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1Normed spaces and linear operators
Opening Questions. (a) Let f ,g : [0,1]→ R be two functions. How can we

measure the “distance” of f and g?

(b) Let d ∈ N and A ∈ Cd×d . Recall that the matrix exponential function
R ∋ t 7→ etA ∈ Cd×d is defined by

etA := lim
n→∞

∞∑
k=0

(tA)k

k!

for every t ∈ R. Why do we know that the above series is actually
convergent?

(c) What would be a reasonable concept of an “infinitely large” matrix?

1.1 Normed spaces and Banach spaces

Definition 1.1.1 (Norms and normed spaces). (i) Let V be a vector space
over K ∈ {R,C}. A norm on V is a mapping ∥ ·∥ : V → [0,∞) which fulfils
the following axioms:

(N1) ∥ ·∥ is positively definite, i.e. for each x ∈ V we have ∥x∥ = 0 if and
only if x = 0.

(N2) ∥ ·∥ is positively homogenious, i.e. we have ∥αx∥ = |α| ∥x∥ for all x ∈ V
and each α ∈ K .

(N3) ∥ ·∥ satisfies the triangle inequality, i.e. we have ∥x + y∥ ≤ ∥x∥+ ∥y∥
for all x,y ∈ V .

(ii) A normed vector space – or shorter: a normed space – is a pair (V ,∥ ·∥)
where V is a vector space over R or C and where ∥ ·∥ is a norm on V . By
abuse of language we sometimes simply say that “V is a normed space”,
thereby suppressing ∥ ·∥ in the notation.

The following proposition shows that every norm on a vector space V
induces a canonical metric on V .

Proposition 1.1.2. Let (V ,∥ ·∥) be a normed vector space. For all x,y ∈ V we
define d∥ ·∥(x,y) := ∥x − y∥. Then d∥ ·∥ is a metric on V which we call the metric
induced by ∥ ·∥.
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1. Normed spaces and linear operators

Proof. Let x,y ∈ V . Then we have d∥ ·∥(x,y) = 0 if and only if ∥x − y∥ = 0 if and
only if x − y = 0 if and only if x = y. This proves that d∥ ·∥ is positively definite.
Moreover, we have

d∥ ·∥(x,y) = ∥x − y∥ = |−1| ∥y − x∥ = d∥ ·∥(y,x),

so d∥ ·∥ is symmetric. Finally, choose a third element z ∈ V . Using the triangle
inequality for the norm we obtain

d∥ ·∥(x,z) = ∥x − z∥ = ∥(x − y) + (y − z)∥ ≤ ∥x − y∥+ ∥y − z∥ = d∥ ·∥(x,y) + d∥ ·∥(y,z),

so d∥ ·∥ fulfils the triangle inequality, too.

Remarks 1.1.3. (a) From now on we assume tacitly, whenever (V ,∥ ·∥) is a
normed vector space, that V be endowed with the metric d∥ ·∥. Hence,
we consider every normed vector space as a metric space and the metric
on this space is prescribed by the norm. In particular, it is defined what
it means for a subset of V to be open or closed and what it means for a
sequence in V to be convergent or to be a Cauchy sequence.

(b) It is, however, common not to use the notation d∥ ·∥ explicitly, i.e. one
usually prefers to write ∥x − y∥ instead of d∥ ·∥(x,y) for x,y ∈ V .

Remark 1.1.4. Let (V ,∥ ·∥) be a normed vector space and let W ⊆ V be a
vector subspace of V . Let ∥ ·∥W :W → [0,∞) be the restriction of the mapping
∥ ·∥ : V → [0,∞) to W , i.e. let ∥x∥W := ∥x∥ for all x ∈W . Then ∥ ·∥W is a norm
on W and we say that the norm ∥ ·∥W on W is induced by the norm ∥ ·∥ on V .

Note that the metric d∥ ·∥W induced by the norm ∥ ·∥W on W coincides with
the restriction of the metric d∥ ·∥ to W ×W , i.e. we have

d∥ ·∥W = d∥ ·∥ |W×W .

From now on we let every vector subspace W of a normed space (V ,∥ ·∥) be
endowed with the norm ∥ ·∥W induced by the norm ∥ ·∥ on V . To keep the
notation convenient, we abbreviate ∥ ·∥W C ∥ ·∥, i.e. we use the same symbol
to denote the norm on V and its restriction to W .

Proposition 1.1.5. Let (V ,∥ ·∥) be a normed vector space over the scalar field K.
Then each of the following mappings is continuous:

(a) + : V ×V → V ,

(b) · : K×V → V ,

(c) ∥ ·∥ : V → [0,∞).
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1.1. Normed spaces and Banach spaces

Proof. (a) Let
(
(xk , yk)

)
k∈N

be a sequence in V × V which converges to an
element (x,y) ∈ V ×V . Then, according to Proposition A.2.3, (xk)k∈N converges
to x and (yk)k∈N converges to y. Hence, we obtain

0 ≤ ∥(xk + yk)− (x+ y)∥ ≤ ∥xk − x∥+ ∥yk − y∥ → 0

as k→∞, which proves that (xk + yk)k∈N converges to x+ y.
(b) Let

(
(λk ,xk)

)
k∈N

be a sequence in K×V which converges to an element
(λ,x) ∈ K×V . Then limk→∞λk = λ and limk→∞ xk = x according to Proposi-
tion A.2.3. Hence, it follows from Remark A.1.14 that there exists a number
r > 0 such that |λk | < r for all k ∈ N. Thus, we have

0 ≤ ∥λkvk −λv∥ ≤ ∥λkvk −λkv∥+ ∥λkv −λv∥ = |λk | ∥vk − v∥+ |λk −λ| ∥v∥ → 0

as k→∞ since |λk | < r for all indices k. This proves that λkvk→ λv as k→∞.
(c) The metric d∥ ·∥ is a continuous mapping from V ×V to [0,∞) according

to Proposition A.2.5. Now, let (xk)k∈N be a sequence that converges to a vector
x ∈ V . Then the sequence

(
(xk ,0)

)
k∈N

in V ×V converges to (x,0) and therefore
we obtain

∥xk∥ = d∥ ·∥(xk ,0)→ d∥ ·∥(x,0) = ∥x∥.

This proves the assertion.

Definition 1.1.6 (Banach spaces). Let (E,∥ ·∥) be a normed vector space. If E
is complete with respect to the metric d∥ ·∥, then we call (E,∥ ·∥) a Banach space.

Example 1.1.7 (The Banach spaces Rn and Cn). Let K ∈ {R,C} and let n ∈ N.
If ∥ ·∥ is an arbitrary norm on the vector space Kn, then (Kn,∥ ·∥) is a Banach
space.

Proof. This is usually proved in the course Analysis 2.

Examples 1.1.8 (Space of bounded functions). Let K ∈ {R,C}, let S , ∅ be an
arbitrary set and define

ℓ∞(S;K)B {f : S→ R| ∃C ≥ 0 ∀s ∈ S : |f (s)| ≤ C}

denote the set of all bounded K-valued functions on S. For all f ,g ∈ ℓ∞(S;K)
and all scalars α ∈K we define f + g ∈ ℓ∞(S;K) and αf ∈ ℓ∞(S;K) by

(f + g)(s) = f (s) + g(s) and (αf )(s) = αf (s) for all s ∈ S.

This renders ℓ∞(S;K) a vector space over K. Now, let us define ∥f ∥∞ B
sup

{
|f (s)|

∣∣∣ s ∈ S} for all f ∈ S. Then ∥ ·∥∞ is a norm on ℓ∞(S;K) and (ℓ∞(S;K),∥ ·∥∞)
is a Banach space.

3



1. Normed spaces and linear operators

Proof. It is easy to check that ℓ∞(S;K) is a vector subspace of the space of all
functions from S to K and it is known from Linear Algebra that the latter space
is a vector space over K; hence, ℓ∞(S;K) is also a vector space over K.

We leave it to the reader to check that ∥ ·∥∞ is indeed a norm on ℓ∞(S;K).
To prove completeness, let (fk)k∈N be a Cauchy sequence in the normed space
(ℓ∞(S;K),∥ ·∥)∞. We first show that, for every s ∈ S, (fk(s))k∈K is a Cauchy
sequence in K: indeed, for every ε > 0 we can find an index k0 ∈K such that
∥fj − fk∥∞ < ε for all j,k ≥ k0. This implies

|fj(s)− fk(s)| ≤ sup
t∈S
|fj(t)− fk(t)| = ∥fj − fk∥∞ < ε (1.1)

for all s ∈ S and all j,k ≥ k0. Hence, (fk(s))k∈K is a Cauchy sequence in K for
each s ∈ S. Since K is complete, we conclude that (fk(s))k∈K converges to an
element of K which we name f (s). It suffices to prove that f ∈ ℓ∞(N;K) and
that (fk)k∈N converges to f in ℓ∞(N;K).

Given ε > 0 and k0 ∈ N as above, it follows from (1.1) that

|f (s)− fk(s)| ≤ ε (1.2)

for all s ∈ S and all k ≥ k0. In particular, we obtain for each s ∈ S the estimate
|f (s)| ≤ |f (s)− fk0

(s)|+ |fk0
(s)| ≤ ε+ ∥fk0

∥∞, so f ∈ ℓ∞(N;K).
Using again (1.2) we conclude that ∥f − fk∥∞ ≤ ε for all k ≥ k0, so (fk)k∈K

indeed converges to f in the normed space (ℓ∞(S;K),∥ ·∥)∞. This proves that
the latter space is complete.

The norm ∥ ·∥∞ on ℓ∞(S;K) is called the infinity norm or the supremum norm
on ℓ∞(S;K). In the literature, it is sometimes also denoted by ∥ ·∥∞ C ∥ ·∥sup.
From now on we will always assume tacitly that the space ℓ∞(S;K) is endowed
with the infinity norm.

To construct further examples of Banach spaces, the following proposition
is quite useful.

Proposition 1.1.9. Let (E,∥ ·∥) be a Banach space and let F be a vector subspace of
E. Then F is closed if and only if (F,∥ ·∥) is a Banach space.

Proof. This is an immediate consequence of Proposition A.1.9 and the discus-
sion in Remark 1.1.4.

Example 1.1.10 (Space of bounded continuous functions). Let K ∈ {R,C}
and let (M,d) be a non-empty metric space. Let

Cb(M;K)B {f ∈ ℓ∞(M;K)| f is continuous}

denote the space of all K-valued bounded and continuous functions on M.
Then Cb(M;K) is a closed vector subspace of the Banach space ℓ∞(M;K). In
particular, (Cb(M;K),∥ ·∥∞) is a Banach space.
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1.1. Normed spaces and Banach spaces

Proof. It is easy to see that Cb(M;K) is a vector subspace of ℓ∞(M;K). To show
that it is closed, let (fk)j∈N be a sequence in Cb(M;K) which converges to a
vector f ∈ ℓ∞(M;K). We have to show that f is continuous, so let ε > 0 and
x ∈M.

There exists an index k0 ∈ N such that ∥fk−f ∥∞ < ε and, as fk0
is continuous,

there exists a number δ > 0 such that |fk0
(y)− fk0

(x)| < ε for all y ∈M that fulfil
d(y,x) < δ. Hence, we obtain for all those y

|f (y)− f (x)| ≤ |f (y)− fk0
(y)|+ |fk0

(y)− fk0
(x)|+ |fk0

(x) + f (x)|
< ∥f − fk0

∥∞ + ε+ ∥f − fk0
∥∞ < 3ε.

This proves that f ∈ Cb(M;K).

Remark 1.1.11. Let K ∈ {R,C} and let (M,d) be a non-empty metric space. If
M is compact, then every continuous function f : M → K is automatically
bounded (as f (M) is a compact of subset of C). In this case, we often use the
abbreviation C(M;K)C Cb(M;K).

Finally, we give an example of a normed vector space which is not a Banach
space.

Example 1.1.12. Let K ∈ {R,C} and define

∥f ∥1 C
∫ 2

0
|f (x)| dx

for all f ∈ C([0,2];K). Then ∥ ·∥1 is a norm on C([0,2];K), but (Cb([0,2];K),∥ ·∥1)
is not a Banach space.

Proof. One immediately checks that ∥ ·∥1 is a norm on (Cb([0,2];K). To see
that the space is not complete with respect to this norm, we have to construct
a Cauchy sequence which does not converge.

For each k ∈ N, define fk ∈ (Cb([0,2];K) by

fk(x) =

xn ifx ∈ [0,1],

1 if x ∈ (1,2].

Let us check that (fk)k∈N is a Cauchy sequence. Let ε > 0 and choose k0 ∈ N
such that 2

k0
< ε. For all j,k ≥ k0 we thus obtain

∥fj − fk∥∞ =
∫ 2

0
|fj(x)− fk(x)| dx =

∫ 1

0
|fj(x)− fk(x)| dx

≤
∫ 1

0
xj dx+

∫ 1

0
xk dx =

1
j + 1

+
1

k + 1
<

2
k0
< ε.
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1. Normed spaces and linear operators

Hence, (fk)k∈N is indeed a Cauchy sequence in the normed space (Cb([0,2];K),∥ ·∥1).
It remains to shows that the sequence is not convergent. To this end, first

note that, for every x ∈ [0,2], fk(x) converges to 1[1,2](x) as k→∞. Hence, it
follows from the dominated converges theorem that∫ 2

0
|fk(x)−1[1,2](x)| dx→ 0

as k→∞. Now assume for a contradiction that (fk)k∈N converges to a vector
f ∈ Cb([0,2];K) with respect to the norm ∥ ·∥∞. Then we also have∫ 2

0
|fk(x)− f (x)| dx→ 0

as k→∞ and hence,∫ 2

0
|f (x)−1[1,2](x) dx ≤

∫ 2

0
|f (x)− fk(x)| dx+

∫ 2

0
|fk(x)− f (x)| dx→ 0

as k → ∞. We have thus shows that
∫ 2

0 |f (x) − 1[1,2](x) dx = 0, so f = 1[1,2]
almost everywhere on [0,2]. However, as f is continuous in the point 1, there
exists a δ > 0 such that f (x) , 0 for all x ∈ [0,2] that are closer than δ to 1.
Hence, f is distinct from 1[1,2] on a non-empty open subset of [1,2]. This is a
contradiction.

Definition 1.1.13 (Convergence of series). Let (V ,∥ ·∥) be a normed vector
space and let (xk)k∈N be a sequence in V .

(i) The series over (xk)k∈N is defined to be the sequence
(∑n

k=1 xk
)
k∈N

.

Note that the sequence (xk)k∈N is uniquely determined by the series over
(xk)k∈N.

(ii) Let x ∈ V . We write
∑∞
k=1 xk = x if and only if the series over (xk)k∈N

converges to x.

(iii) The series over (xk)k∈N is said to be absolutely convergent if the series
over (|xk |)k∈N is convergent in R, i.e. if the sequence (

∑n
k=1 |xk |)n∈N is

convergent in R.

The following proposition is one of the reasons why completeness of
normed vector spaces if so important in analysis.

Proposition 1.1.14. Let (V ,∥ ·∥) be a normed vector space. The following asser-
tions are equivalent:

(a) The space (V ,∥ ·∥) is a Banach space.

6



1.2. Linear operators

(b) Whenever the series over a given sequence (xk)k∈N is absolutely convergent,
then this series is also convergent.

Proof. We leave the proof as an exercise.

1.2 Linear operators

Recall that a mapping T : V →W between two vector spaces over the same
field K is called linear if

T (λ1v1 +λ2v2) = λ1T v1 +λ2T v2

for all v1,v2 ∈ V and all λ1,λ2 ∈K.

Proposition 1.2.1. Let (V ,∥ ·∥V ) and (W,∥ ·∥W ) be normed vector spaces over the
same scalar field and let T : V → W be a linear mapping. Then the following
assertions are equivalent:

(a) The mapping T is continuous.

(b) There exists a point v ∈ V such that T is continuous at v.

(c) There exists a number C ≥ 0 such that ∥T v∥W ≤ C∥v∥V for all v ∈ V .

(d) We have sup
{
∥T v∥W : v ∈ V , ∥v∥V ≤ 1

}
<∞.

(e) We have sup
{
∥T v∥W : v ∈ V , ∥v∥V = 1

}
<∞.

(f) We have sup
{ ∥T v∥W
∥v∥V

: v ∈ V \ {0}
}
<∞.

(g) Whenever a sequence (vk)k∈N in V is bounded, then so is the sequence
(T vk)k∈N in W .

In the above proposition, all suprema are taken in the ordered set [0,∞],
so we have sup∅ = 0. This is important in case that V only consists of the
vector 0.

Proof of Proposition 1.2.1. We first prove “(a)⇒ (g)⇒ (b)⇒ (a)”:

“(a) ⇒ (g)” If there exists a bounded sequence (vk)k∈N in V for which
(T vk)k∈N is not bounded in W , then we can find a subsequence (vkj )h∈N (which
is, of course, again bounded) for which we have 0 < ∥vkj ∥W →∞ as j →∞.
Now, define xj := vkj /∥T vkj ∥W . Then ∥xj∥V → 0 and hence. xj → 0 as j →∞,
but ∥T xj∥W = 1 for all j ∈ N, so T xj does not converge to 0 = T 0. Hence, T is
not continuous at 0; in particular, it is not continuous.

“(g)⇒ (b)” Assume that (g) holds. We show that T is continuous at 0. So,
let (xk)k∈N be a sequence in V \ {0} which converges to 0. Then the sequence

7



1. Normed spaces and linear operators

(vk)k∈N, given by vk B xk/∥xk∥V , is bounded in V and hence, so is the sequence
(T vk)k∈N in W . This implies that T xk = ∥xk∥V T vk→ 0 = T 0 as k→∞, so T is
indeed continuous at 0.

“(b) ⇒ (a)” Assume that T is continuous at a point x ∈ V and let y ∈ V
be another vector. Consider a sequence (vk)k∈N in V which converges to y.
Then (vk − y + x)k∈N converges to x and, as T is linear and continuous at x, we
conclude that (T vk − T y + T x)k∈N converges to T x. This implies that

(T vk)k∈N =
(
(T vk − T y + T x) + (T y − T x)

)
k∈N

converges to T x+ T y − T x = T y. Thus, T is indeed continuous at y.

We leave it to the reader to prove that the assertions (c), (d), (e) and (f) are
equivalent and only deal with the remaining equivalence “(c)⇔ (g)”.

“(c)⇒ (g)” This is obvious.
“(g) ⇒ (c)” If a constant C as in (c) does not exists, then we can find,

for every integer k ∈ N, a vector xk ∈ V which fulfils ∥T xk∥W > k∥xk∥V . In
particular, we have xk , 0 since T xk , 0, so we can define vk B xk/∥xk∥V for
each index k ∈ N. Hence, the sequence (vk)k∈N is bounded in V , but we have
∥T vk∥W > k for every k ∈ N, so the sequence (T vk)k∈N is not bounded inW .

Remark 1.2.2. In functional analysis, linear maps between two vector spaces
are often referred to as operators. Moreover, for linear operators between
normed vector spaces one uses the notion bounded synonymously with con-
tinuous, i.e. we often speak of bounded linear operators instead of continuous
linear operators.

Definition 1.2.3 (Operator norm). Let (V ,∥ ·∥V ) and (W,∥ ·∥W ) be normed
vector spaces over the same scalar field and let T : V1 → V2 be a bounded
linear operator. The operator norm of T is defined to be the number

∥T ∥ := inf
{
C ≥ 0 : ∥T v∥W ≤ C∥v∥W for all v ∈ V

}
∈ [0,∞).

Proposition 1.2.4. Let (V ,∥ ·∥V ) and (W,∥ ·∥W ) be normed vector spaces over the
same scalar field and let T : V1→ V2 be a bounded linear operator. Then we have

∥T ∥ = min
{
C ≥ 0 : ∥T v∥W ≤ C∥v∥W for all v ∈ V

}
= sup

{
∥T v∥W : v ∈ V , ∥v∥V ≤ 1

}
= sup

{
∥T v∥W : v ∈ V , ∥v∥V = 1

}
= sup

{∥T v∥W
∥v∥V

: v ∈ V \ {0}
}
.

Proof. We leave this as an exercise.
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1.2. Linear operators

Corollary 1.2.5. Let (V ,∥ ·∥V ), (W,∥ ·∥W ) and (X,∥ ·∥X) be normed vector spaces
over the same scalar field and let T : V →W and S : W → X be bounded linear
operators.

(a) For every v ∈ V we have ∥T v∥W ≤ ∥T ∥∥v∥V .

(b) The linear operator ST := S ◦ T is bounded and we have ∥ST ∥ ≤ ∥S∥∥T ∥.

Proof. (a) This follows from the first equality in Proposition 1.2.4.
(b) For each v ∈ V we have, according to (a),

∥ST x∥X ≤ ∥S∥∥T x∥W ≤ ∥S∥∥T ∥∥x∥V .

Hence, it follows from the very definition of ∥ST ∥ that ∥ST ∥ ≤ ∥S∥∥T ∥.

Let V ,W be vector spaces over the same field K, let S,T : V →W be linear
mappings and let λ,µ ∈K. Recall that the linear mapping λS +µT : V →W is
defined by (λS +µT )v = λSv+µT v for all v ∈ V . With this addition and scalar
multiplication, the space of all linear mappings form V to W becomes itself
of vector space over K.

Definition 1.2.6. Let (V ,∥ ·∥V ) and (W,∥ ·∥W ) be normed vector spaces over
the same scalar field. We denote the set of all bounded linear operators from
V to W be L(V ;W ).

Proposition 1.2.7. Let (V ,∥ ·∥V ) and (W,∥ ·∥W ) be normed vector spaces over the
same scalar field K.

(a) The set L(V ;W ) is a vector subspace of the space of all linear mappings from
V to W .

(b) The operator norm ∥ ·∥ is a norm on the vector space L(V ;W ).

(c) If (W,∥ ·∥W ) is a Banach space, then the normed vector space (L(V ;W ),∥ ·∥)
is a Banach space, too.

Proof. (a) One can immediately see that a linear combination of continuous
linear mappings from V to W is again continuous.

(b) Clearly, the operator norm is a mapping from L(V ;W ) to [0,∞). Let us
show that it fulfils all axioms of a norm:

Positive definiteness: Let T ∈ L(V ;W ). If T = 0, then ∥T v∥W = ∥0∥W = 0 ≤
0 · ∥v∥V for all v ∈ V , so ∥T ∥ ≤ 0 which proves that ∥T ∥ = 0. If we assume, on
the other hand, that ∥T ∥ = 0, then we have 0 ≤ ∥T v∥W ≤ 0 · ∥v∥ = 0 for all v ∈ V ,
so T = 0.
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1. Normed spaces and linear operators

Positive homogeneity: Let T ∈ L(V ;W ) and α ∈ K. Then it follows from
Proposition 1.2.4 that

∥αT ∥ = sup
{
∥αT v∥W : v ∈ V , ∥v∥V ≤ 1

}
= sup

{
|α| ∥T v∥W : v ∈ V , ∥v∥V ≤ 1

}
= |α|sup

{
∥T v∥W : v ∈ V , ∥v∥V ≤ 1

}
= |α| ∥T ∥.

Triangle inequality: Let S,T ∈ L(V ;W ). For all v ∈ V we obtain

∥(S + T )v∥W ≤ ∥T v∥W + ∥T v∥W ≤ ∥S∥∥v∥V + ∥T ∥∥v∥V =
(
∥S∥+ ∥T ∥

)
∥v∥V .

It thus follows from the very definition of the operator norm ∥S+T ∥ ≤ ∥S∥+∥T ∥.

(c) Assume that W is a Banach space and let (Tk)k∈N be a Cauchy sequence
in L(V ;W ). It easily follows that, for every v ∈ V , the sequence (Tkv)k∈N is a
Cauchy sequence in W . Hence, as W is a Banach space, (Tkv)k∈N converges to
a vector in W .

Let us define a mapping T : V →W , T v := limk→∞Tkv. One readily checks
that T is linear. Let us show that T is even a bounded operator. Since (Tk)k∈N
is a Cauchy sequence, it is bounded, i.e. there exists a number C ≥ 0 such that
∥Tk∥ ≤ C. Now, consider a vector v ∈ V . We have

∥T v∥ = lim
k→∞
∥Tkv∥ ≤ limsup

k→∞
∥Tk∥∥v∥ ≤ C∥v∥.

Thus, T is bounded. Finally, we have to check that (Tk)k∈N converges to T with
respect to the operator norm. So, let ε > 0. There exists an index k0 such that
∥Tk −Tj∥ < ε for all j,k ≥ k0. Hence, we obtain for every v ∈ V and every k ≥ k0

∥(Tk − T )v∥ = lim
j→∞
∥Tkv − Tjv∥ ≤ limsup

j→∞
∥Tk − Tj∥∥v∥ ≤ ε∥v∥.

This proves that ∥Tk − T ∥ ≤ ε whenever k ≥ k0, so we have indeed limk→∞Tk =
T .

Remark 1.2.8. The converse implication in Proposition 1.2.7(c) is also true. To
see this one needs the so-called Hahn–Banach theorem which is an important
result in functional analysis. However, this result is not part of this course
since we are going to focus on the theory of Hilbert spaces for which the
Hahn–Banach theorem is not needed.
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2Inner products and Hilbert spaces
Opening Questions. (a) You know what the standard scalar product of

two vectors x,y ∈ Cd is. Is there also a way to define a “standard scalar
product” of two functions f ,g : [0,1]→ C?

(b) How can we represent a number λ ∈ R in a computer, given that our
computer has only finite storage capacity? How can we represent a
function f : [0,1]→ R in our computer?

(c) Is there a reasonable way to “transpose” a bounded linear operator?

(d) Suppose we are given a real number xi for every i out of a (possibly
infinite) index set I . What is our understanding of the “series”

∑
i∈I xi?

(e) Let xm,n be a complex number for all m,n ∈ N and let x ∈ C. What do we
mean by limm,n→∞ xm,n = x?

2.1 Inner products and orthogonality

Definition 2.1.1. (i) Let V be a vector space over K ∈ {R,C}. An inner
product on V is a mapping ⟨ · , · ⟩ : V ×V →K which fulfils the following
properties:

(I1) For all v ∈ V we have ⟨v,v⟩ ∈ [0,∞); moreover, ⟨v,v⟩ = 0 implies
v = 0.

(I2) For all v,w ∈ V and all λ ∈K we have ⟨v,λw⟩ = λ⟨v,w⟩.
(I3) For all v,w,x ∈ V we have ⟨x,v +w⟩ = ⟨x,v⟩+ ⟨x,w⟩.
(I4) For all v,w ∈ V we have ⟨v,w⟩ = ⟨w,v⟩.

(ii) A pre-Hilbert space is a pair (V ,⟨ · , · ⟩) where V is a vector space over R or
C and ⟨ · , · ⟩ is an inner product on V .

On every pre-Hilbert space (V ,⟨ · , · ⟩) we define ∥v∥ B
√
⟨v,v⟩ for all

v ∈ V .

(iii) Let (V ,⟨ · , · ⟩) be a pre-Hilbert space. Two vectors v,w ∈ V are said to be
orthogonal if ⟨v,w⟩ = 0. We denote this by v ⊥ w.

Proposition 2.1.2. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space over the field K. Then the
following assertions hold.

(a) Let v ∈ V . Then ⟨v,0⟩ = ⟨0,v⟩ = 0. In particular, we have ⟨v,v⟩ = 0 if and
only if v = 0.

11



2. Inner products and Hilbert spaces

(b) The inner product is anti-linear in its first argument, meaning that we have
⟨λv + µw,x⟩ = λ⟨v,x⟩ + µ⟨w,x⟩ for all vectors v,w,x ∈ V and all scalars
λ,µ ∈K.

(c) For all v,w ∈ V the so-called Cauchy–Schwarz inequality holds, meaning
that we have |⟨v,w⟩| ≤ ∥v∥∥w∥.

(d) For all v,w ∈ V the so-called parallelogram equality holds, meaning that
we have ∥v +w∥2 + ∥v −w∥2 = 2∥v∥2 + 2∥w∥2.

(e) If v,w ∈ V are orthogonal, then Pythagoras’ Theorem ∥v+w∥2 = ∥v∥2+∥w∥2
holds.

Proof. Assertions (b), (d) and (e) are immediate consequences of the definition
of an inner product. Since the inner product is linear in the second component,
we have ⟨v,0⟩ = 0 for all v ∈ V ; by (I4) this also implies ⟨0,v⟩ = 0 for all v ∈ V .
This proves (a), it only remains to prove (c). Let µ = ∥w∥2 and let λ = ⟨w,v⟩.
Then we have

0 ≤ ∥µv −λw∥2 = µµ⟨v,v⟩ −µλ⟨v,w⟩ −λµ⟨w,v⟩+λλ⟨w,w⟩
= ∥w∥4 · ∥v∥2 − ∥w∥2 · |⟨v,w⟩|2 − ∥w∥2 · |⟨v,w⟩|2 + ∥w∥2 · |⟨v,w⟩|2

= ∥w∥4 · ∥v∥2 − ∥w∥2 · |⟨v,w⟩|2,

so ∥w∥2 · |⟨v,w⟩|2 ≤ ∥w∥4 · ∥v∥2. If w , 0, this implies the assertion. If, on the
other hand, w = 0, then both sides of the inequality in question are 0. This
proves the assertion.

Remark 2.1.3. A slight modification of the above proof shows that the Cauchy–
Schwarz inequality becomes an equality if and only if v and w are linearly
depended.

Proposition 2.1.4. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space over the field K. Then the
mapping ∥ ·∥ : V → [0,∞) is a norm on V .

Proof. Positive definiteness is immediate from the definition of an inner prod-
uct, so let v,w ∈ V and α ∈K. We have

∥αv∥2 = ⟨αv,αv⟩ = αα⟨v,v⟩ = |α|2 · ∥v∥2,

so ∥αv∥ = |α| ∥v∥. Moreover,

∥v +w∥2 = ⟨v +w,v +w⟩ = ⟨v,v⟩+ ⟨v,w⟩+ ⟨w,v⟩+ ⟨w,w⟩
= ∥v∥2 + 2Re⟨v,w⟩+ ∥w∥2 ≤ ∥v∥2 + |⟨v,w⟩|+ ∥w∥2

≤ ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2 =
(
∥v∥2 + ∥w∥

)2
,

so ∥v +w∥ ≤ ∥v∥+ ∥w∥.
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2.1. Inner products and orthogonality

We call the norm in the above proposition the norm induced by the inner
product on V . From now on we tacitly endow every pre-Hilbert with the norm
induced by the inner product.

Definition 2.1.5. A Hilbert space is a pre-Hilbert space which is complete with
respect to the norm induced by the inner product.

Example 2.1.6. Let n ∈ N and let K ∈ {R,C}. Define ⟨v,w⟩ =
∑n
k=1 vkwk for all

v,w ∈Kn. Then (Kn,⟨ · , · ⟩) is a Hilbert space.

Example 2.1.7. Let K ∈ {R,C} and set V = C([0,1];K). For all f ,g ∈ V we
define

⟨f ,g⟩ :=
∫ 1

0
f (x) · g(x) dx.

Then (V ,⟨ · , · ⟩ is a pre-Hilbert space, but not a Hilbert space.

Proof. We readily checks that ⟨ · , · ⟩ fulfils (I2)–(I4). Moreover, we have ⟨f , f ⟩ =∫ 1
0 |f (x)|2dxx ≥ 0 for each f ∈ V . Now, let f ∈ V and assume that 0 = ⟨f , f ⟩ =∫ 1
0 |f (x)|2 dx. If f , 0, then there exist an element y ∈ [0,1] for which we have
δB f (y) > 0; by the continuity of f we can thus find an open neighbourhood
U of y in [0,1] such that f (x) ≥ δ/2 for all x ∈ U . Denoting the Lebesgue
measure of U by |U |, we thus obtain∫ 1

0
|f (x)|2 dx ≥

∫
U
δ2/4 dx = |U |δ/2 > 0

which is a contradiction. Hence, f = 0.
We have thus shown that ⟨ · , · ⟩ is an inner product on V . To see that V is

not complete, one can proceed quite similarly as in Example 1.1.12.

Now we discuss an example of a function space which is endowed with a
similar inner product as above but which is, in contrast to Example 2.1.7, a
Hilbert space. This example is most important for many applications.

Example 2.1.8. Fix K ∈ {R,C}. Let (Ω,µ) be a measure space and letM(Ω;K)
denote the space of all measurable functions from Ω to K. For two functions
f ,g ∈ M(Ω;K) we write f ∼ g if we have f (x) = g(x) for µ-almost all x ∈ Ω.
One immediately checks that ∼ is an equivalence relation onM(Ω;K).

For each f ∈M(Ω;K) we denote the equivalence class of f with respect to
∼ by [f ]. Let

M(Ω;K)/ ∼:= {[f ] : f ∈M(Ω;K)}

13



2. Inner products and Hilbert spaces

denote the set of all equivalence classes of the relation ∼. Then the mappings

+ :M(Ω;K)/ ∼ ×M(Ω;K)/ ∼→M(Ω;K), [f ] + [g]B [f + g]

· : K×M(Ω;K)→M(Ω;K) λ · [f ]B [λf ]

are well-defined and renderM(Ω;K) a vector space over K.
For what follows note that, whenever for all [f ] ∈M(Ω;K), the question

whether f is integrable does not depend on the choice of the representative f
of [f ]; in case that f is integrable, the value

∫
Ω
f (ω) dω does not depend on

the choice of the representative f .
We now define

L2(Ω;K)B {[f ] ∈M(Ω;K) : f 2 is integrable}.

By a similar reasoning as in the proof of the Cauchy–Schwarz inequality, one

can prove that we have
∫
Ω
|f (ω)g(ω)| dω ≤

(∫
Ω
|f (ω)|2 dω ·

∫
Ω
|f (ω)|2 dω

)1/2
for

all f ∈M(Ω;K). This implies to things:

(a) The function (f + g)2 is integrable whenever f 2 and g2 are integrable.
Thus, the set L2(Ω;K) is a vector subspace ofM(Ω;K)/ ∼.

(b) The mapping ⟨ · , · ⟩ : L2(Ω;K)×L2(Ω;K)→K which is given by ⟨[f ], [g]⟩ =∫
Ω
f (ω)g(ω) dω for all [f ], [g] ∈ L2(Ω;K) is well-defined.

Now, one can readily check that ⟨ · , · ⟩ is an inner product on L2(Ω;K), meaning
that (L2(Ω;K),⟨ · , · ⟩) is a pre-Hilbert space. Actually, as proved in the course
“Measure Theory”, this is even a Hilbert space!

Remark 2.1.9. One can also consider the construction of L2(Ω;K) in Exam-
ple 2.1.8 from a different perspective. To this end, define

L2(Ω;K) := {f ∈M(Ω;K) : f 2 is integrable}.

Then L2(Ω;K) is a vector subspace ofM(Ω;K) and ∥f ∥ :=
(∫

Ω
|f (ω)|2 dω

)1/2

for each f ∈ L2(Ω;K) defines a semi-norm on L2(Ω). If one factors out the
kernel of this semi-norm, one again arrives at the space L2(Ω;K); compare
Exercise 2 on Exercise Sheet 1!

2.2 Nets and unconditional convergence of series

Definition 2.2.1. A directed set is a pair (J,⪯) where J is a non-emptyset and ⪯
is a relation on J which fulfils the following three properties:

(D1) We have j ⪯ j for every j ∈ J , i.e. the relation ⪯ is reflexive.

14



2.2. Nets and unconditional convergence of series

(D2) Whenever j1 ⪯ j2 and j2 ⪯ j3 for elements j1, j2, j3 ∈ J , then we also have
j1 ⪯ j3, i.e. the relation ⪯ is transitive.

(D3) For all j1, j2 ∈ J there exists j3 ∈ J which fulfils j1 ⪯ j3 and j2 ⪯ j3.

By abuse of notation we shall often call J a directed set, thereby suppress-
ing the relation ⪯ in the notation. Moreover, if (J,⪯) is a directed set then, for
elements j1, j2 ∈ J , we often write j2 ⪰ j1 as an alternative notation for j1 ⪯ j2.

Examples 2.2.2. (a) The natural numbers N, together with their usual order
≤, are a directed set.

(b) The non-negative real numbers [0,∞), together with their usual order ≤,
are a directed set.

(c) Let I be an arbitrary, non-empty set and let F denote the set of all finite
subsets of I . Then (F ,⊆) is a directed set.

(d) Let (M,d) be a metric space and let x ∈M. Denote the set of all neigh-
bourhoods of x by U . Then (U ,⊇) is a directed set.

(e) Endow the set N×N with the relation ⪯ defined by (n1,n2) ⪯ (m1,m2) if
and only if n1 ≤m1 and n2 ≤m2. Then (N×N,⪯) is a directed set.

Remark 2.2.3. Let (J,⪯) be a directed set and let j1, . . . , jn ∈ J . Then there exists
an element i ∈ I such that i ⪰ j1, . . . , i ⪰ jn. This follows inductively from
(D3).

Definition 2.2.4. Let S be a non-empty set. A net in S is a family (xj)j∈J of
elements xj ∈ S, where J is a directed set.

Example 2.2.5. Let S be a non-empty set. Every sequence (xn)n∈N is a net
(where N is endowed with its usual order).

Definition 2.2.6. Let (M,d) be a metric space and let (xj )j∈J be a net in M.

(i) The net (xj)j∈J is said to converge to a element x ∈M if for every ε > 0
there exists an index j0 ∈ J such that d(xj ,x) < ε for all j ∈ J which fulfil
j ⪰ j0.

(ii) The net (xj)j∈J is said to be a Cauchy net if for every ε > 0 there exists
an index j0 ∈ J such that d(xj1 ,xj2) < ε for all j1, j2 ∈ J which fulfil j1 ⪰ j0
and j2 ⪯ j0.

We have pointed out in Example 2.2.5 that every sequence is a net. The
reader should convince herself/himself that the above definition of convergent
nets and Cauchy nets is consistent with the definition of convergent sequences
and Cauchy sequences. It is easy to see that a net in a metric space converges
to at most one point.

15



2. Inner products and Hilbert spaces

Example 2.2.7. Let (M,d) be a metric space and let x ∈ M. Let U be the
directed set of all neighbourhoods of x (endowed with the relation ⊇). Assume
that, for every U ∈ U , we are given an element xU ∈U . Then the net (xU )U∈U
converges to x.

Proof. Let ε > 0. Choose U0 := Bε(x) ∈ U . For every U ∈ U with U0 ⊇ U we
have xu ∈U ⊆U0 = Bε(x) and thus d(xU ,x) < ε.

Example 2.2.8. Let xm,n be a complex number for all m,n ∈ N and let x ∈ C.
We write limm,n→∞ xm,n = x if the net (xm,n)(m,n)∈N×N converges to x. Here,
N×N is endowed with the same relation ⪯ as in Example 2.2.2(e).

It is very easy to check that every convergent net in a metric space is a
Cauchy net. The following proposition shows that the converse implication is
true if and only if the metric space under consideration is complete.

Proposition 2.2.9. A metric space (M,d) is complete if and only if every Cauchy
net in (M,d) converges.

Proof. “⇒” Assume that (M,d) is complete and consider a Cauchy net (xj )j∈J
in M. For each n ∈ N we can find an index jn ∈ J such that d(xi ,xj) < 1/n for
all i, j ∈ J which fulfil i, j ⪰ jn. It follows from Remark 2.2.3 that we can even
choose jn such that jn ⪰ j1, . . . jn ⪰ jn−1. It readily follows that the sequence
(xjn)n∈N is a Cauchy sequence in M and hence, it converges to an element
x ∈M.

We now show that the net (xj)j∈J converges to x. Let ε > 0 and choose
m ∈ N such that d(xjn ,x) < ε/2 for all n ≥ m. Now, choose n ≥ m such that
1/n < ε/2. For each j ⪰ jn we have

d(xj ,x) ≤ d(xj ,xjn) + d(xjn ,x) <
1
n

+
ε
2
< ε.

Hence, the net (xj )j∈J converges indeed to x.
“⇐” This implication is obvious since every sequence is a net.

Proposition 2.2.10. Let (M,dM ) and (N,dN ) be metric spaces and let f :M→N
be a mapping. Let x ∈M. The following assertions are equivalent:

(i) The mapping f is continuous at x.

(ii) For every net (xj)j∈J in M that converges to x, the net (f (xj))j∈J in N con-
verges to f (x).

Proof. “⇒” Let f be continuous at x and consider (xj)j∈J a net in M that
converges to x. Let ε > 0. There exists δ > 0 such that f (Bδ(x)) ⊆ Bε(f (x)) and
there exists an index j0 ∈ J such that xj ∈ Bδ(x) for all j ⪰ j0. Hence we have
f (xj ) ∈ Bε(f (x)) for all j ⪰ j0. This proves that (f (xj ))j∈J converges to f (x).

16



2.2. Nets and unconditional convergence of series

“⇐” If (i) is not fulfilled then, according to Proposition A.1.12, there
exists a sequence (xn)n∈N in M that converges to x but for which the sequence
(f (xn))n∈N in N does not converge to f (x). Since every sequence is a net, it
follows that (ii) is not fulfilled.

Now we can finally define unconditional convergence of series.

Definition 2.2.11. Let (V ,∥ ·∥) be a normed vector space, let I be a non-empty
set and consider a family (xi)i∈I of elements xi ∈ V .

(i) The unconditional series over (xi)i∈I is defined to be the net (
∑
i∈F)F∈F ,

where F denotes the directed set of all finite subsets of I (endowed with
the relation ⊆).

(ii) Let x ∈ V . We write
∑
i∈I xi = x if and only if the unconditional series

over (xi)i∈I converges to x.

By abuse of language we sometimes say that “the series over (xi)i∈I is un-
conditionally convergent to x” when we in fact mean that “the unconditional
series over (xi)i∈I converges to x.”

Remark 2.2.12. Let (V ,∥ ·∥) be a normed vector space, let x ∈ V and consider
a family (xi)i∈I of elements xi ∈ V .

According to the above definitions we have
∑
i∈I xi = x if and only if for

every ε > 0 there exists a finite set J ⊆ I such that ∥
∑
j∈J ′ xj − x∥ < ε for every

finite set J ′ ⊆ I that contains J .

The case I = N is of particular importance and for this case, we also have
two further definitions of “series convergence” available which we introduced
in Definition 1.1.13. In the following remark we compare all three notions.

Remark 2.2.13. Let (V ,∥ ·∥) be a normed vector space, let (xn)n∈N be a sequence
in V and consider the following assertions:

(i) The series over (xn)n∈N is absolutely convergent.

(ii) The unconditional series over (xn)n∈N is convergent.

(iii) The series over (xn)n∈N is convergent.

We always have (ii)⇒ (iii). In this case we have
∑
n∈N xn =

∑∞
n=1 xn. In case

that (V ,∥ ·∥) is a Banach space the implication (i) ⇒ (ii) holds, too. These
assertions are not difficult to prove.

On the other hand, one can show that the converse implications are in
general false, may (V ,∥ ·∥) be a Banach space or not.
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2. Inner products and Hilbert spaces

Remark 2.2.14. Let (V ,∥ ·∥) be a normed vector space, let x ∈ X and let (xn)n∈N
be a sequence in V . It is possible to prove that the following assertions are
equivalent:

(i)
∑
n∈N xn = x.

(ii)
∑∞
n=1 xϕ(n) = x for every bijection ϕ : N→ N.

Proposition 2.2.15. Let (V ,∥ ·∥) be a normed vector space and consider a family
(xi)i∈I of elements xi ∈ V . If the unconditional sequence over (xi)i∈I converges,
then xi is 0 for all but at most countably many indices i.

Proof. Let n ∈ N. It suffices to prove that there are only finitely many i ∈ I
for which we have ∥xi∥ ≥ 1

n . As usual, let F denote the directed set of all
finite subsets of I , endowed with the relation ⊆. Since the net (

∑
i∈F xi)F∈F

converges, it is a Cauchy net. Hence, there exists a set F0 ∈ F such that

∥
∑
i∈F1

xi −
∑
i∈F2

xi∥ <
1
n

for all finite sets F1,F2 ⊆ I that contain F0. Now, let i0 ∈ I \F0. If we set F2 B F0
and F1 B F0 ∪ {i0} in the above inequality, then we obtain ∥xi0∥ <

1
n . As F0 is

finite and i0 ∈ I \F0 was arbitrary, we obtain the assertion.

2.3 Orthonormal bases

Definition 2.3.1. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space. A subset E ⊆ V is called
an orthonormal system in V if we have

⟨e, f ⟩ =

1 if e = f ,

0 if e , f

for all e, f ∈ V .

Theorem 2.3.2. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space. For every orthonormal
system E ⊆ V the following assertions are equivalent:

(i) The linear hull of E is dense in V .

(ii) We have v =
∑
e∈E⟨e,v⟩e for all v ∈ V (this identity is often called the Fourier

expansion of v).

(iii) We have ⟨v,w⟩ =
∑
e∈E⟨v,e⟩⟨e,w⟩ for all v,w ∈ V .

(iv) We have ∥v∥2 =
∑
e∈E |⟨e,v⟩|2 for all v ∈ V (this equation is often called

Parseval’s identity).
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Definition 2.3.3. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space. A orthonormal system
E ⊆ V which fulfils the equivalent assertions Theorem 2.3.2 is called an
orthonormal basis of V .

For the proof of Theorem 2.3.2 we need the following two lemmas and the
subsequent proposition.

Lemma 2.3.4. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space over the scalar field K. Then
the inner product ⟨ · , · ⟩ : V ×V →K is continuous.

Proof. We leave this as an exercise to the reader.

Lemma 2.3.5. Let (V ,∥ ·∥) and (W,∥ ·∥) be normed vector spaces and let (Tj )j∈J be
a net of bounded linear operators from V to W . If supj∈J∥Tj∥ <∞, then the set

{v ∈ V : lim
j
Tjv = 0}

is closed in V .

Proof. This is another easy exercise.

Proposition 2.3.6. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space, let E ⊆ V be a orthonor-
mal system in V and let v ∈ V . Then the unconditional series over (|⟨e,v⟩|2)e∈E
converges and we have Bessel’s inequality∑

e∈E
|⟨e,v⟩|2 ≤ ∥v∥2.

Moreover, the following assertions are equivalent:

(i) Bessel’s inequality is an equality.

(ii) The vector v is contained in the closure of the linear hull of E.

(iii) We have v =
∑
e∈E⟨e,v⟩e.

Proof. As usual, we denote the set of finite subsets of E by F and we endow
F with the relation ⊆. For every F ∈ F we first compute that

0 ≤ ∥v −
∑
e∈F
⟨e,v⟩e∥2 =

〈
v −

∑
e∈F
⟨e,v⟩e,v −

∑
e∈F
⟨e, v⟩e

〉
= ∥v∥2 −

∑
e∈F
|⟨e,v⟩|2 −

∑
e∈F
|⟨e,v⟩|2 +

∑
e∈F

∑
f ∈F
⟨v,e⟩ · ⟨f ,v⟩ · ⟨e, f ⟩

= ∥v∥2 −
∑
e∈F
|⟨e,v⟩|2,

19



2. Inner products and Hilbert spaces

so
∑
e∈F |⟨e,v⟩|2 ≤ ∥v∥2. Hence, s B supF∈F

∑
e∈F |⟨e,v⟩|2 ≤ ∥v∥2. As |⟨e,v⟩|2 is

non-negative for every e, one easily concludes that the unconditional series(∑
e∈F |⟨e,v⟩|2

)
F∈F

converges to s, so
∑
e∈E |⟨e,v⟩|2 = s ≤ ∥v∥2, which proves

Bessel’s inequality.
We have equality in Bessel’s inequality if and only if the net

(
∥v∥2 −∑

e∈F |⟨e,v⟩|2
)
F∈F

converges to 0 if and only if the net
(
∥v −

∑
e∈F⟨e,v⟩e∥

)
F∈F

converges to 0 if and only if the net (
∑
e∈F⟨e,v⟩e)F∈F converges to v, so the

equivalence of (i) and (iii) is proved.
The implication “(iii)⇒ (ii)” is obvious since one can easily check that a

closed subset of a metric space is closed with respect to limits of nets. So it
remains to prove “(ii)⇒ (iii)”.

Let L denote the linear hull of E. First one checks by a direct computation
that the equality w =

∑
e∈E⟨e,w⟩e is true for every w ∈ L. For each F ∈ F we

now define a linear operator TF : V → V which is given by

TFwB w −
∑
e∈F
⟨e,w⟩e.

For every w ∈ L the net (TFw)F∈F converges to 0. Moreover, for each F ∈ F the
linear operator TF is bounded with operator norm ∥Tf ∥ ≤ 2. This follows from
Bessel’s inequality applied to the orthonormal system F.

Hence, (TF)F∈F is a net of linear operators which fulfils supF∈F ∥TF∥ <∞.
It thus follows from Lemma 2.3.5 that the net (TFw)F∈F converges to 0 on
the closure of L. In particular, v =

∑
e∈E⟨e,v⟩e since v is contained in this

closure.

Proof of Theorem 2.3.2. “(i) ⇒ (ii)” This follows from the implication (ii) ⇒
(iii) in Proposition 2.3.6.

“(ii)⇒ (iii)” This implication is an immediate consequence of the continu-
ity of the inner product in the second component and of the (anti-)linearity of
the inner product.

“(iii)⇒ (iv)” Put wB v in (iii) to obtain (iv).
“(iv)⇒ (i)” This is an immediate consequence of the implication (iii)⇒

(ii) in Proposition 2.3.6.

Example 2.3.7. Let K ∈ {R;C}, let I , ∅ be an arbitrary set and define

ℓ2(I ;K)

B {x = (xi)i∈I : the unconditional series over (|xi |2)i∈I converges in R}.

One can show that the conditional series over (xiyi)i∈I converges for all x,y ∈
ℓ2(I ;K) and that ⟨x,y⟩C

∑
i∈I xiyi defines an inner product an H . Moreover,

the pre-Hilbert space (ℓ2(I ;K),⟨ · , · ⟩) is a Hilbert space. Compare Exercise 9
and the Exercise Sheet 4 where this was proved in the special case I = N.
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2.4. Optimal approximation

For each i ∈ I we denote by ei ∈ ℓ2(I ;K) the i-th canonical unit vector, i.e.
the vector whose components are all 0 except for the i-th component which is
1. Then {ei : i ∈ I} is an orthonormal basis of ℓ2(I ;K).

Remark 2.3.8. The above example shows that an orthonormal basis of a (pre-
)Hilbert space is not an algebraic basis, in general. For instance, not every
vector in ℓ2(N;R) is a linear combination of {en : n ∈ N}.

Theorem 2.3.9 (Fischer-Riesz). Let (H,⟨ · , · ⟩) be a Hilbert space over the scalar
field K and let E be an orthogonal basis of H . Then the mapping

J : H → ℓ2(E;K), x 7→ (⟨e,x⟩)e∈E

is linear and bijective and we have ∥Jx∥ = ∥x∥ for all x ∈H .

Proof. It follows from Parseval’s identity that the family (⟨e,x⟩)e∈E is indeed
contained in ℓ2(E;K) for all x ∈H and that we have ∥Jx∥ = ∥x∥ for all x ∈H . In
particular, J is injective. Obviously, J is linear.

To see that J is also surjective, let α = (αe)e∈E ∈ ℓ2(E;K). Let us that the
conditional series over the family (αee)e∈E in H converges in H . Let F be the
set of all finite subsets of E, endowed with the order ⊆. The net

(∑
e∈F |αe|2

)
F∈F

is a Cauchy net since α ∈ ℓ2(E;K) and for all F,G ∈ F we have

∥
∑
e∈F

αee −
∑
e∈G

αee∥2 =
∑
e∈F∆G

|αe|2.

Hence, the net
(∑

e∈F αee
)
F∈F

is a Cauchy net in H and thus convergent is H
is a Hilbert space. Set xB

∑
e∈E αee. Then one readily checks that Jx = α, so J

is indeed surjective.

2.4 Optimal approximation

Definition 2.4.1. Let (V ,∥ ·∥) be a normed vector space and let x ∈ V and
S ⊆ V . And element z ∈ S is called a proximum of x in S if ∥x − y∥ ≥ ∥x − z∥ for
all y ∈ S.

Recall that a subset C of a real or complex vector space V is called convex
if λv + (1 − λ)w ∈ C for all v,w ∈ C and all λ ∈ [0,1]. Equivalently, we have∑n
k=1λkvk ∈ C for all n ∈ N, all v1, . . . , vn ∈ C and all λ1, . . . ,λn ≥ 0 that fulfils∑n
k=1λk = 1.

Theorem 2.4.2. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space, let x ∈ V and let C ⊆ V be a
convex set.

(a) There exists at most one proximum of x in C.
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2. Inner products and Hilbert spaces

(b) If (V ,⟨ · , · ⟩) is even a Hilbert space and C is closed, then there exists a
proximum of x in C.

Proof. (b) Define sB inf{∥x − y∥ : y ∈ C}. Then we can find a sequence (yn)n∈N
in C such that limn→∞∥x − yn∥ = s. Define zn B x − yn for each n ∈ N. We show
that (zn)n∈N is a Cauchy sequence, so let ε > 0.

For all sufficiently large n ∈ N, n ≥ n0 say, we have ∥zn∥2 < s2 + ε2

4 . For all
n,m ≥ n0 we thus obtain from the parallelogram identity that

∥zn − zm∥2 = 2∥zn∥2 + 2∥zm∥2 − ∥zn + zm∥2

= 2∥zn∥2 + 2∥zm∥2 − 4∥zn + zm
2
∥2

= 2∥zn∥2 + 2∥zm∥2 − 4∥x −
yn + ym

2
∥2

< 4(s2 +
ε2

4
)− 4s2 = ε2;

for the inequality between the third and the fourth line we used that yn+ym
2 ∈ C

since C is convex. Hence, ∥zn − zm∥ < ε for all m,n ≥ n0, so (zn)n∈N is a Cauchy
sequence. AsH is complete, it thus follows that the sequence (zn)n∈N converges
and hence, so does the sequence (yn)n∈N. If y0 ∈ H denotes the limit of the
latter sequence, then we have ∥x − y0∥ = limn→∞∥x − yn∥ = s. Moreover, y0 is
contained in C since C is closed. Hence, y0 is a proximum of x in C.

(a) Define s as in the proof of (b). Let y1 and y2 be proxima of x in C and
define z1 = x − y1 and z2 = x − y2. Then a similar computation as in (b) shows
that

0 ≤ ∥z1 − z2∥2 = 2∥z1∥2 + 2∥z2∥2 − 4∥x −
y1 + y2

2
∥2 ≤ 2s2 + 2s2 − 4s2 = 0.

Hence, z1 = z2 and thus, y1 = y2.

The following simple characterisation of proxima in convex sets is often
quite useful.

Proposition 2.4.3. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space, let C ⊆ V be convex and
let x,z ∈ V . Then the following assertions are equivalent:

(i) The vector z is the proximum of x in C.

(ii) We have z ∈ C and Re⟨x − z,y − z⟩ ≤ 0 for all y ∈ C.

Proof. We leave the proof as an exercise.

The case where the convex subset C is a vector subspace is of particular
interest.
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2.4. Optimal approximation

Corollary 2.4.4. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space, let W ⊆ V be a vector
subspace of V and let x,z ∈ V . Then the following assertions are equivalent:

(i) The vector z is the proximum of x in W .

(ii) We have z ∈W and x − z is orthogonal to all elements of W .

Proof. It suffices to show that assertion (ii) is equivalent to assertion (ii) in
Proposition (ii) (for C BW ). For both implications we may assume that z ∈W .

If x − z is orthogonal to every element of W , then we have ⟨x − z,y − z⟩ = 0
and hence Re⟨x − z,y − z⟩ = 0 for all y ∈W since y − z ∈W for each such y.

Now assume on the other hand that Re⟨x − z,y − z⟩ ≤ 0 for all y ∈W and
let ỹ ∈W . Then we have

Re⟨x − z, ỹ⟩ = Re⟨x − z, (ỹ + z)− z⟩ ≤ 0

since ỹ + z ∈W . Since W is a vector subspace, we conclude from this that we
also have Re⟨x− z,−ỹ⟩ ≤ 0, so actually Re⟨x− z, ỹ⟩ = 0. If the scalar field is real,
the proof is finished, so assume that the scalar field is complex.

Then we can find a real number θ such that eiθ⟨x − z, ỹ⟩ ∈ R. Since W is
a vector subspace of V , the vector eiθ ỹ is also contained in W and thus, it
follows from what we have just proved that

0 = Re⟨x − z,eiθ ỹ⟩ = Re
(
eiθ⟨x − z, ỹ⟩

)
= eiθ⟨x − z, ỹ⟩.

Therefore, ⟨x − z, ỹ⟩ = 0 as claimed.

Corollary 2.4.5. Let (H,⟨ · , · ⟩) be a Hilbert space and let G ⊆H be closed vector
subspace. The set

G⊥ B {x ∈H : ⟨x,y⟩ = 0 for all y ∈ G}

is a vector subspace of H and we have H = G⊕G⊥.

Proof. Obviously,G⊥ is a vector subspace ofH (this is actually for every subset
G of H and not only for closed vector subspaces).

Since 0 is the only vector which is orthogonal to itself, we haveG∩G⊥ = {0}.
Now, let z ∈H ; according to Theorem 2.4.2(b), there exists a proximum y of z
in G and according to Corollary 2.4.4, the vector xB z − y is orthogonal to all
elements of G. Hence, z = y + x where y ∈ G and x ∈ G⊥.

As a consequence we obtain the following characterisation of orthonormal
basis in Hilbert spaces:

Theorem 2.4.6. Let (H,⟨ · , · ⟩) be a Hilbert space and let E be a orthonormal system
in H . The following assertions are equivalent:
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2. Inner products and Hilbert spaces

(i) The orthonormal system E is an orthonormal basis of H .

(ii) The orthonormal system E is maximal, meaning that there exists no orthonor-
mal system F ⊆ V which fulfils F ⊋ E.

(iii) No vector in V except for 0 is orthogonal to all elements of E.

Proof. We first show that “(i)⇒ (ii)⇔ (iii)” holds even if (H,⟨ · , · ⟩) is only a
pre-Hilbert space.

“(ii)⇒ (iii)” Suppose that E is a maximal orthonormal system. If there was
a non-zero vector v ∈H that is orthogonal to all elements of E, then E∪{v/∥v∥}
would be a orthonormal system that strictly contains E, which contradicts the
maximality of E.

“(iii)⇒ (ii)” Now assume on the other hand that no vector in H except
for 0 is orthogonal to all elements of E. If F was an orthonormal system
in F fulfilling F ⊋ E, then we could find a vector f ∈ F \ E and this vector
would be non-zero and orthogonal to each element of E, which contradicts
our assumption. Hence, E is maximal.

“(i) ⇒ (iii)” Assume that E is an orthonormal basis of H let v ∈ H be
orthogonal to each e ∈ E. According to Theorem 2.3.2(ii) we have

v =
∑
e∈E
⟨e,v⟩e =

∑
e∈E

0 = 0,

which proves (iii).
Finally, we show that implication “(iii)⇒ (i)” in case that (H,⟨ · , · ⟩) is a

Hilbert space. Assume that (iii) holds. According to Theorem 2.3.2(i) we only
have to show that the linear hull of E is dense in H . So let L denote the linear
hull of E and suppose to the contrary that its closure L is a proper subset of
H . It is easy to see that L is itself a vector subspace of H and hence, we have
H = L⊕L⊥ according to Corollary 2.4.5. In particular, L

⊥
contains a non-zero

element v since L , H . The vector v is orthogonal to each element of L and
thus, in particular, to each element of E.

It is a consequence of Zorn’s Lemma that we can find a maximal orthonor-
mal system in every pre-Hilbert space. In conjuction with the above theorem,
this yields that every Hilbert space possesses an orthonormal basis. More
generally, we have the following result:

Theorem 2.4.7. Let (H,⟨ · , · ⟩) be a Hilbert space and let F ⊆H be an orthonormal
system. Then there exists an orthonormal basis E of H which contains F. In
particular, there exists an orthonormal basis in H .

Proof. This is a consequence of Theorem 2.4.6(ii) and Zorn’s Lemma. We leave
the details as an exercise.
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2.5. Duality and the Riesz–Fréchet representation theorem

Remark 2.4.8. (a) One can show that there exists a pre-Hilbert space which
does not possess a orthonormal basis.

(b) Using Gram–Schmidt’s orthogonalisation algorithm one can, on the
other hand, prove that a pre-Hilbert-space (V ,⟨ · , · ⟩) always possesses a
orthonormal basis provided that there exists a countable dense subset
of V . This assumption is fulfilled for many concrete examples of pre-
Hilbert spaces.

2.5 Duality and the Riesz–Fréchet representation
theorem

Definition 2.5.1. Let (V ,∥ ·∥) be a normed vector space over K ∈ {R,C}. Then
we call the operator space V ′ B L(V ;K) the dual space of V . Each operator in
V ′ is called a bounded linear functional on V .

Proposition 2.5.2. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space over the scalar field K and
let x ∈ V . Then the mapping ϕx : V →K, y 7→ ϕx(y)B ⟨x,y⟩ is a bounded linear
functional on V and we have ∥ϕx∥ = ∥x∥.

Proof. All assertions are clear in case that x = 0, so let x , 0.
It follows from the definition of the inner product that the mapping ϕx is

linear. Moreover, we have |ϕx(y)| = |⟨x,y⟩| ≤ ∥x∥·∥y∥ for each y ∈ V due to the
Cauchy–Schwarz inequality. Hence, ϕx is bounded and we have ∥ϕx∥ ≤ ∥x∥.
On the other hand, ∥ϕx∥ · ∥x∥ ≥ |ϕx(x)| = |⟨x,x⟩| = ∥x∥ · ∥x∥, so ∥ϕx∥ = ∥x∥.

On Hilbert spaces, every bounded linear functional is of the above form.
For applications, this is one of the most important results in Hilbert space
theory.

Theorem 2.5.3 (Riesz–Fréchet Representation Theorem). Let (H,⟨ · , · ⟩) be a
Hilbert space and let ϕ ∈H ′. Then there exists exactly one vector x ∈H such that
ϕ(y) = ⟨x,y⟩ for all y ∈H . Moreover, we have ∥x∥ = ∥ϕ∥.

In the proof we are going to use the following proposition use easy proof
we leave to the reader:

Proposition 2.5.4. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space and let x1,x2 ∈H . Then
the following assertions are equivalent:

(i) x1 = x2.

(ii) ⟨x1, y⟩ = ⟨x2, y⟩ for all y ∈H

(iii) ⟨y,x1⟩ = ⟨y,x2⟩ for all y ∈H .
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2. Inner products and Hilbert spaces

Proof. We clearly have “(i) ⇒ (ii) ⇔ (iii)”. To show “(ii) ⇒ (i)”, choose y =
x1 − x2 and compute

∥x1 − x2∥2 = ⟨x1 − x2, y⟩ = ⟨x1, y⟩ − ⟨x2, y⟩ = 0.

Hence, x1 = x2.

Now we prove the Theorem of Riesz-Fréchet.

Proof of Theorem 2.5.3. The assertion is obvious if ϕ = 0, so assume that ϕ , 0.
Define GB kerϕ. Then G is a closed vector subspace ofH and hence, we have
H = G⊕G⊥ according to Corollary 2.4.5.

We have G , H as ϕ , 0 and hence, G⊥ , 0. Thus, there exists a vector

0 , v ∈ G⊥ and we define xB ϕ(v)
∥v∥2 v ∈ G

⊥. Note that ϕ(v) , 0 since v < G and
hence, x , 0. Moreover, we have

∥x∥2 =
|ϕ(v)|2

∥v∥2
= ϕ(v).

As the restriction of ϕ to G⊥ is an injective linear mapping from G⊥ to the
scalar field, it follows that G⊥ is one-dimensional, so every non-zero element
ofG⊥ is a multiple of x. Now, let y ∈H . Then we can decompose y as y = g+αx,
where g ∈ G and where α is a scalar. Hence, we obtain

ϕ(y) = ϕ(g) +αϕ(x) = αϕ(x) = ⟨x,g⟩+α∥x∥2 = ⟨x,g +αx⟩ = ⟨x,y⟩.

The proves the existence of x as claimed. Uniqueness follows from Proposi-
tion 2.5.4. Finally, we know from Proposition 2.5.2 that ∥ϕ∥ = ∥x∥.

Theorem 2.5.5. Let (H,⟨ · , · ⟩) be a Hilbert space. For each operator T ∈ L(H)
there exists exactly one operator in L(H), which we denote by T ∗, that fulfils
⟨x,T y⟩ = ⟨T ∗x,y⟩ for all x,y ∈H .

Moreover, the following assertions are fulfilled:

(a) We have ⟨T x,y⟩ = ⟨x,T ∗y⟩ for each T ∈ L(H).

(b) We have (T ∗)∗ = T for each T ∈ L(H).

(c) We have ∥T ∗∥ = ∥T ∥ for each T ∈ L(H).

(d) We have ∥T ∗T ∥ = ∥T T ∗∥ = ∥T ∥2 for each T ∈ L(H).

(e) We have (λT +µS)∗ = λT ∗ +µS∗ for all T ,S ∈ L(H) and all scalars λ,µ.

(f) We have (T S)∗ = S∗T ∗ for all T ,S ∈ L(H).

Definition 2.5.6. Let (H,⟨ · , · ⟩) be a Hilbert-space. For every T ∈ L(H) the
operator T ∗ ∈ L(H) is called the adjoint operator, or briefly: the adjoint, of T .
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Proof of Theorem 2.5.5. For each x ∈H , consider the mapping ψx from H into
the scalar field which given by ψx(y) = ⟨x,T y⟩ for each y ∈ H . This is a
bounded linear functional and hence, due to Theorem 2.5.3, there exists a
uniquely determined vector zx ∈H such that ψx(y) = ⟨zx, y⟩ for all y ∈H . We
define a mapping T ∗ :H →H by T ∗x = zx for all x ∈H . Then we have indeed

⟨x,T y⟩ = ⟨T ∗x,y⟩

for all x,y ∈H . Moreover, T ∗ is linear, for if x1,x2 are vectors inH and if λ1,λ2
are scalars, then

⟨T ∗(α1x1 +α2x2), y⟩ = ⟨α1x1 +α2x2,T y⟩ = α1⟨x1,T y⟩+α2⟨x2,T y⟩
= α1⟨T ∗x1, y⟩+α2⟨T ∗x2, y⟩ = ⟨α1T

∗x1 +α2T
∗x2, y⟩

for all y ∈H . Hence, it follows from Proposition 2.5.4 that T ∗(α1x1 +α2x2) =
α1T

∗x1 +α2T
∗x2.

Uniqueness of T ∗ follows from Proposition 2.5.4, too. Clearly, T ∗ = 0 if
and only if T = 0; hence, in order to show that is T ∗ is bounded and that
∥T ∥ = ∥T ∗∥, we may assume that T , 0 and T ∗ , 0. In this case we obtain for
each x ∈H the estimates

∥T ∗x∥2 = ⟨x,T T ∗x⟩ ≤ ∥x∥∥T ∥∥T ∗x∥ and ∥T x∥2 = ⟨T ∗T x,x⟩ ≤ ∥T ∗∥∥T x∥∥x∥

and hence

∥T ∗x∥ ≤ ∥T ∥∥x∥ and ∥T x∥ ≤ ∥T ∗∥∥x∥.

This proves that T ∗ is bounded and that assertion (c) holds. Assertion (a)
follows from the symmetry if the inner product and assertion (b) follows
from (a) and from the uniqueness of (T ∗)∗. Assertion (d) can be shown similarly
as (d), and assertions (e) and (f) follow immediately from the definition of the
adjoint operator and from Proposition 2.5.4.

2.6 Orthogonal projections

We denote the image of a linear mapping T by imT ; the identity mapping
from a vector space V to itself is denoted by IV or simply by I. If V is a vector
space and T : V → V is linear, then we define T 2 B T ◦ T .

Definition 2.6.1. Let (V ,∥ ·∥) be a normed vector space.

(i) A bounded linear operator P ∈ L(V ) is called a projection if P 2 = P .

(ii) If P ∈ L(V ) is a projection, the we call the operator QB I−P the comple-
mentary projection to P .

27



2. Inner products and Hilbert spaces

Note the the complementary projection Q = I−P is indeed a projection
since Q2 = I2− IP − P I+P 2 = I−2P + P = I−P =Q.

In the following two propositions, use easy proves we leave to the reader,
we collect some elementary information about projections.

Proposition 2.6.2. Let (V ,∥ ·∥) be a normed vector space, let P ∈ L(V ) be a
projection and let Q B I−P denote the complementary projection. Then the
following assertions hold.

(a) We have kerP = imQ and kerQ = imP .

(b) The vector subspaces kerP and imP of V are both closed.

(c) We have V = kerP ⊕ imP .

(d) Let v ∈ V and decompose v as v = x+ y, where x ∈ kerP and y ∈ imP . Then
y = P v and x =Qv.

(e) If P , 0, then ∥P ∥ ≥ 1.

Proposition 2.6.3. Let (V ,∥ ·∥) be a normed vector space. An operator P ∈ L(V )
is a projection if and only if P x = x for all x ∈ imP .

Definition 2.6.4. Let (V ,∥ ·∥) be a normed vector space. A vector subspace
W of V is called complemented in V if there exists a projection P ∈ L(V ) with
range W .

It follows from Proposition 2.6.2(b) that a complemented subspace is
always closed. On the other hand, a closed subspace of a normed vector space
– or even of a Banach space – need not be complemented, in general. However,
we shall see below that the situation is much simpler in Hilbert spaces.

Proposition 2.6.5. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space and let P ∈ L(V ) be a
projection. Then the following assertions are equivalent:

(i) Every element of imP is orthogonal to every element of kerP .

(ii) ∥P ∥ ≤ 1.

Proof. Denote the complementary projection of P by Q = I−P .
“(i)⇒ (ii)” Assume (i) and let v ∈ V . Then v = P v +Qv and P v ⊥ Qv. It

thus follows from Pythagoras’ Theorem that

∥v∥2 = ∥P v∥2 + ∥Qv∥2 ≥ ∥P v∥2,

so ∥P v∥ ≤ ∥v∥, which proves that ∥P ∥ ≤ 1.
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2.6. Orthogonal projections

“(ii)⇒ (i)” Suppose the ∥P ∥ ≤ 1 and let y ∈ kerP , x ∈ imP . For each scalar
α we have αy ∈ kerP and hence

∥x+αy∥ ≥ ∥P (x+αy)∥ = ∥x∥.

According to Exercise 10 on Exercise Sheet 4, this implies that x ⊥ y.

Definition 2.6.6. Let (V ,⟨ · , · ⟩) be a pre-Hilbert space. A projection P ∈ L(V )
is called an orthogonal projection if the equivalent conditions (i) and (ii) in
Proposition 2.6.5 are fulfilled.

Proposition 2.6.7. Let (H,⟨ · , · ⟩) be a Hilbert space and let P ∈ L(H) be a projec-
tion. Then the following assertions are equivalent:

(i) P is an orthogonal projection.

(ii) P ∗ = P .

(iii) P ∗P = P P ∗.

Proof. “(i)⇒ (ii)” Let P be an orthogonal projection and let x,y ∈H . According
to Proposition 2.6.2(c) we can decompose those two vectors as x = x1 + x2 and
y = y1 + y2, where x1, y1 ∈ imP and x2, y2 ∈ kerP . Hence, we obtain

⟨P x,y⟩ = ⟨P x1 + P x2, y⟩ = ⟨x1, y⟩ = ⟨x1, y1⟩+ ⟨x1, y2⟩ = ⟨x1, y1⟩

and similarly

⟨P ∗x,y⟩ = ⟨x,P y⟩ = ⟨x1 + x2, y1⟩ = ⟨x1, y1⟩.

Hence, ⟨P x,y⟩ = ⟨P ∗x,y⟩ for all x,y ∈H which implies, according to Proposi-
tion 2.5.4, that P x = P ∗x for all x ∈H . Therefore, P = P ∗.

“(ii)⇒ (iii)” This implication is obvious.
“(iii) ⇒ (i)” Assume that P ∗P = P P ∗. We first note that kerP = kerP ∗.

Indeed, if x ∈ kerP , then we have

∥P ∗x∥2 = ⟨P ∗x,P ∗x⟩ = ⟨x,P P ∗x⟩ = ⟨x,P ∗P x⟩ = ⟨P x,P x⟩ = ∥P x∥2 = 0.

Thus, kerP ⊆ kerP ∗. A similar computation yields the converse inclusion, so
kerP = kerP ∗.

Now, let x ∈ kerP , y ∈ imP . Then we can find a vector z ∈ H such that
y = P z and hence,

⟨x,y⟩ = ⟨x,P z⟩ = ⟨P ∗x,z⟩ = ⟨0, z⟩ = 0.

Hence, all elements of kerP are orthogonal to all elements of imP .
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It is worthwhile pointing out that in the proof of implication “(iii)⇒ (i)”
above we did not use that P is a projection, i.e. we showed that following
result: Whenever T ∈ L(H) fulfils the inequality T ∗T = T T ∗, then all elements
of kerT are orthogonal to all elements of imT .

Theorem 2.6.8. Let (H,⟨ · , · ⟩) be a Hilbert space and let G ⊆H be a closed vector
subspace.

(a) There exists exactly one orthogonal projection P ∈ L(H) with range G; in
particular, G is complemented. Moreover, we have kerP = G⊥.

(b) For every x ∈H the vector P x is the proximum of x in G.

(c) Let F be an orthonormal basis of G (which is a Hilbert space with respect to
the inner product inherited from H). Then we have

P x =
∑
e∈F
⟨e,x⟩e

for all x ∈H .

Proof. (a) According to Corollary 2.4.5 we have H = G⊕G⊥. Hence, for each
z ∈ H we can find uniquely determined vectors xz ∈ G and yz ∈ G⊥ such
that z = xz + yz. We define a mapping P : H → H by P z = xz for all z ∈ H .
Then one readily checks that P is linear and that P 2 = P . Moreover, we
have ∥P z∥2 ≤ ∥xz∥2 + ∥yz∥2 = ∥z∥2 for all z ∈ H , so ∥P ∥ ≤ 1, meaning that the
projection P is in fact an orthogonal projection. It is easy to see that imP = G.

Next we note that every orthogonal projection Q ∈ L(H) with range G
has kernel kerQ = G⊥. We clearly have kerQ ⊆ G⊥. On the other hand, we
have imQ⊕kerQ =H = G⊕G⊥ = imQ⊕G⊥. In conjuction with the inclusion
kerQ ⊆ G⊥ this immediately implies kerQ = G⊥.

In particular, we obtain kerP = G⊥. If Q ∈ L(H) is a second orthogonal
projection with range G, then its follows from what we have just shown that
kerQ = G⊥ = kerP ; hence, the ranges of P and Q coincide. It is, however, easy
to see that to projections (no matter whether orthogonal or not) coincide if
and only if both the ranges and their kernels coincide. Hence, P =Q, so we
proved the uniqueness of P .

(b) Let x ∈H and g ∈ G. The vector x − P x is contained in the kernel of P
and hence, its is orthogonal to all elements of G. Since P x − g is contained in
G, it is thus orthogonal to x − P x and hence we obtain

∥x − g∥2 = ∥(x − P x) + (P x − g)∥2 = ∥x − P x∥2 + ∥P x − g∥2 ≥ ∥x − P x∥2.

Thus, P x is indeed the proximum of x in G.
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(c) First note that P e = e for every e ∈ E. For eachg ∈ G we have the Fourier
expansion

g =
∑
e∈F
⟨e,g⟩e.

Now, let x ∈H . Then P x ∈ G and hence,

P x =
∑
e∈F
⟨e,P x⟩e =

∑
e∈F
⟨e,x⟩e

since ⟨e,P x⟩ = ⟨P ∗e,x⟩ = ⟨P e,x⟩ = ⟨e,x⟩ for every e ∈ E.
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3Elliptic PDEs on the interval
Opening Questions. (a) Is there a way to “differentiate” the non-differentiable

function (−1,1) ∋ x 7→ |x| ∈ R? If so, how should its derivative look like?

(b) Consider the two differential equations
x′′(t) = x(t) for t ∈ [0,1],

x(0) = 2,

x′(0) = 3

and


x′′(t) = x(t) for t ∈ [0,1],

x(0) = 2,

x(1) = 3.

What is the difference between both problems? Do both of them possess
a solution?

3.1 Distributions and Sobolev spaces in one dimension

In this section we present a generalisation of the derivative of a function from
classical analysis. The first step towards this generalisations is to consider
function from a different perspective: given, for instance, a function f :
(0,1)→ R we won’t, for the moment, pay too much attention any more on the
question what f does with single values in (0,1); instead we will consider how
f “acts” – by means of integration – on a class of very smooth “test functions”.

Definition 3.1.1. Let I ⊆ R be an open interval and let K ∈ {R,C}. A mapping
ϕ : I →K is called a test function if ϕ is infinitely often differentiable and if
the exists a compact set K ⊆ I such that ϕ(x) = 0 for all x ∈ I \K .

The set of all test function from I to K is denoted by D(I ;K).

Note that a test function is automatically infinitely often continuously
differentiable.

Example 3.1.2. Let ϕ : R→ R be given by

ϕ(x) =

e
1

x2−1 if x ∈ (−1,1),

0 if x ∈ R \ (−1,1).

Then ϕ(x) = 0 for all x ∈ R \ [−1,1] and one can show that ϕ is infinitely often
differentiable (the only points for this is not completely obvious are −1 and 1).
Hence, ϕ ∈ D(R;R).

In fact, one can show that exist a lot of test functions on each open interval
I ⊆ R – sufficiently many to distinguish any two elements of L2(I ;K) by
integrating them against all test functions on I . To make this precise, we first
note the following observation:
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3. Elliptic PDEs on the interval

Remark 3.1.3. Let I ⊆ R by an open interval and let K ∈ {R,C}. Let [f ] ∈
L2(I ;K) and let ϕ ∈ D(I ;K). Then the function f ϕ : I → R is integrable and
the integral

∫
I
f (x)ϕ(x) d does not depend on the choice of the representative

f of [f ].

Proof. There exists a compact set K ⊆ I such that ϕ(x) = 0 for all x ∈ I \K .
Moreover, since ϕ is continuous, we can find a number C ≥ 0 such that
|ϕ(x)| ≤ C for all x ∈ K . Hence,

∫
I
|ϕ(x)|2 d ≤

∫
K
C2 d < ∞, i.e. [ϕ] ∈ L2(I ;K).

Hence, f ϕ is integrable and the
∫
I
f (x)ϕ(x) d does not depend on the choice

of the representative of [f ] (compare Example 2.1.8).

Theorem 3.1.4. Let I ⊆ R be an open interval an let K ∈ {R;C}. Let [f ], [g] ∈
L2(I ;K) and assume that ∫

I
f (x)ϕ(x) d =

∫
I
g(x)ϕ(x) d

for all ϕ ∈ D(I ;K). Then [f ] = [g].

Proof. This is a special case of the so-called Fundamental Lemma of the Calculus
of Variations which can be shown by measure theoretic methods and for which
we refer to the literature.

Definition 3.1.5. Let I ⊆ R be an open interval and let K ∈ {R,C}. A distribu-
tion on I is a linear mapping τ :D(I ;K)→K with the following property: For
each compact set K ⊆ I there exist a constant C ≥ 0 and an integer n ∈ N0 such
that

|τ(ϕ)| ≤ C
n∑
k=0

sup
x∈K
|ϕ(k)(x)|

for all ϕ ∈ D(I ;K) that fulfil ϕ(x) = 0 for every x ∈ I \K .
The set of all distributions on I is a vector space (with the canonical

addition and scalar multiplication) which we denote by D′(I ;K).

The estimate in the above definition can be understood as some kind of
continuity condition. However, in order to understand this more precisely, we
would need the theory of topological vector spaces.

Example 3.1.6. Let I ⊆ R be an open interval and let K ∈ {R;C}. If f : I →K
is a continuous function, then the mapping τf :D(I ;R)→K which is given by

τf (ϕ) =
∫
I
f ϕ d for all ϕ ∈ D(I ;K)

is a distribution.
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3.1. Distributions and Sobolev spaces in one dimension

First note, that the integral
∫
I
f ϕ d is indeed well-defined since f ϕ is

continuous and zero outside of some compact set. Moreover, if K ⊆ I is
compact and C B |K |supx∈K |f (x)| (where |K | denotes the Lebesgue measure of
K), then we have

|τf (ϕ)| ≤ C sup
x∈K
|ϕ(x)|

for all ϕ ∈ D(I ;K). Thus, we have indeed τf ∈ D′(I ;K).
Finally, we point out that, if

∫
I
f1ϕ d =

∫
I
f2ϕ d for two continuous func-

tions f1, f2 : I →K and all ϕ ∈ D(I ;K), then one can conclude – similarly as in
Remark 3.1.3 – from the Fundamental Lemma of the Calculus of Variations
that f1 = f2. Hence, the mapping f 7→ τf from the vector space of continu-
ous K-valued functions on I to D′(I ;K) is injective, i.e. we can – and shall –
identify each continuous function f : I →K with the distribution τf .

Example 3.1.7. Let I ⊆ R be an open interval and let K ∈ {R,C}. For each
[f ] ∈ L2(I ;K) we can define a linear mapping τ[f ] : D(I ;R)→ K by means of
the formula

τ[f ](ϕ) =
∫
I
f ϕ d for all ϕ ∈ D(I ;K)

(compare Remark 3.1.3). It is easy to check that τf is in fact a distribution
on I . Moreover, the mapping L2(I ;K)→ D′(I ;K) is injective (see again Re-
mark 3.1.3) and hence, we may – and shall – identify each [f ] ∈ L2(I ;K) with
the distribution τ[f ].

For a distribution τ ∈ D′(I ;K) we write τ ∈ L2(I ;K) if there exists a vector
[f ] ∈ L2(I ;K) such that τ = τ[f ].

Examples 3.1.8. Let I ⊆ R be an open interval and let K ∈ {R,C}. Let x0 ∈ I .

(a) Define a mapping δx0
: D(I ;K)→ K by δx0

(ϕ) = ϕ for all ϕ ∈ D(I ;K).
Then δx0

is a distribution on I , the so-called Dirac delta distribution at x0.

(b) More generally, let k ∈ N0 and let τ : D(I ;K)→ K be given by τ(ϕ) =
ϕ(k)(x0) for all ϕ ∈ D(I ;K). Then τ is a distribution on I .

The main point about distributions is that we can differentiate them:

Definition 3.1.9. Let I ⊆ R be an open interval and let K ∈ {R,C}. Let τ ∈
D′(I ;K).

(i) The mapping

τ ′ :D(I ;K)→K, ϕ 7→ τ ′(ϕ)B −τ(ϕ′),

which can be easily checked to be a distribution, too, is called the
derivative of τ .
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3. Elliptic PDEs on the interval

(ii) We define τ (0) B τ and τ (k+1) B (τ (k))′ for each k ∈ N0. The distribution
τ (k) is called the k-th derivative of τ .

(iii) If f : I → K is a continuous function (respectively, then we call the
distribution (τf )′ the distributional derivative of f .

(iv) If [f ] ∈ L2(I ;K), then we call the distribution (τ[f ])′ the distributional
derivative of [f ].

By the above definition, we have found a way to “differentiate” many func-
tions (respectively, there associated distributions) which are not differentiable
in the classical sense. Yet, to things remain to be clarified:

• We have to show that the definition of a derivative in Definition 3.1.9 is
consistent with the classical notion of a derivative. This is the content of
Proposition 3.1.10 below.

• It it not clear at all whether the distributional derivative of a function is
again a function (more precisely: a distribution induced by a function
in the sense of Example 3.1.6 or Example 3.1.7). This matter will be
discussed in Examples 3.1.11 and it gives rise to the definition of weak
derivatives and Sobolev spaces below.

Proposition 3.1.10. Let I ⊆ R be an open interval, let K ∈ {R,C} and k ∈ N0. Let
f : I →K be a k-times continuously differentiable function. Then the k-th order
distributional derivative of f coincides with the k-the order classical derivative of
f ; more precisely, we have

τf (k) = (τf )(k)

(using the notation from Example 3.1.6).

Hence, if we identify continuous K-valued functions on I with the corre-
sponding distributions, then the distributional derivative of a C1-function
is the same as the classical derivative. The proof of Proposition 3.1.10 relies
on a simple partial integration (this also explains why we introduced the
strange minus-sign in Definition 3.1.9). We leave the details of the proof as an
exercise.

Examples 3.1.11. Let I = (−1,1) and let f : (−1,1) → R, f (x) = |x| for all
x ∈ (−1,1). We use the notation from Examples 3.1.6 and 3.1.7.

(a) Let g : (−1,1)→ R be given by

g(x)B sgnxB


−1 if x < 0,

0 if x = 0,

1 if x > 0.
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3.1. Distributions and Sobolev spaces in one dimension

Then (τf )′ = τ[g].

(b) We have (τf )(2) = 2δ0.

(c) There exists no continuous function h : I → R such that τh = δ0. More-
over, there exists no equivalence class [h] ∈ L2(I,K) such that τ[h] = δ0.

We leave the proofs of the assertions in the above examples as an exercise.

Definition 3.1.12. Let I ⊆ R be an open interval, let K ∈ {R,C} and let k ∈ N0.

(i) A vector [f ] ∈ L2(I ;K) is called k-times weakly differentiable if, for each
j ∈ {0, . . . , k} the j-the distributional derivative of [f ] can be represented
by an element of L2(I ;K), meaning more precisely that there exists a
vector [gj ] ∈ L2(I ;K) such that (τ[g])(j) = τ[gj ].

In this case, [gj] is uniquely determined (see Theorem 3.1.4 and Ex-
ample 3.1.7) and called the j-th weak derivative of [f ]. We denote it by
[gj]C [f ](j). For j = 1 we also write [f ]′ B [f ](1) and for j = 2 we write
[f ]′′ B [f ](2).

(ii) The set of all k-times weakly differentiable elements of L2(I ;K) (which
can easily be checked to be a vector subspace of L2(I ;K)) is denoted by
Hk(I ;K) and is called the Sobolev space of order k on I .

Theorem 3.1.13. Let I ⊆ R be an open interval, let K ∈ {R,C} and let k ∈ N0. For
all f ,g ∈Hk(I ;K) we define

⟨f ,g⟩Hk B
k∑
j=0

⟨[f ](j), [g](j)⟩,

where ⟨ · , · ⟩ denotes the inner product on L2(I ;K). Then ⟨ · , · ⟩Hk is an inner product
on Hk(I ;K) and (Hk(I ;K);⟨ · , · ⟩Hk ) is a Hilbert space.

Proof. It is straightforward to check that ⟨ · , · ⟩Hk is an inner product. We leave
the proof of the completeness as an exercise.

One can prove the following representation results of Sobolev functions
in one dimension. For the proof we refer to the literature.

Proposition 3.1.14. Let I ⊆ R be an open interval, let K ∈ {R,C} and let [û] ∈
H1(I ;K). Then there exists a uniquely determined continuous function u : I →K
such that [û] = [u|I ]. Moreover, if û′ denotes any representative of [û]′ and if x0 ∈ I
is an arbitrary point, then we have

u(x) = u(x0) +
∫ x

x0

û′(y) dy

for all x ∈ I .
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3. Elliptic PDEs on the interval

Proof. For this proof we refer to the literature.

Definition 3.1.15. In the situation of the above proposition, the function
u : I →K is called the continuous representative of [û].

Corollary 3.1.16. Let I ⊆ R be an open interval, let K ∈ {R,C} and let [û] ∈
Hk(I ;K) for some k ∈ N. If there exists a continuous function f : I → K such
that [û](k) = [f |I ], then there exists exactly one k-times continuously differentiable
function u : I →K for which we have [û] = [u|I ]; moreover, u(k) = f .

Proof. This follows by induction from Proposition 3.1.14.

Definition 3.1.17. Let I ⊆ R be an open interval and let K ∈ {R,C}. By
H1

0 (I ;K) we denote the space of all vectors [û] ∈ H1(I ;K) whose continuous
representative is 0 on the boundary of I .

Remark 3.1.18. It is not difficult to see that H1
0 (I ;K) is a vector subspace of

H1(I ;K). Moreover, one can conclude from Proposition 3.1.14 that H1
0 (I ;K) is

even closed in the Hilbert space (H1(I ;K),⟨ · , · ⟩H1).

We leave the proof of the following important theorem and of the subse-
quent corollary as an exercise.

Theorem 3.1.19 (Poicaré inequality). Let I ⊆ R be an open interval and let
K ∈ {R,C}. If I is bounded, then there exists a constant C > 0, depending only on
the Lebesgue measure of I , such that

⟨[u], [u]⟩ ≤ C⟨[u]′ , [u]′⟩

for all [u] ∈H1
0 (I ;K). Here, ⟨ · , · ⟩ denotes the usual inner product on L2(I ;K).

Corollary 3.1.20. Let I ⊆ R be an open interval and let K ∈ {R,C}. If I is bounded,
then the mapping ⟨ · , · ⟩H1

0
:H1

0 (I,K)×H1
0 (I ;K)→K given by

⟨[u], [v]⟩H1
0
B ⟨[u]′ , [v]′⟩

(where ⟨ · , · ⟩ denotes the usual inner product on L2(I ;K)) is an inner product on
H1

0 (I ;K) which renders H1
0 (I ;K) a Hilbert space.

3.2 Elliptic boundary value problems on the interval

Theorem 3.2.1. Let x1,x2 ∈ R such that x1 < x2 and let f : [x1,x2] → R be a
continuous function. Then there exists a function u : [x1,x2]→ R which is twice
continuously differentiable which solves the following boundary value problem: u′′ = f

u(x1) = u(x2) = 0.
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Proof. Abbreviate I B (x1,x2) and define a mapping ϕ : V → R given by
ϕ([v]) = −

∫
I
f (x)v(x) dx = −⟨[f ], [v]⟩L2 for all [v] ∈ V . This mapping is obvi-

ously linear. Moreover, if C > 0 denotes the constant from Poincaré’s inequal-
ity, then we have

|ϕ([v])| ≤ ∥[f ]∥L2 · ∥[v]∥L2 ≤ ∥[f ]∥L2 ·C∥[v]∥H1
0

for all [v] ∈ V , so ϕ is a continuous linear functional on the Hilbert space
(H1

0 (I ;R),⟨ · , · ⟩H1
0
). Therefore, due to the representation theorem of Riesz–

Fréchet we can find a vector [û] ∈ V such that ϕ([v]) = ⟨[û], [v]⟩H1
0

for all
[v] ∈ V . Now, denote by û′ a representative of [û]′ and let v ∈ D(I ;R) a test
function. Then we have

τ[f ](v) =
∫
I
f (x)v(x) dx = −ϕ([v]) = −⟨[û], [v]⟩H1

0

= −
∫
I
û′(x)v′(x) dx = τ ′[û′](v) = τ ′[û]′ (v).

Thus, the distributional derivative of the L2-vector [û]′ is given by τ[f ]. Since
[f ] is also an L2-vector, we conclude that [û]′ is in H1(I ;R) (so [û] ∈H2(I ;R))
and that [û]′′ = [f ].

Up to now we have only used that [f ] ∈ L2(I ;R). Now the continuity
of f comes into play. Since [û] ∈ H1, there exists a continuous functions
u : [x1,x2]→ I such that u(x1) = u(x2) = 0 and [û] = [u|I ]. Since [u]′′ = [f ]
and since f is continuous, it follows from Corollary 3.1.16 that u is twice
continuously differentiable and that the second classical derivative u′′ of u
coincides with f .

Remarks 3.2.2. (a) One can also prove uniqueness of the function u in the
above theorem.

(b) The above theorem can also be proved by more elementary methods
(more precisely: by integrating twice an choosing appropriate integra-
tion constants).

Yet, the advantage of the approach presented here is that it still works in
higher dimensions. However, we should point out that things are more
complicated in higher dimensions: for instance, Proposition 3.1.14 does
not longer holds if the interval I is replaced with an open subset of Rn.
As a consequence, the solution u of a boundary value problem might no
longer be twice continuously differentiable up to the boundary, but only
in the interior of the domain we are working on.
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4Spectral theory
Opening Questions. (a) If A ∈ Cd×d is an invertible matrix and B ∈ Cd×d is

“small”, does it follows that A+B is invertible, too?

(b) Why is a matrix A ∈ Cd×d invertible of 0 is not an eigenvalue of A?

(c) Can you write down the geometric series for matrices? Can you write it
down for bounded linear operators?

(d) How can we “diagonalise” a linear operator?

4.1 Intertibility and spectrum of linear operators

Definition 4.1.1. Let (E,∥ ·∥) be a Banach space. An operator T ∈ L(E) is called
invertible if it is bijective and if its inverse operator T −1 : E→ E is continuous,
too.

Remark 4.1.2. The condition in the above definition that T −1 be continuous
is actually redundant. This is a consequence of the so-called open mapping
theorem in functional analysis, which is not part of this course. The theorem
is usually taught in the course “Functional Analysis”. You can also find it in
your favourite functional analysis book.

Recall that we denote the identity operator on a vector space V by IV , or
simply by I.

Proposition 4.1.3. Let (E,∥ ·∥) be a Banach space and let T ∈ L(E). Then the
following assertions are equivalent:

(i) T is invertible.

(ii) There exists an operator S ∈ L(E) such that T S = ST = I.

If the equivalent assertions (i) and (ii) are fulfilled, then S = T −1.

Proof. We leave the proof as an exercise.

Proposition 4.1.4. Let (E,∥ ·∥) be a Banach space and let T ∈ L(E).

(a) If the series over the sequence (T n)n∈N0
is convergent, then the operator I−T

is invertible and we have

(I−T )−1 =
∞∑
n=0

T n.
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4. Spectral theory

(b) If there exist real numbers C ≥ 0 and ρ ∈ [0,1) such that ∥T n∥ ≤ Cρn for all
n ∈ N, then the operator I−T is invertible.

(c) If ∥T ∥ < 1, then the operator 1− T is invertible.

Proof. (a) Assume that the series over the sequence (T n)n∈N0
is absolutely

convergent and define

S B
∞∑
n=0

T n.

Then we have (I−T )S =
∑∞
n=0T

n −
∑∞
n=1T

n = I and, similarly, S(I−T ) = I.
Hence, I−T is invertible and S is its inverse operator according to Proposi-
tion 4.1.3.

(b) This is a consequence of assertion (b).
(c) Let ρB ∥T ∥ < 1. Then ∥T n∥ ≤ ∥T ∥n = ρn for each n ∈ N, so the assertion

follows from (b).

If (E,∥ ·∥) is a Banach space and S,T ∈ L(E) are both invertible, then ST is
clearly invertible, too and (ST )−1 = T −1S−1.

Corollary 4.1.5. Let (E,∥ ·∥) be a Banach space and let T ∈ L(E) be invertible. Let
S ∈ L(E) and assume that ∥S − T ∥ < 1

∥T −1∥ . Then the operator S is invertible, too.
In particular, the set of all invertible operators is open in L(E).

Proof. Note that

S = T + S − T = T (I−T −1(T − S)).

The operator T is invertible by assumption and the operator I−T −1(T − S) is
invertible according to Proposition 4.1.4(c) since ∥T −1(T −S)∥ ≤ ∥T −1∥·∥S−T ∥ <
1. Hence, S is invertible, too.

Definition 4.1.6. Let (E,∥ ·∥) be a complex Banach space and let T ∈ L(E).

(i) A complex number λ is called a spectral value of T if the operator λ I−T
is not invertible. The set σ (T ) of all spectral values of T is called the
spectrum of T .

(ii) A complex number λ is called an eigenvalue of T if there exists a vector
v ∈ E \ {0} such that T v = λv.

In this case, the vector v is called a eigenvector of T for the eigenvalue
λ, and the non-zero vector subspace {w ∈ E : Tw = λw} = ker(λ I−T ) is
called the eigenspace of T for the eigenvalue λ.
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Note that λ ∈ C is an eigenvalue of T if and only if the operator λ I−T is
not injective. In particular, every eigenvalue of T is a spectral value of T .

Proposition 4.1.7. Let (E,∥ ·∥) be a complex Banach space and let T ∈ L(E).

(a) Every λ ∈ σ (T ) fulfils |λ| ≤ ∥T ∥.

(b) Assume that µ ∈ C is not a spectral value of T . If λ is any complex number
that fulfils |λ−µ| < 1

∥(µ I−T )−1∥ , than λ is not a spectral value of T , either.

(c) The spectrum σ (T ) is a compact subset of T .

Proof. (a) Let λ ∈ C fulfil |λ∥ > ∥T ∥. Then the operator T
λ has norm < 1 and

hence, I−Tλ is invertible. Thus, λ I−T = λ(I−Tλ ) is invertible, too.
(b) Let µ and λ be as in the assertion. We have to prove that λ I−T is

invertible. Since ∥(λ − IT ) − (µ I−T )∥ = |λ − µ| < 1
∥(µ I−T )−1∥ , this follows from

Corollary 4.1.5.
(c) According to (a) the spectrum of T is bounded and according to (b),

C \ σ (T ) is open, so σ (T ) is closed.

The following corollary is an immediate consequence of Proposition 4.1.7(b):

Corollary 4.1.8. Let (E,∥ ·∥) be a complex Banach space, let T ∈ L(E) and let
µ ∈ C \ σ (T ). Then

∥(µ I−T )−1∥ ≥ 1
dist(µ,σ (T ))

,

where dist(µ,σ (T )) B inf{|µ − λ| : λ ∈ σ (T )} denotes the distance of µ to the
spectrum of T .

Remark 4.1.9. The series representation of (I−T )−1 in Proposition 4.1.4 and a
glance at the proof of Corollary 4.1.5 yield a bit more precise information in
Proposition 4.1.7.

In assertion (a) of the latter proposition we obtain for every λ ∈ C fulfilling
|λ| > ∥T ∥ the representation

(λ I−T )−1 =
∞∑
n=0

T n

λn+1 ,

and in assertion (b) of the proposition we obtain the representation

(λ I−T )−1 =
∞∑
n=0

(µ−λ)n
(
(µ I−T )−1

)n+1

whenever |λ−µ| < 1
∥(µ I−T )−1∥ .
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Proposition 4.1.10. Let (E,∥ ·∥) be a complex Banach space and let T ∈ L(E). If
E , {0}, then the spectrum of T is non-empty.

Proof. The proof requires a bit of complex analysis and the Hahn–Banach
theorem which is a fundamental result in functional analysis that follows from
Zorn’s Lemma. It can be found for instance in Winfried Kaballo, Grundkurs
Funktionalanalysis (Springer 2011), Satz 4.3.

Here, we only give the proof in case that E is a Hilbert space. So, let E be a
Hilbert space, i.e. let the norm on E be induced by an inner product ⟨ · , · ⟩. We
may assume throughout that T , 0. Assume for a contradiction that σ (T ) = ∅
and let x ∈ E \ {0}. Then y B (0 · I−T )−1x , 0 since (0 · I−T )−1 is bijective and
thus, in particular, injective. Now, consider the mapping

f : C→ C, λ 7→ ⟨y, (λ · I−T )−1x⟩.

It follows from the second series expansion in Remark 4.1.9 that this mapping
is analytic. Moreover, we can conclude from the same proposition that we
have f (λ) = ⟨y,

∑∞
n=0

T n

λn+1 x⟩ whenever |λ| > ∥T ∥ and hence,

|f (λ)| ≤ ∥y∥ · ∥x∥ ·
∞∑
n=0

∥T ∥n

cn+1∥T ∥n+1 = ∥y∥ · ∥x∥ · 1
∥T ∥

(4.1)

whenever c is a real number strictly larger than 1 and |λ| ≥ c∥T ∥. Since the
mapping f is continuous, it is bounded and the closed ball with radius 2∥T ∥
and thus, it follows from estimate (4.1) (for c = 2) that f is bounded on all of C.
Yet, according to Liouville’s Theorem, a bounded entire function is constant,
so f (λ) = f (0) for all λ ∈ C. Finally, we use the estimate (4.1) one again and
let c→∞. This shows that lim|λ| f (λ) = 0 and hence, ∥y∥2 = ⟨y,y⟩ = f (0) = 0.
This is a contradiction.

4.2 Compact operators

Let (M,d) be a metric space and let K ⊆M. Recall that K is called compact if
the following equivalent conditions are fulfilled:

(i) For every familiy of opensets (Ui)i∈I in M which fulfils
⋃
i∈IUi ⊇ K

we can find a finite subset Ĩ of the index set I for which we still have⋃
i∈ĨUi ⊇ K (for short: every open cover of K possess a finite sub-cover).

(ii) Every sequence in K has a subsequence that converges to an element of
K .

(iii) Every net in K has a subnet that converges to an element of K .
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4.2. Compact operators

(iv) The set K is closed and totally bounded, the latter assertion meaning that,
every every ε > 0, we can find finitely many open balls of radius ε in K
whose union contains K .

The set K is called relatively compact if its closure in M is compact. Every
compact subset of M is bounded, and so is every relatively compact subset of
M.

Recall that, for every x ∈M and every r > 0 the set Br(x) denotes the closed
ball in M with center x and radius r.

Definition 4.2.1. Let (E,∥ ·∥) and (F,∥ ·∥) be Banach spaces over the same
scalar field and let T : E→ F be linear. The mapping T is called compact if the
set T

(
B1(0)

)
is relatively compact in F.

Proposition 4.2.2. Let (E,∥ ·∥) and (F,∥ ·∥) be Banach spaces over the same scalar
field and let T : E→ F be linear and compact. Then T is continuous.

Proof. The proof follows easily from what was said above. We leave the details
as an exercise.

We are now going to consider the case E = F and K = C in which case
we can study the spectrum of linear operators. The spectrum of a compact
operator has many surprising and useful properties. Here, we are only going
to prove the following auxiliary result. Instead of studying the spectrum of
compact operators on Banach spaces in more details, we will focus on the
spectral theory of so-called normal compact operators on Hilbert spaces in the
final subsection, which is of particular importance.

Lemma 4.2.3. Let (E,∥ ·∥) be a complex Banach space and let T ∈ L(E) be compact.
If a complex number λ , 0 is contained in the topological boundary of the spectrum
of T (i.e. if λ ∈ ∂σ (T )), then λ is an eigenvalue of T .

Obviously, every point in ∂σ (T ) is a spectral value of T (since σ (T ) is
closed). The point in the above lemma is that such a number is even an
eigenvalue of T .

Proof of Lemma 4.2.3. Let λ ∈ ∂σ (T ). Then there exists a sequence (µn)n∈N
in C \ σ (T ) which converges to λ. Let us define Rn B (µn I−T )−1 for each
index n. Since λ ∈ σ (T ), we have dist(µn,σ (T ))→ 0 and hence, it follows from
Corollary 4.1.8 that ∥Rn∥ →∞ as n→∞.

We can find vectors yn ∈ E such that ∥yn∥ = 1 and ∥Rny∥ ≥ 1
2∥Rn∥ for all

indices n and hence, 0 < ∥Rnyn∥ → ∞. Consider the vectors xn B
Rnyn
∥Rnyn∥

. A
short computation shows that

(λ I−T )xn = (λ−µn)xn + (µn I−T )
Rnyn
∥Rnyn∥

= (λ−µn)x+
yn
∥Rnyn∥

→ 0
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as n→∞. Hence, we have found a sequence (xn)n∈N of normalised vectors
such that (λ − T )xn converges to 0. Such a sequence is called a approximate
eigenvector of T and λ is then called an approximate eigenvalue of T .

Now we use that T is compact and that λ , 0. This implies that there
exists a subsequence (T xnk ) of (T xn) which converges to a vector y ∈ E. Since
λxnk − T xnk converges to 0, it follows that (xnk ) converges to 1

λy C x. Clearly,
(λ I−T )x = limk→∞(λ I−T )xnk = 0, so λ is indeed an eigenvalue of T .

It is worthwhile noting that we can actually prove much more about the
spectrum of compact operators. In fact, the following result is true:

Theorem 4.2.4. Let (E,∥ ·∥) be a complex Banach space and let T ∈ L(E) be
compact. Then the following assertions hold:

(a) For every ε > 0, there exists at most finitely many spectral value of T of
modulus larger than ε. In particular, 0 is the only possible accumulation
point of σ (T ).

(b) If E is infinite-dimensional, then 0 is a spectral value of T .

(c) Every spectral value of T , except for possibly 0, is an eigenvalue of T .

For the proof we refer to the literature, for instance to Chapter 11 (and in
particular Theorem 11.14) of Winfried Kaballo, Grundkurs Funktionalanalysis
(Springer 2011). We are only going to prove this result in an important special
case below. On the other hand, in this special case we obtain much more
detailed information then in the above theorem.

4.3 Normal and self-adjoint operators

Definition 4.3.1. Let (H,⟨ · , · ⟩) be a Hilbert space und let T ∈ L(H).

(i) The operator T is called self-adjoint if T ∗ = T .

(ii) The operator T is called normal if T ∗T = T T ∗.

Proposition 4.3.2. Let (H,⟨ · , · ⟩) be a complex Hilbert space and let T ∈ L(H) be
self-adjoint.

(a) All spectral values of T are real; in particular, all eigenvalues of T are real.

(b) If λ1 and λ2 are two different eigenvalues of T with eigenvectors x1 and x2,
respectively, then x1 ⊥ x2.

Proof. We leave the proof as an exercise.
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Remark 4.3.3. If (H,⟨ · , · ⟩) is a complex Hilbert space and T ∈ L(H) is only
normal (but not necessarily self-adjoint), then it is still not difficult to show
that following:

(a) If λ ∈ C is an eigenvector of T with eigenvector x, then λ is an eigenvalue
of T ∗ with eigenvector x.

(b) If λ1 and λ2 are two different eigenvalues of T with eigenvectors x1 and
x2, respectively, then x1 ⊥ x2.

Lemma 4.3.4. Let (H,⟨ · , · ⟩) be a non-zero complex Hilbert space and let T ∈ L(H)
be self-adjoint and compact. Then T has an eigenvalue.

Proof. We know from Proposition 4.1.10 that the spectrum of T is non-empty
since H , {0}. If σ (T ) contains a non-zero number, then so does its boundary
∂σ (T ) and hence, T has an eigenvalue according to Lemma 4.2.3. So assume
that σ (T ) = 0. Then the so-called spectral radius

r(T )Bmax{|λ| : λ ∈ σ (T )}

is 0. Since T is self-adjoint, we know from the exercise sheet 13 that ∥T ∥ =
r(T ) = 0, so T = 0. Again since H , {0}, this implies that 0 is an eigenvalue of
T .

Theorem 4.3.5 (Spectral Theorem for Compact Self-Adjoint Operators). Let
(H,⟨ · , · ⟩) be complex Hilbert space and let T ∈ L(H) be compact and self-adjoint.
For each eigenvalue λ of T , choose an orthonormal basis Eλ of ker(λ I−T ) and
define

E B
⋃
λ is an

eigenvalue of T

Eλ

Then E is an orthonormal basis of H . In particular, H possess an orthonormal
basis that consists of eigenvectors of T .

Proof. It follows from Proposition (b) that E is an orthonormal system in H .
Let G be the closure of the linear span of E; we have to show that G = H .
According to Corollary 2.4.5 have have H = G⊕G⊥, so it suffices to show that
G⊥ = {0}.

Note that T
(
span(E)

)
⊆ span(E) and hence, TG ⊆ G. This implies that we

also have TG⊥ ⊆ G⊥; indeed, if x ⊥ y for all y ∈ G, then ⟨T x,y⟩ = ⟨x,T y⟩ = 0
for all y ∈ G since T y ∈ G for each such y.

Now, let S ∈ L(G⊥) denote the restriction of T to G⊥ (which is itsself a
Hilbert space with respect to the inner product induced by H). We have

⟨x,S∗y⟩ = ⟨Sx,y⟩ = ⟨T x,y⟩ = ⟨x,T y⟩ = ⟨x,Sy⟩
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4. Spectral theory

for all x,y ∈ G⊥, so S∗ = S, meaning that S is self-adjoint. Moreover, S has no
eigenvalues for if λ was an eigenvalue of S with an eigenvector x ∈ G⊥, then x
would also be an eigenvector of T for the eigenvalues λ which would imply
x = span(Eλ) ⊆ G – a contradiction.

Finally, it is easy to see that S is compact since T is so. Hence, S is
a compact self-adjoint operator on G⊥ without eigenvalues. According to
Proposition 4.3.4 this can only be true of G⊥ = {0}.

Let us mention one more general result about eigenvalues of compact
operators:

Remark 4.3.6. Let (E,∥ ·∥) be a Banach space, let T ∈ L(E) be compact and
let λ be an eigenvalue of T . If λ , 0, then the associated eigenspace F B
ker(λ I−T ) is finite dimensional. Indeed, let B

F
1 (0) denote the closed unit ball

in F and let B
E
1 (0) denote the closed unit ball in E. We have T F ⊆ F and hence

T B
F
1 (0) ⊆ F ∩ T BE1 (0); the latter set is compact in F.

However, we clearly have T B
F
1 (0) = λB

F
1 (0) and since λ , 0, this implies

that the closed unit ball of F is relatively compact and hence compact. Thus,
we only have to show the general result that a Banach space with compact
unit ball is finite dimensional. For general Banach spaces this result relies on
what is usually called the Riesz Lemma; since we focus on Hilbert space theory,
this lemma is not part of the this cours.

Here, we only prove that a Hilbert space with compact unit ball is finite
dimensional. Let (H,⟨ · , · ⟩) be a Hilbert space with compact unit ball and
assume for a contradiction that dimH =∞. Choose an orthonormal basis E
of H . Since dimH =∞, E cannot be finite, so we can find a sequence (en)n∈N
of pairwise distinct elements in E. This sequence is contained in the unit
ball of H , so we can choose a subsequence (enk )k∈N which converges in H .
In particular, (enk )k∈N is a Cauchy sequence. Yet, we have ∥enk − enj ∥

2 = 2
according to Pythagoras’ Theorem whenever k , j. This is a contradiction.

Examples 4.3.7. Let [f ] ∈ L2((0,π);C). Similarly as in the proof of The-
orem 3.2.1 one can show that there exists a vector [ug ] ∈ H2((0,π);C) ∩
H1

0 ((0,π);C) which fulfils u′′g = f and similarly as in in Exercise 29(b) on
Exercise Sheet 12 one can show that [ug ] is uniquely determined.

Since [ug ] is an element of H2((0,π);C)∩H1
0 ((0,π);C), it is, of course, an

element of L2((0,π);C), too. Define a mapping T : L2((0,π);C)→ L2((0,π);C)
by T [f ] = [ug ] for each [f ] ∈ L2((0,π);C). Then T is linear; moreover, one can
proof that T is self-adjoint and compact (where the compactness follows from
essentially from a so-called Sobolev embedding theorem which belongs to the
content of each course on partial differential equations).

Hence, Theorem 4.3.5 can be applied to the operator T . We leave it as an
exercise to show that the set of all eigenvalues of T is given by { 1

k2 : k ∈ N} and
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that, for each k ∈ N, the eigenspace ker( 1
k2 − T ) is spanned by the equivalence

class of the mapping sk : (0,π)→ C which is given by sk(x) := sin(kx) for all
x ∈ (0,π). Hence, it follows from Theorem 4.3.5 that the set of eigenvectors
{[sk] : k ∈ N} is an orthonormal basis of L2((0,1);C).
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AMetric spaces
A.1 Basics

Definition A.1.1 (Metrics and metric spaces). (i) Let M be an arbitrary
set. A metric on M is a mapping d : M ×M → [0,∞) which fulfils the
following axioms:

(M1) d is positively definite, i.e. for all x,y ∈M we have d(x,y) = 0 if and
only if x = y.

(M2) d is symmetric, i.e. we have d(x,y) = d(y,x) for all x,y ∈M.

(M3) d satisfies the triangle inequality, i.e. we have d(x,z) ≤ d(x,y)+d(y,z)
for all x,y,z ∈M.

(ii) A metric space is a pair (M,d) where M is a set and where d on M. By
abuse of language we sometimes simply say that “M is a metric space”,
thereby suppressing d in the notation.

Example A.1.2 (Euclidean metric). Let n ∈ N and letM ⊆ Rn. Define d(x,y) =
∥x − y∥2 for all x,y ∈ Rn, where ∥ ·∥2 denotes the Euclidean norm on Rn. Then
(M,d) is a metric space.

The above example is a special case of the following situation:

Remark A.1.3. Let (M,d) be a metric space and let S ⊆M. Then (S,d |S×S ) is a
metric space, too.

Let us give a further example of a metric space before we proceed with
the theory:

Example A.1.4 (SNCF metric). LetM be a finite set with n+1 elements (n ≥ 1)
which we denote by p,v1, ...,vn. Define a mapping d :M ×M→ [0,∞) by

d(x,y) =


0 if x = y

1 if x , y and p ∈ {x,y}
2 if x , y and p < {x,y}.

for all x,y ∈M. Then (M,d) is a metric space and we call d a SNCF metric on
M.

Definition A.1.5 (Balls, open and closed sets). Let (M,d) be a metric space.

(i) If x0 ∈M and r > 0, then we call the set Br(x) := {x ∈M : d(x,x0) < r} the
open ball in M with center x0.
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(ii) A subset S ⊆M is called open if, for every x ∈ S, there exists a number
ε > 0 such that Bε(x) ⊆ S.

(iii) A subset S ⊆M is called closed if the complementary set M \ S is open.

Definition A.1.6 (Convergent sequences and Cauchy sequences). Let (M,d)
be a metric space and let (xk)k∈N be a sequence in M.

(i) The sequence (xk)k∈N is said to converge to an element x ∈M if, for every
ε > 0, there exists an index k0 ∈ N such that xk ∈ Bε(x) for all k ≥ k0. In
this case, the element x is said to be the limit of the sequence (xk)k∈N and

we write x = limk→∞ xk or xk
k→∞→ x.

The sequence (xk)k∈N is called convergent if there exists an element x ∈M
such that (xk)k∈N converges to x.

(ii) The sequence (xk)k∈N is called a Cauchy sequence if, for every ε > 0, there
exists an index k0 ∈ N such that d(xj ,xk) < ε for all j,k ≥ k0.

Remark A.1.7. Let (M,d) be a metric space. For every x ∈ M and every
sequence (xk)k∈N, the following assertions are equivalent:

(i) The sequence (xk)k∈N converges to x.

(ii) The sequence
(
d(x,xk)

)
k∈N

in [0,∞) converges to 0.

It is easy to see that every convergent sequence is a Cauchy sequence, but
the converse implication is not in general true. This gives rise to the following
definition:

Definition A.1.8 (Complete metric space). A metric space (M,d) is said to
be complete if every Cauchy sequence in M converges.

Proposition A.1.9. Let (M,d) be a complete metric space and let S ⊆M. Then
the following assertions are equivalent:

(i) The set S is closed.

(ii) The metric space (S,d |S×S ) is complete.

Proposition A.1.10. Let (M,d) be a metric space. For every subset S ⊆M the
following assertions are equivalent:

(a) The set S is closed.

(b) For every sequence (xk)k∈N in S which converges to an element of M, it
follows that limk→∞ xk ∈ S.

54



A.2. Product metrics

Definition A.1.11 (Continuous mappings). Let (M,dM ) and (N,dN ) be met-
ric spaces and let f :M→N be a mapping.

(i) Let x ∈M. The mapping f is said to be continuous at x if, for every ε > 0,
there exists a δ > 0 such that f (Bδ(x)) ⊆ Bε(f (x)).

(ii) The mapping f is said to be continuous if f is continuous at every point
x0 ∈M.

Proposition A.1.12. Let (M,dM ) and (N,dN ) be metric spaces and let f :M→N
be a mapping.

(a) Let x ∈M. The mapping f is continuous at x0 if, for every sequence (xk)k∈N
in M which converges to x, the sequence (f (xk))k∈N in N converges to f (x).

(b) The mapping f is continuous if, for every convergent sequence (xk)k∈N in M,
the sequence (f (xk))k∈N in N converges to f (limk→∞ xk).

Definition A.1.13 (Bounded sets). Let (M,d) be a metric space.

(i) A subset S ⊆M is called bounded if there exists an element x ∈M and a
number r > 0 such that S ⊆ Br(x).

(ii) A sequence (xk)k∈N in M is called bounded if the set {xk : k ∈ N} ⊆M is
bounded.

Remarks A.1.14. (a) Let (M,d) be a metric space and let S ⊆M be bounded.
It follows from the triangle inequality that, for every x ∈M, there exists
a number r > 0 such that S ⊆ Br(x).

(b) It is easy to see that every Cauchy sequence in M is bounded. In particu-
lar, every convergent sequence in M is bounded.

A.2 Product metrics

Definition A.2.1 (Product metric). Let (M,dM ) and (N,dN ) be metric spaces.
A metric d on M ×N is called a product metric of dM and dN if it fulfils the
following two properties for all x,x1,x2 ∈M and all y,y1, y2 ∈N :

(P1) Both dM(x1,x2) and dN (y1, y2) are no larger than d
(
(x1, y1), (x2, y2)

)
.

(P2) d
(
(x1, y), (x2, y)

)
= dM(x1,x2) and d

(
(x,y1), (x,y2)

)
= dN (y1, y2).

Remark A.2.2. Let (M,dM ) and (N,dN ) be metric spaces. Then there exists at
product metric d on M ×N . For for instance, we can define

d
(
(x1, y1), (x2, y2)

)
= dM(x1,x2) + dN (y1, y2)

for all (x1, y1) and all (x2, y2) in M ×N .
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Proposition A.2.3. Let (M,dM) and (N,dN ) be metric spaces and let d be a
product metric on M ×N . Let (xk)k∈N be a sequence in M and (yk)k∈N a sequence
in N . Let x ∈M and y ∈N . Then the following assertions are equivalent:

(i) The sequence
(
(xk , yk)

)
k∈N

in M ×N converges to (x,y) (with respect to d).

(ii) The sequence (xk)k∈N converges to x and the sequence (yk)k∈N converges to y.

Proof. “(i)⇒ (ii)” If (i) holds, then

0 ≤ dM(xk ,x) ≤ d
(
(xk , yk), (x,y)

)
→ 0

as k→∞, so x = limk→∞ xk . Similarly, one shows that y = limk→∞ yk .
“(ii)⇒ (i)” If (ii) holds, then we have

d
(
(xk , yk), (x,y)

)
≤ d

(
(xk , yk), (x,yk)

)
+ d

(
(x,yk), (x,y)

)
= dM(xk ,x) + dN (yk , y)→ 0

as k→∞. Hence, (x,y) = limk→∞(xk , yk).

Remark A.2.4. Let (M,dM ) and (N,dN ) be metric spaces and let d be a product
metric on M ×N . The above proposition shows that the question whether a
sequence in M ×N converges to a given element of M ×N does not depend on
the particular choice of the product metric d.

In conjuction with Proposition A.1.12 this shows that the question whether
a mapping from another metric space into M ×N (or from M ×N into another
metric space) is continuous does not depend on the choice of the given product
metric d.

We will always assume tacitly that the product M ×N of two metric spaces
is endowed with a product metric which we do not specify further.

Proposition A.2.5. Let (M,d) be a metric space. Then d : M ×M → [0,∞) is a
continuous mapping.
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