Direct limits in the category of Banach lattices and almost interval preserving contractions

Chun Ding joint work with Marcel de Jeu

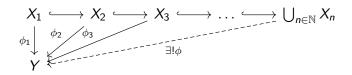
Leiden University

Workshop on Ordered Vector Spaces and Positive Operators Wuppertal, March 31, 2023

Intuition on direct limits

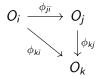
Example

Suppose (X_n) is an increasing sequence of subspaces of a linear space X, then the union $\bigcup_{n \in \mathbb{N}} X_n$ has a universal property: for any linear space Y and a set of linear maps ϕ_n that form a commutative diagram, there exists a unique linear map ϕ that can fill in the dashed arrow.

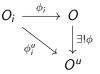


Denfinition of direct limits

Direct system $((O_i), (\phi_{ji})_{j \ge i})$



Direct limit $(O^u, (\phi^u_i))$



Standard construction in the category of Banach spaces and contractions

Let $((O_i), (\phi_{ji})_{j \ge i})$ be a direct system in the category of Banach spaces and contractions, then

$$\phi_i^u(x) = (\phi_{ji}(x))/\sim \in \prod_i O_i / \bigoplus_i O_i$$
 $O^u = \overline{\bigcup_i \phi_i^u(O_i)}$

is a direct limit, where

$$\prod_{i} O_i := \{(x_i) : x_i \in O_i, \sup_i ||x_i|| < \infty\}$$
$$\bigoplus_{i} O_i := \{(x_i) : x_i \in O_i, ||x_i|| \to 0 \text{ as } i \to \infty\}$$

and we take the convention that $\phi_{ji} = 0$ if $j \not\geq i$

Category of Banach lattices and almost interval preserving contractions

Category **AIP**₁ obejects: Banach lattices morphisms: almost interval preserving contractions

Definition

A positive linear map $\phi: E \to F$ between Banach lattices is *almost interval preserving* if

$$\overline{\phi([0,x])} = [0,\phi(x)] \quad (x \ge 0)$$

Example

- 1. a lattice homomorphism with a dense image
- 2. $\mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x, y) \mapsto \frac{x+y}{2}$

Dual relation between lattice homomorphisms and almost interval preserving maps

Theorem

Let $T: E \to F$ be a coutinuous linear operator between Banach lattices, then

(a) T is almost interval preserving iff the self-adjoint operator $T^*: F^* \to E^*$ between spaces of continuous functionals is a lattice homomorphism.

(b) T is a lattice homomorphism iff T^* is (almost) interval preserving.

Standard construction may not work

1. If every morphism in a direct system in AIP_1 is a lattice homomorphism, then the standard construction of a direct limit in the Banach spaces category still work in AIP_1 .

2. Let $E_i = \ell^p$ $(i \in \mathbb{N})$,

$$\phi_{i+1,i}: E_i \to E_{i+1},$$

(x₁, x₂,...) \mapsto (x₁,..., x_{i-1}, $\frac{x_i + x_{i+1}}{2}$, x_{i+2}, x_{i+3},...),

and ϕ_{ji} be the composition of $\phi_{j,j-1}, \phi_{j-1,j-2}, \ldots, \phi_{i+1,i}$. Then $((E_i), (\phi_{ji})_{j\geq i})$ is a direct system in **AIP**₁. The standard construction of a direct limit does not work when $p = \infty$. Main reason: the pair (f, g) of almost interval preserving maps f and g may fail to be almost interval preserving.

A Banach lattice is said to be *order continuous* if each order convergent net in the Banach lattice is norm convergent.

Theorem

A Banach lattice is order continuous iff the canonical embedding to its second dual is (almost) interval preserving.

Invariant property of direct limits

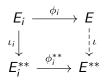
Theorem

Let $(E, (\phi_i))$ be a direct limit of a direct system $((E_i), (\phi_{ji})_{j \ge i})$ in **AIP**₁. If each E_i is order continuous, so is E.

Key points of proof.

 A Banach lattice is order continuous iff the canonical embedding to its second dual is (almost) interval preserving.
 A linaer map between Banach spaces is almost interval preserving iff its doulble adjoint is.

3.



イロン イヨン イヨン イヨン 三日

Application

A *Banach function space* over a measure space is an order ideal of the space of all equivalence classes of all measurable functions supplied with a Banach lattice norm.

Corollary

Let X be a metric space and μ a measure on all Borel sets of X. If E is a Banach function space over (X, μ) and $C_c(X)$ is continuously included in and dense E, then E is order continuous.

Proof.

 $C_c(X)$ is dense in E $\Rightarrow C(K)$ is dense in $E_K = \{f\chi_K : f \in E\}$ for any compact subset K of X $\Rightarrow E_K$ is separable and thus order continuous $\Rightarrow E = \bigcup_{K \text{ compact}} E_K$, being a direct limit of (E_K) , is order continuous.

Thank you!

Summary

 The existence of a direct limit in the category AIP₁ of Banach lattices and almost interval preserving contractions remains unclear.
 A direct limit in AIP₁ preserves the order continuity property.
 Paper available on arXiv:
 Direct limits in categories of normed vector lattices and Banach lattices