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If T is a positive operator on a complex Banach lattice E with
the spectrum o(T) = {1}, does it follow that T is greater than or
equal to the identity operator /?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is
affirmative. One of the proofs is the following.

Since T — I is nilpotent, we have tr((T — /)) = 0. If the matrix of

T is [tj]7;_, then we obtain that

M:

(ti —1)?+ nonnegative terms =0 .

i=1
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equal to the identity operator /?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is
affirmative. One of the proofs is the following.

Since T — I is nilpotent, we have tr((T — /)) = 0. If the matrix of

T is [tj]7;_, then we obtain that

M:

(ti —1)?+ nonnegative terms =0 .

i=1

It follows that t; = 1 for all /, showing that T > /.
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Theorem (Zhang, 1993)

The answer to HAP question is affirmative if we assume in
addition that there exist o. € (0, %) and a constant ¢ > 0 such
that || T~"|| = O(exp(cn®*)) as n — eo.
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In the proof of this theorem we define the operator valued entire
function that is of minimal type with respect to the order 1 and is
bounded on the real axis.
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Theorem (Zhang, 1993)

The answer to HAP question is affirmative if we assume in
addition that there exist o. € (0, %) and a constant ¢ > 0 such
that || T~"|| = O(exp(cn®*)) as n — eo.

Theorem (Drnovsek, 2007)

A positive operator T on E is greater than or equal to the
identity operator | provided

i _ nnpl/n _
fim n[[(T~1)"]"/"=0.

’

In the proof of this theorem we define the operator valued entire
function that is of minimal type with respect to the order 1 and is
bounded on the real axis. We then use the Phragmén-Lindel&f
theorem to conclude that the function is necessarily constant.
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In general this problem that is important for the spectral theory
of positive operators is still open.
30 years ago, Zhang also proved the following theorem.

Theorem (Zhang, 1993)

Let T be a positive operator on a complex Banach lattice E with
the spectrum o(T)={1}. Ife € (0,1), then there exists a
positive integer n such that

T">(1—¢)"l .
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In 2003, Mouton investigated this question in the context of
ordered Banach algebras.

Let <7 be a complex Banach algebra with unit e. A nonempty
set Cis called a coneof &7 if C+C C Cand AC C C for all

A > 0. If, in addition, CN(—C) = {0}, then C is said to be a
proper cone. A cone C of &/ is closed if it is a closed subset of
.
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Let o7 be a complex Banach algebra with unit e. A nonempty
set Cis called a coneof &7 if C+C C Cand AC C C for all

A > 0. If, in addition, CN(—C) = {0}, then C is said to be a
proper cone. A cone C of &/ is closed if it is a closed subset of
.

Any proper cone C induces an ordering < in the following way:

a<b <+ b-acC.

It is easy to see that this ordering is a partial order (reflexive,
antisymmetric, and transitive). Clearly, C = {ac€ &/ : a> 0}, and
so elements of C are called positive.
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A cone C of <7 is normal if there exists a constant a > 1 such
that it follows from 0 < a < b that ||a|| < «||b]|. If we can take
o = 1, then we say that the norm is monotone.
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A cone C of <7 is normal if there exists a constant a > 1 such
that it follows from 0 < a < b that ||a|| < a||b]|. If we can take

o = 1, then we say that the norm is monotone.

A cone C is called an algebra cone of <7 if C-CC Cand e€ C.
In this case 7 is called an ordered Banach algebra.

It is not hard to show that if C is a normal algebra cone, then it
is proper.
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Let # be a complex unital Banach algebra with unit e, and let
</ be the algebra % x C endowed with multiplication
(a,&)-(b,n) = (ab,&én). If we define the norm on the algebra .7
by ||(a,&)|| = max{||a||,|&]|}, then o« becomes a unital complex
Banach algebra with the unit (e, 1).
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Let # be a complex unital Banach algebra with unit e, and let
</ be the algebra % x C endowed with multiplication
(a,&)-(b,n) = (ab,&én). If we define the norm on the algebra .7
by ||(a,&)|| = max{||a||,|&]|}, then o« becomes a unital complex
Banach algebra with the unit (e, 1).

Observe that 6((a,§)) =o(a)u{&} forallae Z and £ € C.
Furthermore, if # is a C*-algebra, then < is also a C*-algebra
with the involution defined by (a,&)* = (a*,&).
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Lemma

The Banach algebra <7 is an ordered Banach algebra with the
algebra cone

K={(aé)e:|al| <&}
that is proper, closed and normal. Furthermore, ife + a € A,
llall =1 and o(a) = {1}, then (a,1) € K, o((a,1)) ={1} and
(371)_(9,1) gK
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The Banach algebra <7 is an ordered Banach algebra with the
algebra cone
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that is proper, closed and normal. Furthermore, ife + a € A,
llall =1 and o(a) = {1}, then (a,1) € K, o((a,1)) ={1} and
(371)_(9,1) gK

Proof.

It is easy to see that K is an algebra cone that is proper and
closed. To show its normality, assume 0 < (a,&) < (b,n), so
that ||a]| <& and |[b—a||<n—&. Then ||a]| <& <n,and so
l(@,&)|l <n <|l(b,n)|. This shows that K is a normal cone.

| A\
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that is proper, closed and normal. Furthermore, ife + a € A,
llall =1 and o(a) = {1}, then (a,1) € K, o((a,1)) ={1} and
(a,1)—(e,1) ¢ K.

Proof.

It is easy to see that K is an algebra cone that is proper and
closed. To show its normality, assume 0 < (a,&) < (b,n), so
that ||a]| <& and |[b—a||<n—&. Then ||a]| <& <n,and so
l(@,&)|l <n <|l(b,n)|. This shows that K is a normal cone.
Assume thate# ac 4, ||al| =1 and o(a) ={1}. Then

(a,1)e K, o((a,1))=0c(agu{1}={1}and
(a,1)—(e,1)=(a—e,0) £ K, since ||a—e|| > 0. O
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The ordered Banach algebra <7 was used in the literature to
prove some theorems for elements of % by working in <.
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The ordered Banach algebra <7 was used in the literature to
prove some theorems for elements of % by working in .

Theorem (Drnovsek, 2018)

There exist an ordered Banach algebra </ with a closed and
normal algebra cone and a positive element a € </ such that
o(a)={1} and a is not greater than or equal to the unit
element of <7 .
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Proof.

Let % be the Banach algebra of all bounded linear operators on
the Hilbert space L2[0,1], and let <7 = % x C be an ordered
Banach algebra as defined above.
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Let us prove that || T|| = 1. The inequality || T7|| < ||f| for

f € L2[0,1] is equivalent to the inequality | T~'g| > ||g|| for

g € L2[0,1], that s, ||(/+ V)g|| > ||g||. Now, we have

11+ V)gII? = llgl® +((V+ V*)g.9) + IVl > llgll? ,

since the operator V + V* is the projection onto
one-dimensional subspace of constant functions.
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Let us prove that || T|| = 1. The inequality || T7|| < ||f| for

f € L2[0,1] is equivalent to the inequality | T~'g| > ||g|| for

g € L2[0,1], that s, ||(/+ V)g|| > ||g||. Now, we have

11+ V)gII? = llgl® +((V+ V*)g.9) + IVl > llgll? ,

since the operator V + V* is the projection onto
one-dimensional subspace of constant functions.

Then it follows from Lemma that (7,1) € K, ((T,1)) ={1} and
(T,1)—(1,1) K. N
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Infinite-dimensionality of the Hilbert space L2[0, 1] is essential
in the proof of Theorem, as we have the following observation.

Proposition

Let # be the Banach algebra of all linear operators on a
finite-dimensional Hilbert space, and let o« = % x C be an
ordered Banach algebra as defined above. If (A,§) € K with
o((A,&))={1}, then (A,&) is equal to the unit element (I,1) of
o .
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Infinite-dimensionality of the Hilbert space L2[0, 1] is essential
in the proof of Theorem, as we have the following observation.

Proposition

Let # be the Banach algebra of all linear operators on a
finite-dimensional Hilbert space, and let o« = % x C be an
ordered Banach algebra as defined above. If (A,§) € K with
o((A,&))={1}, then (A,&) is equal to the unit element (I,1) of

Proof.

Since o((A,&))={1} and ||A|| <&, we have o(A) = {1}, & =1,
||All =1, and A is unitarily equivalent to triangular matrix that
has only 1’s on the diagonal. lts norm can be 1 only in the case
when A= 1. Ol

|\

v
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Let of be an ordered Banach algebra with a closed and normal
algebra cone C. Ifac C then r(a) € o(a).

12 /14



Let of be an ordered Banach algebra with a closed and normal
algebra cone C. Ifac C then r(a) € o(a).

This theorem follows from
Theorem (Raubenheimer-Rode, 1995)

Let o7 be an ordered Banach algebra with a closed algebra
cone C. Assume that the spectral radius is monotone on C, i.e.,
if0<a<b,thenr(a)<r(b). Ifac Cthenr(a)c o(a).
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Proof.

We may assume that r(a) = 1. Suppose that 1 ¢ o(a). Choose
o €(0,1) such that 6(a) C {A € C: ReA < a}. Given t > 0, the
spectral mapping theorem implies that

o(e") =@ c {A e C: |A| < e}

.
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Since a e C and C is closed, we have
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so that

nan
ta" _

0<

for all n and for all ¢t > 0. It follows that

n n Aan
t:r<ta>§e’“.
n! n!
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Proof continued.

Putting t = 7, we obtain that

n o
atnl —
and so . ;
n
ale) ser
n' \e
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Proof continued.
n

Putting t = 2, we obtain that

o

n

<é",

oan! —

% (g)n <a.

Now, we recall Stirling’s formula

and so

lim

n—e !

e

T
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Proof continued.

Putting t = Z, we obtain that

n

oan! —

and so

<é

n

% (g)n <a.

Now, we recall Stirling’s formula

lim \/27”(

n—e !

It follows that

1< limv2zn-a"=0.

nN—o0

A contradiction.

n

e

)n=1.
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