) \notin K$, since ||a-e|| > 0.

Lemma

The Banach algebra \mathscr{A} is an ordered Banach algebra with the algebra cone

$${\sf K}=\{({\sf a},\xi)\in \mathscr{A}:\|{\sf a}\|\leq \xi\}$$

that is proper, closed and normal. Furthermore, if $e \neq a \in \mathscr{B}$, ||a|| = 1 and $\sigma(a) = \{1\}$, then $(a, 1) \in K$, $\sigma((a, 1)) = \{1\}$ and $(a, 1) - (e, 1) \notin K$.

Proof.

It is easy to see that *K* is an algebra cone that is proper and closed. To show its normality, assume $0 \le (a,\xi) \le (b,\eta)$, so that $||a|| \le \xi$ and $||b-a|| \le \eta - \xi$. Then $||a|| \le \xi \le \eta$, and so $||(a,\xi)|| \le \eta \le ||(b,\eta)||$. This shows that *K* is a normal cone. Assume that $e \ne a \in \mathscr{B}$, ||a|| = 1 and $\sigma(a) = \{1\}$. Then $(a,1) \in K$, $\sigma((a,1)) = \sigma(a) \cup \{1\} = \{1\}$ and $(a,1) - (e,1) = (a-e,0) \notin K$, since ||a-e|| > 0.

The ordered Banach algebra \mathscr{A} was used in the literature to prove some theorems for elements of \mathscr{B} by working in \mathscr{A} .

Theorem (Drnovšek, 2018)

There exist an ordered Banach algebra \mathscr{A} with a closed and normal algebra cone and a positive element $a \in \mathscr{A}$ such that $\sigma(a) = \{1\}$ and a is not greater than or equal to the unit element of \mathscr{A} .

The ordered Banach algebra \mathscr{A} was used in the literature to prove some theorems for elements of \mathscr{B} by working in \mathscr{A} .

Theorem (Drnovšek, 2018)

There exist an ordered Banach algebra \mathscr{A} with a closed and normal algebra cone and a positive element $a \in \mathscr{A}$ such that $\sigma(a) = \{1\}$ and a is not greater than or equal to the unit element of \mathscr{A} .

Let \mathscr{B} be the Banach algebra of all bounded linear operators on the Hilbert space $L^2[0,1]$, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above.

Let *V* be the Volterra operator on $L^2[0,1]$, that is, the operator defined by $(Vf)(x) = \int_0^x f(y) dy$ $(f \in L^2[0,1], x \in [0,1])$. Since $\sigma(V) = \{0\}$, the operator $T = (I+V)^{-1}$ has the spectrum $\sigma(T) = \{1\}$, and it is not equal to the identity operator *I*. Let us prove that ||T|| = 1. The inequality $||Tf|| \le ||f||$ for $f \in L^2[0,1]$ is equivalent to the inequality $||T^{-1}g|| \ge ||g||$ for $g \in L^2[0,1]$, that is, $||(I+V)g|| \ge ||g||$. Now, we have

 $||(I+V)g||^{2} = ||g||^{2} + \langle (V+V^{*})g,g \rangle + ||Vg||^{2} \ge ||g||^{2},$

since the operator $V + V^*$ is the projection onto one-dimensional subspace of constant functions. Then it follows from Lemma that $(T,1) \in K$, $\sigma((T,1)) = \{1\}$ and $(T,1) - (I,1) \notin K$.

Let \mathscr{B} be the Banach algebra of all bounded linear operators on the Hilbert space $L^2[0,1]$, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above. Let V be the Volterra operator on $L^{2}[0,1]$, that is, the operator defined by $(Vf)(x) = \int_0^x f(y) dy$ $(f \in L^2[0,1], x \in [0,1]).$

 $||(I+V)g||^{2} = ||g||^{2} + \langle (V+V^{*})g,g \rangle + ||Vg||^{2} \ge ||g||^{2},$

since the operator $V + V^*$ is the projection onto one-dimensional subspace of constant functions. Then it follows from Lemma that $(T,1) \in K$, $\sigma((T,1)) = \{1\}$ and $(T,1) - (I,1) \notin K$.

Let \mathscr{B} be the Banach algebra of all bounded linear operators on the Hilbert space $L^2[0,1]$, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above. Let V be the Volterra operator on $L^{2}[0, 1]$, that is, the operator defined by $(Vf)(x) = \int_0^x f(y) dy$ $(f \in L^2[0,1], x \in [0,1]).$ Since $\sigma(V) = \{0\}$, the operator $T = (I + V)^{-1}$ has the spectrum $\sigma(T) = \{1\}$, and it is not equal to the identity operator *I*.

 $||(I+V)g||^{2} = ||g||^{2} + \langle (V+V^{*})g,g \rangle + ||Vg||^{2} \ge ||g||^{2},$

since the operator $V + V^*$ is the projection onto one-dimensional subspace of constant functions. Then it follows from Lemma that $(T,1) \in K$, $\sigma((T,1)) = \{1\}$ and $(T,1) - (I,1) \notin K$.

Let \mathscr{B} be the Banach algebra of all bounded linear operators on the Hilbert space $L^2[0,1]$, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above. Let V be the Volterra operator on $L^{2}[0, 1]$, that is, the operator defined by $(Vf)(x) = \int_0^x f(y) dy$ $(f \in L^2[0,1], x \in [0,1]).$ Since $\sigma(V) = \{0\}$, the operator $T = (I + V)^{-1}$ has the spectrum $\sigma(T) = \{1\}$, and it is not equal to the identity operator *I*. Let us prove that ||T|| = 1. The inequality $||Tf|| \le ||f||$ for $f \in L^2[0, 1]$ is equivalent to the inequality $||T^{-1}g|| \ge ||g||$ for $g \in L^{2}[0,1]$, that is, $||(I+V)g|| \ge ||g||$. Now, we have

 $\|(I+V)g\|^2 = \|g\|^2 + \langle (V+V^*)g,g \rangle + \|Vg\|^2 \ge \|g\|^2$,

since the operator $V + V^*$ is the projection onto one-dimensional subspace of constant functions. Then it follows from Lemma that $(T,1) \in K$, $\sigma((T,1)) = \{1\}$ and $(T,1) - (l,1) \notin K$.

Let *B* be the Banach algebra of all bounded linear operators on the Hilbert space $L^2[0,1]$, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above. Let V be the Volterra operator on $L^{2}[0,1]$, that is, the operator defined by $(Vf)(x) = \int_0^x f(y) dy$ $(f \in L^2[0,1], x \in [0,1]).$ Since $\sigma(V) = \{0\}$, the operator $T = (I + V)^{-1}$ has the spectrum $\sigma(T) = \{1\}$, and it is not equal to the identity operator *I*. Let us prove that ||T|| = 1. The inequality $||Tf|| \le ||f||$ for $f \in L^2[0, 1]$ is equivalent to the inequality $||T^{-1}g|| \ge ||g||$ for $g \in L^{2}[0,1]$, that is, $||(I+V)g|| \ge ||g||$. Now, we have

 $\|(I+V)g\|^2 = \|g\|^2 + \langle (V+V^*)g,g \rangle + \|Vg\|^2 \ge \|g\|^2$,

since the operator $V + V^*$ is the projection onto one-dimensional subspace of constant functions. Then it follows from Lemma that $(T, 1) \in K$, $\sigma((T, 1)) = \{1\}$ and $(T, 1) - (I, 1) \notin K$. Infinite-dimensionality of the Hilbert space $L^2[0,1]$ is essential in the proof of Theorem, as we have the following observation.

Proposition

Let \mathscr{B} be the Banach algebra of all linear operators on a finite-dimensional Hilbert space, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above. If $(A, \xi) \in K$ with $\sigma((A, \xi)) = \{1\}$, then (A, ξ) is equal to the unit element (I, 1) of \mathscr{A} .

Proof.

Since $\sigma((A,\xi)) = \{1\}$ and $||A|| \le \xi$, we have $\sigma(A) = \{1\}$, $\xi = 1$, ||A|| = 1, and *A* is unitarily equivalent to triangular matrix that has only 1's on the diagonal. Its norm can be 1 only in the case when A = I.

≣ ৩৭ে 11/14 Infinite-dimensionality of the Hilbert space $L^2[0,1]$ is essential in the proof of Theorem, as we have the following observation.

Proposition

Let \mathscr{B} be the Banach algebra of all linear operators on a finite-dimensional Hilbert space, and let $\mathscr{A} = \mathscr{B} \times \mathbb{C}$ be an ordered Banach algebra as defined above. If $(A, \xi) \in K$ with $\sigma((A, \xi)) = \{1\}$, then (A, ξ) is equal to the unit element (I, 1) of \mathscr{A} .

Proof.

Since $\sigma((A,\xi)) = \{1\}$ and $||A|| \le \xi$, we have $\sigma(A) = \{1\}$, $\xi = 1$, ||A|| = 1, and *A* is unitarily equivalent to triangular matrix that has only 1's on the diagonal. Its norm can be 1 only in the case when A = I.

11/14

Theorem

Let \mathscr{A} be an ordered Banach algebra with a closed and normal algebra cone *C*. If $a \in C$ then $r(a) \in \sigma(a)$.

This theorem follows from

Theorem (Raubenheimer-Rode, 1995)

Let \mathscr{A} be an ordered Banach algebra with a closed algebra cone *C*. Assume that the spectral radius is monotone on *C*, i.e., if $0 \le a \le b$, then $r(a) \le r(b)$. If $a \in C$ then $r(a) \in \sigma(a)$.

Theorem

Let \mathscr{A} be an ordered Banach algebra with a closed and normal algebra cone *C*. If $a \in C$ then $r(a) \in \sigma(a)$.

This theorem follows from

Theorem (Raubenheimer-Rode, 1995)

Let \mathscr{A} be an ordered Banach algebra with a closed algebra cone *C*. Assume that the spectral radius is monotone on *C*, i.e., if $0 \le a \le b$, then $r(a) \le r(b)$. If $a \in C$ then $r(a) \in \sigma(a)$.

We may assume that r(a) = 1. Suppose that $1 \notin \sigma(a)$. Choose $\alpha \in (0, 1)$ such that $\sigma(a) \subseteq \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \leq \alpha\}$. Given t > 0, the spectral mapping theorem implies that

$$\sigma(e^{ta}) = e^{t\sigma(a)} \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le e^{t\alpha}\}.$$

Since $a \in C$ and C is closed, we have

$$e^{ta}=1+ta+\frac{t^2}{2!}a^2+\ldots\in C,$$

so that

$$0 \leq \frac{t^n a^n}{n!} \leq e^{ta}$$

for all *n* and for all t > 0. It follows that

$$\frac{t^n}{n!} = r\left(\frac{t^n a^n}{n!}\right) \le e^{t\alpha} \; .$$

We may assume that r(a) = 1. Suppose that $1 \notin \sigma(a)$. Choose $\alpha \in (0, 1)$ such that $\sigma(a) \subseteq \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \leq \alpha\}$. Given t > 0, the spectral mapping theorem implies that

$$\sigma(e^{ta}) = e^{t\sigma(a)} \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le e^{tlpha}\}.$$

Since $a \in C$ and C is closed, we have

$$e^{ta}=1+ta+\frac{t^2}{2!}a^2+\ldots\in C,$$

so that

$$0 \leq rac{t^n a^n}{n!} \leq e^{ta}$$

for all *n* and for all t > 0. It follows that

$$\frac{t^n}{n!}=r\left(\frac{t^na^n}{n!}\right)\leq e^{t\alpha}\;.$$

3/14

We may assume that r(a) = 1. Suppose that $1 \notin \sigma(a)$. Choose $\alpha \in (0, 1)$ such that $\sigma(a) \subseteq \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \leq \alpha\}$. Given t > 0, the spectral mapping theorem implies that

$$\sigma(e^{ta}) = e^{t\sigma(a)} \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le e^{tlpha}\}.$$

Since $a \in C$ and C is closed, we have

$$e^{ta}=1+ta+\frac{t^2}{2!}a^2+\ldots\in C,$$

so that

$$0 \leq rac{t^n a^n}{n!} \leq e^{ta}$$

for all *n* and for all t > 0. It follows that

$$\frac{t^n}{n!}=r\left(\frac{t^na^n}{n!}\right)\leq e^{t\alpha}$$

Proof continued.

Putting $t = \frac{n}{\alpha}$, we obtain that

$$\frac{n^n}{\alpha^n n!} \le e^n,$$

and so

$$\frac{1}{n!}\left(\frac{n}{e}\right)^n \leq \alpha^n.$$

Now, we recall Stirling's formula

$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}}{n!}\left(\frac{n}{e}\right)^n=1.$$

It follows that

$$1 \leq \lim_{n \to \infty} \sqrt{2\pi n} \cdot \alpha^n = 0$$

A contradiction.

≣ প্র্ি 14/14

Proof continued.

Putting $t = \frac{n}{\alpha}$, we obtain that

$$\frac{n^n}{\alpha^n n!} \le e^n,$$

and so

$$\frac{1}{n!}\left(\frac{n}{e}\right)^n \leq \alpha^n.$$

Now, we recall Stirling's formula

$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}}{n!}\left(\frac{n}{e}\right)^n=1.$$

It follows that

$$1 \leq \lim_{n \to \infty} \sqrt{2\pi n} \cdot \alpha^n = 0$$
.

A contradiction.

≣ প্র্ে 14/14

Proof continued.

Putting $t = \frac{n}{\alpha}$, we obtain that

$$\frac{n^n}{\alpha^n n!} \le e^n,$$

and so

$$\frac{1}{n!}\left(\frac{n}{e}\right)^n \leq \alpha^n.$$

Now, we recall Stirling's formula

$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}}{n!}\left(\frac{n}{e}\right)^n=1.$$

It follows that

$$1 \leq \lim_{n \to \infty} \sqrt{2\pi n} \cdot \alpha^n = 0$$
.

A contradiction.

≣ প্র্ে 14/14