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More than 30 years ago, Huijsmans and de Pagter posed the

following question:

If T is a positive operator on a complex Banach lattice E with

the spectrum σ(T ) = {1}, does it follow that T is greater than or

equal to the identity operator I?

This question was studied by several authors.

In the finite-dimensional case the answer to HdP question is

affirmative. One of the proofs is the following.

Since T − I is nilpotent, we have tr((T − I)2) = 0. If the matrix of

T is [tij ]ni ,j=1, then we obtain that

n

∑
i=1

(tii −1)2 + nonnegative terms = 0 .

It follows that tii = 1 for all i , showing that T ≥ I.
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Theorem (Zhang, 1993)

The answer to HdP question is affirmative if we assume in
addition that there exist α ∈ (0, 1

2) and a constant c ≥ 0 such
that ‖T−n‖= O(exp(cnα)) as n→ ∞.

Theorem (Drnovšek, 2007)
A positive operator T on E is greater than or equal to the
identity operator I provided

lim
n→∞

n‖(T − I)n‖1/n = 0 .

In the proof of this theorem we define the operator valued entire

function that is of minimal type with respect to the order 1 and is

bounded on the real axis. We then use the Phragmén-Lindelöf

theorem to conclude that the function is necessarily constant.
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In general this problem that is important for the spectral theory

of positive operators is still open.

30 years ago, Zhang also proved the following theorem.

Theorem (Zhang, 1993)
Let T be a positive operator on a complex Banach lattice E with
the spectrum σ(T ) = {1}. If ε ∈ (0,1), then there exists a
positive integer n such that

T n ≥ (1− ε)nI .

4 / 14



In 2003, Mouton investigated this question in the context of

ordered Banach algebras.

Let A be a complex Banach algebra with unit e. A nonempty

set C is called a cone of A if C +C ⊆ C and λC ⊆ C for all

λ ≥ 0. If, in addition, C∩ (−C) = {0}, then C is said to be a

proper cone. A cone C of A is closed if it is a closed subset of

A .

Any proper cone C induces an ordering ≤ in the following way:

a≤ b ⇐⇒ b−a ∈ C.

It is easy to see that this ordering is a partial order (reflexive,

antisymmetric, and transitive). Clearly, C = {a ∈A : a≥ 0}, and

so elements of C are called positive.
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A cone C of A is normal if there exists a constant α ≥ 1 such

that it follows from 0≤ a≤ b that ‖a‖ ≤ α‖b‖. If we can take

α = 1, then we say that the norm is monotone.

A cone C is called an algebra cone of A if C ·C ⊆ C and e ∈ C.

In this case A is called an ordered Banach algebra.

It is not hard to show that if C is a normal algebra cone, then it

is proper.
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Let B be a complex unital Banach algebra with unit e, and let

A be the algebra B×C endowed with multiplication

(a,ξ ) · (b,η) = (ab,ξ η). If we define the norm on the algebra A

by ‖(a,ξ )‖= max{‖a‖, |ξ |}, then A becomes a unital complex

Banach algebra with the unit (e,1).

Observe that σ((a,ξ )) = σ(a)∪{ξ} for all a ∈B and ξ ∈ C.

Furthermore, if B is a C∗-algebra, then A is also a C∗-algebra

with the involution defined by (a,ξ )∗ = (a∗,ξ ).
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Lemma

The Banach algebra A is an ordered Banach algebra with the
algebra cone

K = {(a,ξ ) ∈A : ‖a‖ ≤ ξ}

that is proper, closed and normal. Furthermore, if e 6= a ∈B,
‖a‖= 1 and σ(a) = {1}, then (a,1) ∈ K , σ((a,1)) = {1} and
(a,1)− (e,1) 6∈ K .

Proof.
It is easy to see that K is an algebra cone that is proper and
closed. To show its normality, assume 0≤ (a,ξ )≤ (b,η), so
that ‖a‖ ≤ ξ and ‖b−a‖ ≤ η−ξ . Then ‖a‖ ≤ ξ ≤ η , and so
‖(a,ξ )‖ ≤ η ≤ ‖(b,η)‖. This shows that K is a normal cone.
Assume that e 6= a ∈B, ‖a‖= 1 and σ(a) = {1}. Then
(a,1) ∈ K , σ((a,1)) = σ(a)∪{1}= {1} and
(a,1)− (e,1) = (a−e,0) 6∈ K , since ‖a−e‖> 0.
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The ordered Banach algebra A was used in the literature to

prove some theorems for elements of B by working in A .

Theorem (Drnovšek, 2018)

There exist an ordered Banach algebra A with a closed and
normal algebra cone and a positive element a ∈A such that
σ(a) = {1} and a is not greater than or equal to the unit
element of A .
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Proof.
Let B be the Banach algebra of all bounded linear operators on
the Hilbert space L2[0,1], and let A = B×C be an ordered
Banach algebra as defined above.
Let V be the Volterra operator on L2[0,1], that is, the operator
defined by (Vf )(x) =

∫ x
0 f (y)dy (f ∈ L2[0,1], x ∈ [0,1]).

Since σ(V ) = {0}, the operator T = (I +V )−1 has the spectrum
σ(T ) = {1}, and it is not equal to the identity operator I.
Let us prove that ‖T‖= 1. The inequality ‖Tf‖ ≤ ‖f‖ for
f ∈ L2[0,1] is equivalent to the inequality ‖T−1g‖ ≥ ‖g‖ for
g ∈ L2[0,1], that is, ‖(I +V )g‖ ≥ ‖g‖. Now, we have

‖(I +V )g‖2 = ‖g‖2 + 〈(V +V ∗)g,g〉+‖Vg‖2 ≥ ‖g‖2 ,

since the operator V +V ∗ is the projection onto
one-dimensional subspace of constant functions.
Then it follows from Lemma that (T ,1) ∈ K , σ((T ,1)) = {1} and
(T ,1)− (I,1) 6∈ K .
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Infinite-dimensionality of the Hilbert space L2[0,1] is essential

in the proof of Theorem, as we have the following observation.

Proposition
Let B be the Banach algebra of all linear operators on a
finite-dimensional Hilbert space, and let A = B×C be an
ordered Banach algebra as defined above. If (A,ξ ) ∈ K with
σ((A,ξ )) = {1}, then (A,ξ ) is equal to the unit element (I,1) of
A .

Proof.
Since σ((A,ξ )) = {1} and ‖A‖ ≤ ξ , we have σ(A) = {1}, ξ = 1,
‖A‖= 1, and A is unitarily equivalent to triangular matrix that
has only 1’s on the diagonal. Its norm can be 1 only in the case
when A = I.
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Theorem
Let A be an ordered Banach algebra with a closed and normal
algebra cone C. If a ∈ C then r(a) ∈ σ(a).

This theorem follows from

Theorem (Raubenheimer-Rode, 1995)

Let A be an ordered Banach algebra with a closed algebra
cone C. Assume that the spectral radius is monotone on C, i.e.,
if 0≤ a≤ b, then r(a)≤ r(b). If a ∈ C then r(a) ∈ σ(a).
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Proof.
We may assume that r(a) = 1. Suppose that 1 6∈ σ(a). Choose
α ∈ (0,1) such that σ(a)⊆ {λ ∈ C : Reλ ≤ α}. Given t > 0, the
spectral mapping theorem implies that

σ(eta) = etσ(a) ⊆ {λ ∈ C : |λ | ≤ etα}.

Since a ∈ C and C is closed, we have

eta = 1+ ta+
t2

2!
a2 + . . . ∈ C,

so that
0≤ tnan

n!
≤ eta

for all n and for all t > 0. It follows that

tn

n!
= r
(

tnan

n!

)
≤ etα .
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Proof continued.
Putting t = n

α
, we obtain that

nn

αn n!
≤ en,

and so
1
n!

(n
e

)n
≤ α

n.

Now, we recall Stirling’s formula

lim
n→∞

√
2πn
n!

(n
e

)n
= 1.

It follows that
1≤ lim

n→∞

√
2πn ·αn = 0 .

A contradiction.
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