< 口 > < 同 >

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

Florian Boisen

TU Dresden

March 2023

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

TU Dresden 1 / 38

< ロ > < 同 > < 三 > < 三 >

Definition

Let X, Y be ordered vector spaces and $T: X \to Y$ a linear operator.

(i) T is called *interval preserving* if T is positive and

$$\forall x \in X_+ : \quad T[0, x] = [0, Tx].$$

 (ii) Let X[∼] denote the space of all order bounded linear functionals on X. If T is order bounded, then the linear operator

$$T^{\sim} \colon Y^{\sim} \longrightarrow X^{\sim}, \quad g \longmapsto g \circ T$$

is called the order adjoint of T.

Florian Boisen

TU Dresden

-

Theorem (Kim-Andô, 1975)

Let X, Y be vector lattices and T : $X \rightarrow Y$ a positive operator.

T int. pres. \longrightarrow T[~] Riesz hom.

Theorem (Kim-Andô, 1975)

Let X, Y be vector lattices and T : $X \rightarrow Y$ a positive operator.

Can this be generalized to the setting of ordered vector spaces? (Joint work with A. Kalauch, O. van Gaans, and J. Stennder.)

$${}^{1}\text{i.e., } \forall y \in Y : y = 0 \Leftrightarrow \forall g \in Y^{\sim} : g(y) = 0 \qquad \quad \text{ and } a \in \mathbb{R} \text{ for } a \in \mathbb{R} \text{$$

TU Dresden

∃ ► < ∃ ►</p>

A first generalization

Proof of T int. pres. \Rightarrow T[~] Riesz hom.

Suppose that $T: X \to Y$ is interval preserving. For every $g \in Y^{\sim}$ and $x \in X_+$, we have

$$T^{\sim}(g^{+})(x) = g^{+}(Tx)$$

= sup {g(v); v \in [0, Tx]}
= sup {g(v); v \in T[0, x]}
= sup {g(Tu); u \in [0, x]}
= (g \circ T)^{+}(x) = T^{\sim}(g)^{+}(x).

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

A first generalization

Proof of T int. pres. \Rightarrow T[~] Riesz hom.

Suppose that $T: X \to Y$ is interval preserving. For every $g \in Y^{\sim}$ and $x \in X_+$, we have

$$T^{\sim}(g^{+})(x) = g^{+}(Tx)$$

= sup {g(v); v \in [0, Tx]}
= sup {g(v); v \in T[0, x]}
= sup {g(Tu); u \in [0, x]}
= (g \circ T)^{+}(x) = T^{\sim}(g)^{+}(x).

The proof only relies on the Riesz-Kantorovich-formula.

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

Florian Boisen

TU Dresden

イロト イポト イヨト イヨト

A first generalization

Proof of T int. pres. \Rightarrow T[~] Riesz hom.

Suppose that $T: X \to Y$ is interval preserving. For every $g \in Y^{\sim}$ and $x \in X_+$, we have

$$T^{\sim}(g^{+})(x) = g^{+}(Tx)$$

= sup {g(v); v \in [0, Tx]}
= sup {g(v); v \in T[0, x]}
= sup {g(Tu); u \in [0, x]}
= (g \circ T)^{+}(x) = T^{\sim}(g)^{+}(x).

The proof only relies on the Riesz-Kantorovich-formula. \Rightarrow This implication is also true for directed ordered spaces X, Y with the Riesz decomposition property (RDP).

Florian Boisen

Florian Boisen					
Duality of Riesz*	Homomorphisms and	Interval Preserv	ing Operators in (Ordered Vector	Spaces

Florian Boisen							
Duality of Riesz*	Homomorphisms	and Interva	Preserving	Operators i	in Ordered	Vector	Spaces

Definition

Let X, Y be ordered vector spaces. A linear operator $T: X \to Y$ is called a

(i) Riesz* homomorphism if

$$orall arnothing
eq \mathcal{F} \subseteq X ext{ finite }: \quad \mathcal{T}\left[\mathcal{F}^{\mathrm{u}\ell}
ight] \subseteq \mathcal{T}[\mathcal{F}]^{\mathrm{u}\ell}.$$

(ii) Riesz homomorphism if

$$\forall x_1, x_2 \in X : T[\{x_1, x_2\}^u]^\ell = \{Tx_1, Tx_2\}^{u\ell}.$$

(iii) complete Riesz homomorphism if

$$\forall \varnothing \neq A \subseteq X$$
: inf $A = 0 \Longrightarrow$ inf $T[A] = 0$.

Florian Boisen

イロト イポト イヨト イヨト

Florian Boisen

< < >> < <</>

∃ ► < ∃ ►</p>

In vector lattices:

- (i) Riesz* and Riesz homomorphism coincide with the Riesz homomorphisms of vector lattices.
- (ii) Complete Riesz homomorphisms coincide with the order continuous Riesz homomorphisms.

Definition

An ordered vector space X is called a *pre-Riesz space* if there exists a vector lattice Y and a bipositive operator $i: X \to Y$ such that i[X] is order dense in Y, i.e.,

$$\forall y \in Y : \quad y = \inf \left\{ i(x); x \in X, i(x) \ge y \right\}.$$

In this case, such a pair (Y, i) is called a *vector lattice cover* of X. If i[X] generates Y as a vector lattice, then (Y, i) is called the *Riesz completion*.

(i) The Riesz completion is unique up to order isomorphisms.

(ii) Every pre-Riesz space is directed.

< ロ > < 同 > < 三 > < 三 >

Florian Bo

Duality of

Riesz* Homomorphisms

Duality in Ordered Spaces

イロン イ団 と イヨン イヨン

э

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

sen	TU Dresden
Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	10 / 38

< 口 > < 同 >

< ∃ >

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

orian Boisen	
ulity of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	

Florian Boisen Duality of Riesz* Ho

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

(i) $C^n[a, b]$, $P^n[a, b]$

	TU Dresd
momorphisms and Interval Preserving Operators in Ordered Vector Spaces	10 /

イロト 不得 トイヨト イヨト

э

Florian Boisen

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

- (i) $C^n[a, b]$, $P^n[a, b]$
- (ii) Namioka space: $\{x \in C[-1,1]; x(-1) + x(1) = 2x(0)\}$

TU Dresden

< ロ > < 同 > < 三 > < 三 >

Elorian Boisen

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

- (i) $C^n[a, b]$, $P^n[a, b]$
- (ii) Namioka space: $\{x \in C[-1,1]; x(-1) + x(1) = 2x(0)\}$
- (iii) $L^{r}(X, Y)$ with X directed and Y Archimedean

イロト イボト イヨト イヨト

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

- (i) $C^n[a, b]$, $P^n[a, b]$
- (ii) Namioka space: $\{x \in C[-1,1]; x(-1) + x(1) = 2x(0)\}$
- (iii) $L^{r}(X, Y)$ with X directed and Y Archimedean
- (iv) Finite-dimensional spaces X with closed positive cone X_+ and int $X_+ \neq \emptyset$.

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

Elorian Boiser

< 口 > < 同 >

In pre-Riesz spaces:

complete Riesz homomorphism $\downarrow \quad \cancel{r}$ Riesz homomorphism $\downarrow \quad \cancel{r}$ Riesz* homomorphism $\downarrow \quad \cancel{r}$ positive

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

< ロ > < 同 > < 三 > < 三 >

The van Haandel Extension

Theorem (Van Haandel, 1993)

Let X, Y be pre-Riesz spaces with respective Riesz completions $(X^{\rho}, i_X), (Y^{\rho}, i_Y)$ and $T: X \to Y$ a linear operator. T is a Riesz* homomorphism if and only if there exists a Riesz homomorphism $T^{\rho}: X^{\rho} \to Y^{\rho}$ such that $T^{\rho} \circ i_X = i_Y \circ T$, i.e.,

In this case, the Riesz homomorphism T^{ρ} is unique and called the van Haandel extension.

Riesz* Homomorphisms

Duality in Ordered Spaces

Back to the Main Topic

Florian Boisen	TU Dresden
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	13 / 38

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Two Useful Characterizations

Definition

Flo Du: Let X be an ordered vector space. An element $y \in X_+$ is called *extremal* if

$$\forall x \in [0, y] \exists \lambda \in [0, 1] : x = \lambda y.$$

Proposition (Hayes, 1966)

Let X be a directed ordered vector space and $f:X\to\mathbb{R}$ a positive functional. Then

f is a Riesz homomorphism \iff f is extremal.

ian Boisen	TU Dresden
lity of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	14 / 38

Florian Boisen

< 口 > < 同 >

Proposition

Let X be an ordered vector space and $T: \mathbb{R} \to X$ a positive operator. Then

T is interval preserving \iff T is extremal.

For a positive operator $T: X \rightarrow Y$, the question whether

$$\begin{cases} T \text{ is int. pres.} \Leftrightarrow T^{\sim} \text{ is a Riesz hom.} & \text{if } X = \mathbb{R}, \\ T \text{ is a Riesz hom.} \Leftrightarrow T^{\sim} \text{ is int. pres.} & \text{if } Y = \mathbb{R} \end{cases}$$

is equivalent to the question whether

T is extremal $\Leftrightarrow T^{\sim}$ is extremal.

イロト イボト イヨト イヨト

イロト イポト イヨト イヨト

Proposition

Let X, Y be finite-dimensional directed Archimedean ordered vector spaces. Then

$$\mathrm{L}^{\mathrm{b}}(X,Y) \longrightarrow \mathrm{L}(Y^{\sim},X^{\sim}), \quad T \longmapsto T^{\sim}$$

is an order isomorphism. In particular, for every positive operator $T: X \rightarrow Y$, one has

T is extremal
$$\iff T^{\sim}$$
 is extremal.

Florian Boisen

< 口 > < 同 >

Corollary

Florian Boisen

Let Y be a finite-dimensional directed Archimedean ordered vector space and $T : \mathbb{R} \to Y$ a positive operator.

T is interval preserving $\iff T^{\sim}$ is a Riesz homomorphism.

Duality	of Riesz*	Homomorphisms and	Interval Preserving	Operators in Ord	ered Vector Spaces	
Duaney	OT TROOP	rioniono pinonio ana	interval i reperving	operators in ora	cica veccoi opaceo	

Corollary

Let Y be a finite-dimensional directed Archimedean ordered vector space and $T : \mathbb{R} \to Y$ a positive operator.

T is interval preserving $\iff T^{\sim}$ is a Riesz homomorphism.

		Ψjų
orian Boisen	TU I	Dresde
uality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces		19/3

Remark

In general, the order dual of a directed ordered vector space is not directed. $^{1}\,$

Proposition

Let X, Y be directed ordered vector spaces with Y^{\sim} directed and separating and let $T: X \rightarrow Y$ be a positive operator.

$$T$$
 is extremal $\stackrel{Y=\mathbb{R}}{\longleftrightarrow}$ T^{\sim} is extremal.

¹See: Otto van Gaans, An elementary example of an order bounded dual space that is not directed, Positivity 9(2):265-267, 2005 • (3) • (

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

TU Dresden 20 / 38

Corollary

Let Y be a directed ordered vector space with Y^{\sim} directed and separating and let $T : \mathbb{R} \to Y$ be a positive operator.

 T^{\sim} is a Riesz homomorphism $\Longrightarrow T$ is interval preserving.

	-	1040
lorian Boisen	TU Dr	esden
uality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	2	1 / 38

イロト 不得 トイヨト イヨト 二日

Corollary

Let Y be a directed ordered vector space with Y^{\sim} directed and separating and let $T : \mathbb{R} \to Y$ be a positive operator.

 T^{\sim} is a Riesz homomorphism $\Longrightarrow T$ is interval preserving.

Florian Boisen	TU Dresden
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	22 / 38

∃ ► < ∃ ►</p>

TU Dresden

23 / 38

Proposition

Let X, Y be directed ordered vector spaces with Y^{\sim} directed and separating and let $T: X \rightarrow Y$ be a positive operator.

$$T$$
 is extremal $\stackrel{Y=\mathbb{R}}{\longleftrightarrow}$ T^{\sim} is extremal.

Florian Boisen Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

Corollary

Let X be a directed ordered vector space and let $T : X \to \mathbb{R}$ be a positive functional.

T is a Riesz homomorphism $\iff T^{\sim}$ is interval preserving.

Corollary

Let X be a directed ordered vector space and let $T: X \to \mathbb{R}$ be a positive functional.

T is a Riesz homomorphism $\iff T^{\sim}$ is interval preserving.

25 / 38

Theorem (B., van Gaans, Kalauch, Stennder, 2023)

- (a) every positive functional on Y is a positive-linear combination of Riesz* homomorphisms,
- (b) Y^{\sim} has the Riesz decomposition property,
- (c) every Riesz* homomorphism in X_{+}^{*} is a Riesz homomorphism.
- If $T: X \to Y$ is a Riesz* homomorphism, then T^{\sim} is interval preserving.

Example

If $X = \{x \in C[-1, 1]; x(-1) + x(1) = 2x(0)\}$ is the Namioka space, then there exists a complete Riesz homomorphism $T: X \to X$ such that T^{\sim} is not interval preserving.

Florian Boisen

イロト イボト イヨト イヨト

27 / 38

Florian Boisen

(日)、<四)、<三</p>

Duality of Riggr	* Homomorphisms and In	tenial Preserving (Inerators in Orders	d Vector Spaces
Juanty of Resz	nomorphisms and m	iterval i reserving c	perators in Ordere	u vector opaces

< E.

An Open Problem

Let X, Y be ordered vector spaces and $T: X \to Y$ a linear operator. T is a Riesz* homomorphism if

$$\forall arnothing
eq F \subseteq X ext{ finite }: \quad T\left[F^{\mathrm{u}\ell}
ight] \subseteq T[F]^{\mathrm{u}\ell}.$$

Florian Boisen	TU Dresden
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	29 / 38

Duality in Ordered Spaces

An Open Problem

Let X, Y be ordered vector spaces and $T: X \to Y$ a linear operator. T is a Riesz* homomorphism if

$$orall arnothing
eq \mathcal{F} \subseteq X ext{ finite }: \quad T\left[\mathcal{F}^{\mathrm{u}\ell}
ight] \subseteq T[\mathcal{F}]^{\mathrm{u}\ell}.$$

Question

Is T a Riesz* homomorphism if and only if

$$\forall x_1, x_2 \in X: \quad T\left[\{x_1, x_2\}^{u\ell}\right] \subseteq T[\{x_1, x_2\}]^{u\ell}?$$
(1)

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

イロト イボト イヨト イヨト

Duality in Ordered Spaces

An Open Problem

Let X, Y be ordered vector spaces and $T: X \to Y$ a linear operator. T is a Riesz* homomorphism if

$$orall arnothing
eq \mathcal{F} \subseteq X ext{ finite }: \quad \mathcal{T}\left[\mathcal{F}^{\mathrm{u}\ell}
ight] \subseteq \mathcal{T}[\mathcal{F}]^{\mathrm{u}\ell}.$$

Question

Is T a Riesz* homomorphism if and only if

$$\forall x_1, x_2 \in X : \quad T\left[\{x_1, x_2\}^{\mathrm{u}\ell}\right] \subseteq T[\{x_1, x_2\}]^{\mathrm{u}\ell}$$
? (1)

Definition

We call linear operators that satisfy (1) *mild Riesz* homomorphisms.*

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

TU Dresden 29 / 38

A Half-Solution

Theorem (Van Haandel, 1993)

Let X, Y be ordered vector spaces. Suppose that

$$\forall \varnothing \neq F, G \subseteq X \text{ finite}: (F \cup G)^{\mathrm{u}\ell} = \bigcup_{b \in G^{\mathrm{u}\ell}} (F \cup \{b\})^{\mathrm{u}\ell}.$$
 (2)

Then a linear operator $T: X \to Y$ is a Riesz* homomorphism if and only if T is a mild Riesz* homomorphism.

The condition (2) is true in vector lattices, but not in general pre-Riesz spaces. We know (2) to be false in $P^2[-1, 1]$.

Florian Boisen

Theorem (B., van Gaans, Kalauch, Stennder, 2023) Let X be a pre-Riesz space, Y a directed ordered vector space such that Y^*_{\pm} is total², and $T: X \rightarrow Y$ a positive operator.

 T^{\sim} is interval preserving $\implies T$ is a mild Riesz* homomorphism.

Question

- (i) Can one show that T even is a Riesz* homomorphism?
- (ii) Can this be used to find mild Riesz* homomorphisms that are not Riesz* homomorphisms?

 $^{2}\text{i.e., }\forall y\in Y: y\geq 0\Leftrightarrow (\forall g\in Y_{+}^{*}:g(y)\geq 0). \quad \text{ for all } x\in \mathbb{R}, x\in \mathbb{$

		국가 국	*) 4 (*
Florian Boisen		TU Dr	esden
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vec	ctor Spaces	3	2 / 38

			1 4 4	$\gamma = \gamma$	-	*) 4 (*
Florian Boisen					TU D	resden
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector	or Spac	ces				33 / 38

Riesz* Homomorphisms

Duality in Ordered Spaces

State of the Art

Florian Boisen	TU Dresden
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	34 / 38

Riesz* Homomorphisms

Duality in Ordered Spaces

Some Open Questions

Can the presented results be further improved?

Some Open Questions

Definition

Let X be an ordered vector spaces, Y an ordered normed space, and $T: X \rightarrow Y$ a positive operator. T is called *almost interval* preserving if

$$\forall x \in X_+: \quad \overline{T[0,x]} = [0,T(x)].$$

Theorem (Andô, 1975)

Let X, Y be normed vector lattices and $T : X \to Y$ a continuous linear operator.

T is almost int. pres. \iff T' is a Riesz homomorphism.

```
Can this also be generalized?
```

Florian Boisen

Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces

TU Dresden 36 / 38

イロト イボト イヨト イヨト

References

- F. Boisen, O. van Gaans, A. Kalauch, and J. Stennder. Riesz* homomorphisms and dual Maharam operators in pre-Riesz spaces. In preperation. 2023.
- [2] G. Buskes and A. van Rooij. The vector lattice cover of certain partially ordered groups. In: J. Aust. Math. Soc., Ser. A 54 (1993), pp. 352–367.
- [3] M. van Haandel. Completions in Riesz space theory. PhD thesis. University of Nijmegen, 1993.
- [4] A. Hayes. Indecomposable positive additive functionals. In: J. Lond. Math. Soc. 41 (1966), pp. 318–322.
- [5] J. Kim. The characterization of a lattice homomorphism. In: Can. J. Math. 27 (1975), pp. 172–175.
- [6] H. P. Lotz. Extensions and liftings of positive linear mappings on Banach lattices. In: *Trans. Am. Math. Soc.* 211 (1975), pp. 85–100.

Florian Boisen

Florian Boisen

Thank you :)

Florian Boisen	
Duality of Riesz* Homomorphisms and Interval Preserving Operators in Ordered Vector Spaces	

TU Dresden 38 / 38

(a)