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Description of the course

The course concentrates on the numerical solution of initial value problems of the type

u′(t) = Au(t) + f(t), t ≥ 0,

u(0) = u0 ∈ D(A),

where A is a linear operator with dense domain of definition D(A) in a Banach space X, and u0 is the initial
value. A model example is the Laplace operator A = ∆ with appropriate domain in the Hilbert space L2(Ω).
In this case the above partial differential equation describes heat conduction inside Ω. One way of finding
a solution to this initial value problem is to imitate the way in which one solves linear ordinary differential
equations with constant coefficients: First define the exponential etA in suitable way. Then the solution of the
homogeneous problem is given by this fundamental operator applied to the initial value u0, i.e., u(t) = etAu0.
This is where operator semigroup theory enters the game: the fundamental operators T (t) := etA form a so-called
strongly continuous semigroup of bounded linear operators on the Banach space X. That is to say the functional
equation T (t+s) = T (t)T (s) and T (0) = I holds together with the continuity of the orbits t 7→ T (t)u0. If such a
semigroup exists, we say that the initial value problem is well-posed. Once existence and uniqueness of solutions
are guaranteed, the following numerical aspects appear.

• In most cases the operator A is complicated and numerically impossible to work with, so one approximates
it via a sequence of (simple) operators Am hoping that the corresponding solutions etAm (expected to be
easily computable) converge to the solution of the original problem etA in some sense. This procedure
is called space discretisation. This discretisation may indeed come from a spatial mesh (e.g., for a finite
difference method) or from some not so space-related discretisations, e.g., from Fourier-Galerkin methods.

• Equally hard is the computation of the exponential of an operator A. One idea is to approximate the
exponential function z 7→ ez by functions r that are easier to handle. A typical example, known also from
basic calculus courses, is the backward Euler scheme r(z) = (1 − z)−1. In this case the approximation
means r(0) = r′(0) = e0, i.e., the first two Taylor coefficients of r and of the exponential function coincide.
This leads to the following idea. If r(tA) is approximately the same as etA for small values of t (up to an
error of magnitude t2), we may take the nth power of it. To compensate for the growing error, we take
decreasing time steps as n grows and obtain[

r( t
nA)

]n ≈
[
e
t
nA

]n
= etA

by the semigroup property. This procedure is called temporal discretisation.

• Due to numerical reasons, one is usually forced to combine the above two methods and add further spice
to the stew: operator splitting. This is usually done when the operator A has a complicated structure, but
decomposes into a finite number of parts that are easier to handle.

In semigroup theory the above methods culminate in the famous Lax Equivalence Theorem and Chernoff’s
Theorem, describing precisely the situation when these methods work. In this course we shall develop the basic
tools from operator semigroup theory needed for such an abstract treatment of discretisation procedures.

Topics to be covered include:

1 initial value problems and operator semigroups,

1 spatial discretisations, Trotter–Kato theorems, finite element and finite difference approximations,

1 fractional powers, interpolation spaces, analytic semigroups,

1 the Lax Equivalence Theorem and Chernoff’s Theorem, error estimates, order of convergence, stability
issues,

1 temporal discretisations, rational approximations, Runge–Kutta methods, operator splitting procedures,

1 applications to various differential equations, like inhomogeneous problems, non-autonomous equations,
semilinear equations, Schrödinger equations, delay differential equations, Volterra equations,

1 exponential integrators.

Some of these topics will be elaborated on in Phase 2, where the students will have the possibility to work on
projects which are related to active research.



Lecture 1

What is the Topic of this Course?

The ultimate aim of these notes is quickly formulated: We would like to develop those functional
analytic tools that allows us to adopt methods for ordinary differential equations (ODEs) to solve
some classes of time-dependent partial differential equations (PDEs) numerically.

Let us illustrate this idea by recalling first the most trivial one of all ODEs. For a matrix A ∈ ℝ
d×d

consider the initial value problem

{

u̇(t) = Au(t),

u(0) = u0.

We know that the solution to such an ordinary differential equation is given by

u(t) = etAu0,

where etA is the exponential function of the matrix tA defined by the power series

etA =
∞
∑

n=0

tnAn

n!
,

which converges absolutely and uniformly on every compact interval of ℝ. Here the numerical
challenge is, especially for large matrices, to calculate this exponential function in an effective and
accurate way.

The exponential function of a matrix plays an important role not only because it solves the linear
problem above, but it also occurs in more complicated problems where a nonlinearity is present,
like in the equation

v̇(t) = Av(t) + F (t, v(t)).

To solve such an equation by iterative methods the variation of constants formula plays an essential
role, stating that the solution v(t) of this nonlinear equation satisfies

v(t) = etAv(0) +

t
∫

0

e(t−s)AF (s, v(s)) ds.

Here again the exponential function of a matrix appears. Of course, here further numerical issues
arise, such as the calculation of integrals.

There is a multitude of theoretical methods for the calculation of such exponentials, each of
them leading to some possible numerical treatment of the problem. We mention those that will be
important for us in this course:

1. by means of the Jordan normal form,

1



2 Lecture 1: What is the Topic of this Course?

2. by means of the Cauchy’s integral formula, more precisely, by using the identity

1

2�i

∮

e�

�− z
d� = ez,

3. by using other formulae for the exponential function, say

ex = lim
n→∞

(

1 +
x

n

)n

= lim
n→∞

(

1−
x

n

)

−n

.

Let us start by looking at the first of the suggestions on the above list. Theory tells us that we
“only” have to bring A to Jordan normal form, and then the exponential function can be simply
read off. The situation is even better if we can find a basis of orthogonal eigenvectors. Then we can
bring the matrix A to diagonal form by a similarity transformation S−1AS = D = diag(�1, . . . , �d),
and hence the exponential becomes

etA = SetDS−1 = S diag(et�1 , . . . , et�d)S−1.

Of course, other numerical difficulties are hidden in calculating the Jordan normal form or the
similarity transformation S. Still this very idea proves itself to be useful for partial differential
equations. Let us illustrate this idea on the next example.

1.1 The heat equation

Consider the one-dimensional heat equation, say, on the interval (0, �)

∂tw(t, x) = ∂xxw(t, x), t > 0

w(0, x) = w0(x),

with homogeneous Dirichlet boundary conditions

w(t, 0) = w(t, �) = 0.

We can rewrite this equation (without the initial condition) as a linear ordinary differential equation

u̇(t) = Au(t), t > 0 (1.1)

in the infinite dimensional Hilbert space L2(0, �). To do this define the operator

(Ag)(x) := g′′(x) =
d2

dx2
g(x)

with domain

D(A) :=
{

g ∈ L2(0, �) : g cont. differentiable on [0, �],

g′′ exists a.e., g′′ ∈ L2, g′(t)− g′(0) =
∫ t

0 g
′′(s) ds for t ∈ [0, �]

and g(0) = g(�) = 0
}

.

Note that the definition of the domain has two ingredients: a condition that the differential operator
on the right-hand side of the equation has values in the underlying space (in this case L2), and



1.1. The heat equation 3

boundary conditions. The initial value is a function f ∈ L2(0, �), f = w0, and we look for a
continuous function u : [0,∞) → L2(0, �) that is differentiable on (0,∞) and satisfies equation
(1.1) with u(0) = f . Formally the solution of this problem is given by the exponential function
“etA” applied to the initial value f . Our aim is now to give a mathematical meaning to the expression
“u(t) = etAf”.

First of all, we calculate the eigenvalues of this operator. These are −n2 with corresponding
eigenvectors

fn(x) =

√

2

�
sin(nx) for n ∈ ℕ,

that is,

Afn = −n2fn. (1.2)

Note that we have normalised the eigenvectors so that ∥fn∥2 = 1. It is also easy to see that these
eigenfunctions are mutually orthogonal with respect to the L2 scalar product, i.e.,

⟨fn, fm⟩ :=

�
∫

0

fn(x)fm(x) dx =

{

1, for n = m

0, otherwise.

The linear span lin{fn : n ∈ ℕ} of these functions is dense in L2(0, �), so altogether we obtain
a orthonormal basis of eigenvectors of A. As a consequence, every function f ∈ L2(0, �) can be
written as a series

f =

∞
∑

n=1

⟨f, fn⟩fn, (1.3)

where the convergence has to be understood in the L2 norm. We call ⟨f, fn⟩ the (generalised)
Fourier coefficients of f .

For f ∈ lin{fn : n ∈ ℕ}, f =
∑N

n=1 anfn, the action of A is simple:

Af =

N
∑

n=1

anAfn =

N
∑

n=1

−n2anfn.

One expects that such a formula should hold true for functions for which the series on the right-hand
side converges in L2(0, �).

Proposition 1.1. Consider the linear operator M on L2(0, �) with domain

D(M) :=
{

f ∈ L2(0, �) :
∞
∑

n=1

n4∣⟨f, fn⟩∣
2 < ∞

}

Mf :=

∞
∑

n=1

−n2⟨f, fn⟩fn.defined by

Then A = M , i.e., D(A) = D(M), and for f ∈ D(A) we have Af = Mf . In particular we have

Af =

∞
∑

n=1

−n2⟨f, fn⟩fn for all f ∈ D(A) = D(M).
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Proof. Suppose f ∈ D(A). Then we integrate by parts twice(!) and obtain

√

�

2
⟨Af, fn⟩ =

�
∫

0

f ′′(x) sin(nx) dx = f ′(x) sin(nx)
∣

∣

∣

x=�

x=0
− n

�
∫

0

f ′(x) cos(nx) dx

= −n

�
∫

0

f ′(x) cos(nx) dx

= −nf(x) cos(nx)
∣

∣

∣

x=�

x=0
− n2

�
∫

0

f(x) sin(nx) dx = −n2

√

�

2
⟨f, fn⟩,

where in the last step we used the boundary conditions f(0) = f(�) = 0. Since Af ∈ L2, its Fourier
coefficients are square summable. Whence, f ∈ D(M) follows. This shows D(A) ⊆ D(M). We also
see that

Af =

∞
∑

n=1

−n2⟨f, fn⟩fn holds for all f ∈ D(A).

It only remains to show the other inclusion D(M) ⊆ D(A). To see that, it suffices to note that A
is surjective (this is “classical”) and M is injective, so A = M because M extends A (see Exercises
3 and 4.) □

Intuitively, the result above states that A has diagonal form with respect to the basis of eigen-
vectors, and is given by

A = diag(−1,−22, . . . ,−n2, . . . ).

Thus, the exponential of this operator can be immediately defined as

etA := diag(e−t, e−t4, . . . , e−tn2

, . . . ),

meaning that

etAf =

∞
∑

n=1

e−tn2

⟨f, fn⟩fn.

We have to show that this is a meaningful definition. As a first step, let us show that the formula
above gives rise to a continuous function.

Proposition 1.2. Let f ∈ L2(0, �). Then for every t ≥ 0 the series

etAf :=

∞
∑

n=1

e−tn2

⟨f, fn⟩fn

is convergent and defines a function u(t) = etAf which is continuous on [0,∞) with values in

L2(0, �).
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Proof. Since for every n ∈ ℕ and t ≥ 0 the inequality ∣e−tn2

∣ ≤ 1 holds, the sequence (e−tn2

⟨f, fn⟩)
is square summable, and the series

∞
∑

n=1

e−tn2

⟨f, fn⟩fn

that defines u(t) = etAf converges in L2(0, �).

We now prove the continuity at a given t ≥ 0. Let " > 0 be given, and choose n0 ∈ ℕ so that

∞
∑

n=n0+1

∣⟨f, fn⟩∣
2 ≤ ".

If t = 0, then in the following we consider only ℎ ≥ 0, and if t > 0 we additionally suppose ∣ℎ∣ ≤ t.
This way we can write

∥

∥etAf − e(t+ℎ)Af
∥

∥

2

2
=

〈

etAf − e(t+ℎ)Af, etAf − e(t+ℎ)Af
〉

=

∞
∑

n=1

∣

∣e−(t+ℎ)n2

− e−tn2∣

∣

2∣
∣

〈

f, fn⟩
∣

∣

2
≤

n0
∑

n=1

∣

∣e−(t+ℎ)n2

− e−tn2∣

∣

2∣
∣

〈

f, fn⟩
∣

∣

2
+ 2"

≤

n0
∑

n=1

∣

∣e−ℎn2

− 1
∣

∣

2∣
∣

〈

f, fn
〉
∣

∣

2
+ 2".

We can finish the proof by choosing ∣ℎ∣ so small that the first finitely many terms contribute at
most ". □

Hence, this exponential function provides a candidate to be the solution of (1.1). Let us prove
that it is indeed the solution.

Proposition 1.3. For f ∈ L2(0, �) we define u(t) := etAf . Then u(t) ∈ D(A) holds for all t > 0,
and u is differentiable on (0,∞) with derivative Au(t). That is, u solves the initial value problem

u̇(t) = Au(t), t > 0

u(0) = f.

Proof. The initial condition is fulfilled by (1.3). Note that for all t > 0 and n ∈ ℕ we have

∣e−tn2

n2∣ ≤ e−
t

2
n2 2e−1

t
for all n ∈ ℕ. (1.4)

From this estimate, using the characterisation in Proposition 1.1, we obtain that u(t) ∈ D(M) =
D(A) for each t > 0. Define

v(t) := Au(t),

un(s) := e−sn2

⟨f, fn⟩fn,

vn(s) := −n2e−sn2

⟨f, fn⟩fn.and

Then u̇n = vn, and both functions are continuous on [t/2, 3t/2] with values in L2. From inequality
(1.4) we obtain that the following two series

u(s) =

∞
∑

n=1

un(s) and v(s) =
∞
∑

n=1

u̇n(s)

have summable numerical majorants for s ∈ [t/2, 3/2t]. This implies that u is differentiable and
that we can interchange summation and differentiation, whence u̇(t) = v(t) = Au(t) follows. □
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Let us put the above in an abstract, operator theoretic perspective.

Proposition 1.4. For t ≥ 0 define T (t)f := etAf . Then T (t) is a bounded linear operator on

L2(0, �) for each t ≥ 0. The mapping T satisfies

T (t+ s) = T (t)T (s) and T (0) = I, the identity operator on L2.

For each f ∈ L2(0, �) the function t 7→ T (t)f is continuous on [0,∞).

Proof. As we saw in Proposition 1.2, the inequality

∥etAf∥22 = ⟨etAf, etAf⟩ ≤
∞
∑

n=1

e−2tn2

∣⟨f, fn⟩∣
2 ≤

∞
∑

n=1

∣⟨f, fn⟩∣
2 = ∥f∥22

holds. It is moreover clear that the mapping f 7→ etAf is linear, and from the previous inequality
we obtain that it is bounded with operator norm

∥etA∥ ≤ 1.

The identity T (t + s) = T (t)T (s) follows from the properties of the exponential function and the
definition of etA. The relation T (0) = I was discussed in Proposition 1.3, the continuity of the
mapping t 7→ T (t)f follows from Proposition 1.2. □

From the properties above we can coin a new definition.

Definition 1.5. Let X be a Banach space, and let the mapping T : [0,∞) → L (X) have1 the
properties:

a) For all t, s ∈ [0,∞)
{

T (t+ s) = T (t)T (s)

T (0) = I, the identity operator on X.

b) For all x ∈ X the mapping

t 7→ T (t)x ∈ X

is continuous.

Then T is called a strongly continuous one-parameter semigroup2 of bounded linear operators
on the Banach space X. We abbreviate this long expression sometimes to strongly continuous

semigroup, or simply to semigroup.

The semigroup constructed in Proposition 1.4 is called the (Dirichlet) heat semigroup on [0, �].
To sum up, we can state the following.

Conclusion 1.6. Initial value problems lead to semigroups.

1Here and later on, L (X) denotes the set of bounded linear operators on X.
2By an alternative terminology one may call such an object a C0-semigroup.
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1.2 The shift semigroup

Now that we have the new mathematical notion of one-parameter semigroups we want to study
them in detail. This, as a matter of fact, is one of the aims of this course. Before doing so let us
consider another example.

Take
X = BUC(ℝ) :=

{

f : ℝ → ℝ : f is uniformly continuous and bounded
}

,

which is a Banach space with the supremum norm

∥f∥∞ := sup
s∈ℝ

∣f(s)∣.

The additive (semi)group structure of ℝ naturally induces a semigroup on this Banach space by
setting

(S(t)f)(s) = f(t+ s), for f ∈ X, s ∈ ℝ, t ≥ 0.

One readily sees that S(t) is a bounded linear operator on X, in fact a linear isometry. The
semigroup property follows immediately from the definition. From the uniform continuity of f ∈ X
we conclude that

t 7→ S(t)f

is continuous, i.e., that S is a strongly continuous semigroup on X = BUC(ℝ), called the left shift

semigroup.

Let us investigate whether this semigroup S solves some initial value problem such as (1.1). Again
the heuristics of exponential functions helps: Given etA for a matrix A ∈ ℝ

d×d, we can “calculate”
the exponent by differentiating this exponential function at 0:

A =
d

dt
etA

∣

∣

∣

t=0
.

What happens in the case of the shift semigroup S? The semigroup S is not even continuous for
the operator norm (why?). So let us look at differentiability of the orbit map t 7→ S(t)f for some
given f ∈ X, called strong differentiability. The limit

lim
ℎ→0

1

ℎ
(S(ℎ)f − f) = lim

ℎ→0

f(ℎ+ ⋅)− f(⋅)

ℎ

must exist in the sup-norm of X. We immediately find a suitable candidate for the limit: Since the
limit must exist pointwise on ℝ, it cannot be anything else than f ′. Hence, the function f must
be at least differentiable so that the limit can exist. For f differentiable with f ′ being uniformly
continuous we have

sup
s∈ℝ

∣

∣

∣

∣

f(ℎ+ s)− f(s)

ℎ
− f ′(s)

∣

∣

∣

∣

= sup
s∈ℝ

∣

∣

∣

∣

∣

∣

1

ℎ

s+ℎ
∫

s

(

f ′(r)− f ′(s)
)

dr

∣

∣

∣

∣

∣

∣

≤ ",

for all ℎ with ∣ℎ∣ ≤ �, where � > 0 is sufficiently small, chosen for the arbitrarily given " > 0 from
the uniform continuity of f ′. This shows that if f, f ′ ∈ X, then we have

lim
ℎ→0

∥

∥

∥

∥

f(ℎ+ ⋅)− f(⋅)

ℎ
− f ′(⋅)

∥

∥

∥

∥

∞

= lim
ℎ→0

sup
s∈ℝ

∣

∣

∣

∣

f(ℎ+ s)− f(s)

ℎ
− f ′(s)

∣

∣

∣

∣

= 0.
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Note that for the derivative of S(t)f at arbitrary t ∈ ℝ we obtain by the same argument

d

dt
(S(t)f) = S(t)f ′.

This means that for f, f ′ ∈ X the orbit function u(t) = S(t)f solves the differential equation

{

u̇(t) = Au(t)

u(0) = f,

where (Af)(s) = f ′(s) with domain

D(A) :=
{

f : f, f ′ ∈ BUC(ℝ)
}

.

We can therefore formulate the parallel of Conclusion 1.6:

Conclusion 1.7. To a semigroup there exists a corresponding initial value problem.

1.3 What is the topic of this course?

At this point we hope to have motivated the study of strongly continuous semigroups from the
analytic or PDE point of view. To solve an initial value problem u̇(t) = Au(t), one has to define a
semigroup etA.

The numerical analysis aspects are now the following:

∙ The operator A is complicated, and numerically impossible to treat, so one approximates it via
a sequence of operators Am and hopes that the corresponding solutions (expected to be easily
calculated) etAm converge to the solution of the original problem etA (in a sense yet to be made
precise). This procedure is called space discretisation, and may indeed come from a spatial
mesh (e.g., for a finite element method) or from some not so space-related discretisation, like
for Fourier-Galerkin methods, an instance of which we have seen in Section 1.1.

∙ Equally hard is to determine the exponential function of a matrix (or operator) A (see the
list of suggestions on page 1). So a different idea is to approximate the exponential function
z 7→ ez by functions r that are easier to handle. A typical example, known also from basic
calculus courses, is that of the implicit Euler scheme r(z) = (1 − z)−1. In this case the
approximation means r(0) = 1 and r′(0) = 1, i.e., the first two Taylor coefficients of the two
functions coincide. Heuristically we obtain that r(tA) for a small t is approximately the same
as etA (up to an error of magnitude t2), we may take the nth power and to compensate the
growing error we would obtain, we take the time step smaller and smaller as n grows. We
obtain

(

r( t
n
A)

)n
≈

(

e
t
n
A
)n

= etA,

where the semigroup property was used. This procedure is called time discretisation.

∙ Due to numerical reasons one is usually forced to combine the two methods above, and
sometimes even by adding a further spice to the stew: operator splitting. This is usually done
when operator A has a complicated structure, but decomposes into a finite number of parts
that are easier to handle.
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∙ The theory presented above is the basis in extending known ODE methods to time dependent
partial differential equations and will allow us to use the variation of constants formula for
inhomogeneous or semilinear equations. Hence the convergence analysis of various iteration
methods will depend on this theory.

In semigroup theory the above methods culminate in the famous Lax-Chernoff Equivalence Theo-
rem that describes precisely the situation when these methods work. In this course we shall develop
the basic tools from operator semigroup theory needed for such an abstract treatment of discreti-
sation procedures.

Exercises

1. Prove that sin(nx), n ∈ ℕ, form a complete orthogonal system in L2(0, �), compute the L2

norms.

2. Analogously to what is presented in Section 1.1, study the heat equation with Neumann

boundary conditions:

∂tu(t, x) = ∂xxu(t, x), t > 0

u(0, x) = f(x),

∂xu(t, 0) = ∂xu(t, �) = 0.

3. Let X be a Banach space and A1 : X → X and A2 : X → X linear maps such that

∙ D(A1) ⊂ D(A2) and A1 is a restriction of A2

∙ A1 is surjective and A2 is injective.

Show that A1 = A2.

4. Consider the Hilbert space ℓ2 of square summable complex sequences.

a) Prove that

c00 =
{

(xn) ∈ ℓ2 : xn = 0 except for finitely many n
}

is a dense linear subspace of ℓ2.

b) For m = (mn) an arbitrarily fixed sequence of complex numbers, and x = (xn) ∈ c00 define

(Mmx)n = (mnxn), i.e., componentwise multiplication.

Give such a necessary and sufficient condition on m that Mm : c00 → c00 becomes a continuous
linear operator with respect to the ℓ2 norm.

c) Under this condition, prove that Mm extends continuously and linearly to ℓ2, give a formula for
this linear operator, and compute its norm.

d) Give a necessary and sufficient condition on m so that Mm has a continuous inverse.

e) Give a necessary and sufficient condition on m so that etMm is defined analogously to Section
1.1.
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5. Let p ∈ [1,∞) and consider the Banach space Lp(ℝ). Prove that the formula

(S(t)f)(s) := f(t+ s) for f ∈ Lp, s ∈ ℝ, t ≥ 0

defines a strongly continuous semigroup on Lp. What happens for p = ∞?

6. Let Fb(ℝ) denote the linear space of all bounded ℝ → ℝ functions. Define

(S(t)f)(s) := f(t+ s) for f ∈ Fb(ℝ), s ∈ ℝ, t ≥ 0.

Prove that S is a semigroup, i.e., satisfies Definition 1.5.a). Prove that each of the following spaces
is a Banach space with the supremum norm ∥ ⋅ ∥∞ and invariant under S(t) for all t ≥ 0. Is S a
strongly continuous semigroup on these spaces?

a) Fb(ℝ).

b) Cb(ℝ) = the space bounded and continuous functions.

c) C0(ℝ) = the space bounded and continuous functions vanishing at infinity.

7. Determine the set of those f ∈ BUC(ℝ) for which t 7→ S(t)f is differentiable (S denotes the left
shift semigroup).

8. Let S be the left shift semigroup on BUC(ℝ), and T be the heat semigroup from Section 1.1.
Prove the following assertions:

a) t 7→ S(t) is nowhere continuous for the operator norm.

b) t 7→ T (t) is not continuous for the operator norm at 0.

c) t 7→ T (t) is continuous for the operator norm on (0,∞).

9. Explain why it is not possible to define the heat semigroup for negative time values.



Lecture 2

Fundamentals of One-Parameter Semigroups

Last week we motivated the study of strongly continuous semigroups by standard PDE examples.
In this lecture we begin with the thorough investigation of these mathematical objects, and recall
first a definition from Lecture 1. Here and later on, X denotes a Banach space, and L (X) stands
for the Banach space of bounded linear operators acting on X.

Definition 2.1. Let T : [0,∞)→ L (X) be a mapping.

a) We say that T has the semigroup property if for all t, s ∈ [0,∞) the identities

T (t+ s) = T (t)T (s)

T (0) = I, the identity operator on X,and

hold.

b) Suppose Y ⊆ X is a linear subspace and for all f ∈ Y the mapping

t 7→ T (t)f ∈ X

is continuous. Then T is called strongly continuous on Y . If Y = X we just say strongly

continuous.

c) A strongly continuous mapping T possessing the semigroup property is called a strongly con-

tinuous one-parameter semigroup of bounded linear operators on the Banach space X.
Often we shall abbreviate this terminology to semigroup.

2.1 Basic properties

Let us observe some elementary consequences of the semigroup property and the strong continuity,
respectively. The first result reflects again the exponential function: Semigroups can grow at most
exponentially.

Proposition 2.2. a) Let T : [0,∞)→ L (X) be a strongly continuous function. Then for all t ≥ 0
we have

sup
s∈[0,t]

‖T (s)‖ <∞,

that is to say, T is locally bounded.

b) Let T : [0,∞) → L (X) be a strongly continuous semigroup. Then there are M ≥ 1 and ω ∈ R

such that

‖T (t)‖ ≤Meωt holds for all t ≥ 0.

11
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We call the semigroup T of type (M,ω) if it satisfies the exponential estimate above with the
particular constants M and ω. Note already here that the type of a semigroup may change if we
pass to an equivalent norm on X.

Proof. a) For f ∈ X fixed, the mapping T (·)f is continuous on [0,∞), hence bounded on compact
intervals [0, t], i.e.,

sup
s∈[0,t]

‖T (s)f‖ <∞.

The uniform boundedness principle, see Supplement, Theorem 2.28, implies the assertion.

b) By part a) we have
M := sup

s∈[0,1]
‖T (s)‖ <∞.

Take t ≥ 0 arbitrary and write t = n + r with n ∈ N and r ∈ [0, 1). From this representation we
obtain by using the semigroup property that

‖T (t)‖ = ‖T (r)T (1)n‖ ≤M‖T (1)n‖ ≤M‖T (1)‖n

≤M(‖T (1)‖+ 1)n ≤M(‖T (1)‖+ 1)t = Meωt

with ω = log(‖T (1)‖+ 1). �

Hence, orbits of strongly continuous semigroups are exponentially bounded. The greatest lower
bound of these exponential bounds plays a special role in the theory, hence, we give it a name.

Definition 2.3. For a strongly continuous semigroup T its growth bound1 is defined by

ω0(T ) := inf
{
ω ∈ R : there is M = Mω ≥ 1 with ‖T (t)‖ ≤Meωt for all t ≥ 0

}
.

Remark 2.4. 1. A strongly continuous semigroup T is of type (M,ω) for all ω > ω0(T ) and for
some M = Mω. In general, however, it is not of type (M,ω0(T )) for any M . A simple example
is the following. Let X = C

2 and let the matrix semigroup given by

T (t) =

(
1 t
0 1

)
.

Here ω0 = 0, but clearly T is not bounded, i.e., not of type (M, 0) for any M .

2. For a matrix A ∈ R
d×d we define T (t) = etA. This semigroup T is of type (1, ‖A‖) as the trivial

norm estimate
‖etA‖ ≤ et‖A‖

shows. In contrast to this, in infinite dimensional situation it can happen that a semigroup is
not of type (1, ω) for any ω, even though ω0(T ) = −∞. This is an extremely important fact,
which causes major difficulties in stability questions of approximation schemes (see Exercise 4).

The definition of an operator semigroup above comprises of the algebraic semigroup property,
and the analytic property of strong continuity. We shall see next that these two properties combine
well, and we provide some means for verifying strong continuity.

Proposition 2.5. a) Let T : [0,∞) → L (X) be a locally bounded mapping with the semigroup
property, and let f ∈ X. If the mapping T (·)f is right continuous at 0, i.e., T (h)f → f for
hց 0, then it is continuous everywhere.

1Also called the first Lyapunov exponent.



2.2. The infinitesimal generator 13

b) A mapping T with the semigroup property is strongly continuous on X if and only if it is locally
bounded and there is a dense subset D ⊆ X on which T is strongly continuous.

Proof. a) Fix f ∈ X and t > 0, and set M := sup[0,2t] ‖T (s)‖. Then

T (t+ h)f − T (t)f = T (t)(T (h)f − f), if 0 < h,

T (t+ h)f − T (t)f = T (t+ h)(f − T (−h)f), if − t < h < 0.

Summarizing, for |h| ≤ t we obtain

‖T (t+ h)f − T (t)f‖ ≤M‖f − T (|h|)f‖,

which converges to 0 for |h| → 0 by the assumption.

b) In view of Proposition 2.2 one implication is straightforward. So we turn to the other one,
and suppose that T is locally bounded and strongly continuous on a dense subspace D. Take an
arbitrary f ∈ X and some ε > 0. Set M := sups∈[0,1] ‖T (s)‖ and note that M ≥ 1. By denseness
there is g ∈ D with ‖f − g‖ ≤ ε

3M , whence

‖T (h)f − f‖ ≤ ‖T (h)f − T (h)g‖+ ‖T (h)g − g‖+ ‖g − f‖ ≤ ε

3
+M

ε

3M
+

ε

3M
≤ ε

follows if h is sufficiently small, chosen to ε/3 by the right continuity of T (·)g. This shows that
the orbit map T (·)f is right continuous at 0, and from part a) even continuity everywhere can be
concluded. �

2.2 The infinitesimal generator

One main message in Lecture 1 was that if we have a semigroup, then there is a differential
equation so that the semigroup provides the solutions. Looking for the equation, we now consider
the differentiability of orbit maps as in Section 1.2.

Lemma 2.6. Take a semigroup T and an element f ∈ X. For the orbit map u : t 7→ T (t)f , the
following properties are equivalent:

(i) u is differentiable on [0,∞),

(ii) u is right differentiable at 0.

If u is differentiable, then

u̇(t) = T (t)u̇(0).

Proof. We only have to show that (ii) implies (i). Analogously to the proof of Proposition 2.5, one
has

lim
hց0

1
h
(u(t+ h)− u(t)) = lim

hց0

1
h
(T (t+ h)f − T (t)f) = T (t) lim

hց0

1
h
(T (h)f − f)

= T (t) lim
hց0

1
h
(u(h)− u(0)) = T (t) u̇(0),

by the continuity of T (t). Hence u is right differentiable on [0,∞).
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On the other hand, for −t ≤ h < 0, we write

1
h
(T (t+ h)f − T (t)f)− T (t)u̇(0)

= T (t+ h)
(
1
h
(f − T (−h)f)− u̇(0)

)
+ T (t+ h)u̇(0)− T (t)u̇(0).

As h ր 0, the first term on the right-hand side converges to zero by the first part and by the
boundedness of ‖T (t+h)‖ for h ∈ [−t, t]. The other term converges to zero by the strong continuity
of T . Hence u is also left differentiable, and its derivative is

u̇(t) = T (t) u̇(0)

for all t ≥ 0. �

Hence, the derivative u̇(0) of the orbit map u(t) = T (t)f at t = 0 determines the derivative at
each point t ∈ [0,∞). We therefore give a name to the operator f 7→ u̇(0).

Definition 2.7. The infinitesimal generator, or simply generator A of a semigroup T is defined
as follows. Its domain of definition is given by

D(A) := {f ∈ X : T (·)f is differentiable in [0,∞)} ,

and for f ∈ D(A) we set

Af := d
dtT (t)f |t=0 = lim

hց0

1
h
(T (h)f − f) .

As we hoped for, a semigroup yields solutions to some linear ODE in the Banach space X.

Proposition 2.8. The generator A of a strongly continuous semigroup T has the following prop-
erties.

a) A : D(A) ⊆ X → X is a linear operator.

b) If f ∈ D(A), then T (t)f ∈ D(A) and

d
dtT (t)f = T (t)Af = AT (t)f for all t ≥ 0.

c) For a given f ∈ D(A), the semigroup T provides the solutions to the initial value problem

u̇(t) = Au(t), t ≥ 0

u(0) = f

via u(t) := T (t)f .

Proof. a) Linearity follows immediately from the definition because we take the limit of linear
objects as hց 0.

b) Take f ∈ D(A) and t ≥ 0. We have to show that T (·)T (t)f is right differentiable at 0 with
derivative T (t)Af . From the continuity of T (t) we obtain

T (t)Af = T (t) lim
hց0

T (h)f − f

h
= lim

hց0

T (h)T (t)f − T (t)f

h
.

By the definition of A this further equals AT (t)f .

Part c) is just a reformulation of b). �
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We now investigate infinitesimal generators further.

Proposition 2.9. The generator A of a strongly continuous semigroup T has the following prop-
erties.

a) For all t ≥ 0 and f ∈ X, one has

t∫

0

T (s)f ds ∈ D(A),

where the integral has to be understood as the Riemann integral of the continuous function
s 7→ T (s)f , see Supplement.

b) For all t ≥ 0, one has

T (t)f − f = A

t∫

0

T (s)f ds if f ∈ X,

=

t∫

0

T (s)Af ds if f ∈ D(A).

Proof. a) For g :=
∫ t

0 T (s)f ds we calculate the difference quotients

T (h)g − g

h
=

1

h

(
T (h)

t∫

0

T (s)f ds−
t∫

0

T (s)f ds
)
=

1

h

( t∫

0

T (h+ s)f ds−
t∫

0

T (s)f ds
)

=
1

h

( t+h∫

h

T (s)f ds−
t∫

0

T (s)f ds
)
=

1

h

( t+h∫

t

T (s)f ds−
h∫

0

T (s)f ds
)
.

Since the integrands here are continuous, we can take limits as hց 0 and obtain

lim
hց0

T (h)g − g

h
= T (t)f − f.

This yields g ∈ D(A) and Ag = T (t)f − f .

b) Take f ∈ D(A), then by Proposition 2.8.b) the identity AT (t)f = T (t)Af holds, hence v(t) :=
AT (t)f defines a continuous function. For h > 0 define the continuous functions vh(t) :=

1
h
(T (t+

h)f − T (t)f). Then we have

‖vh(t)− v(t)‖ ≤ ‖T (t)‖
∥∥∥1
h
(T (h)f − f)−Af

∥∥∥.

From this and the definition of A we conclude (by using the local boundedness of T ) that vh
converges to v uniformly on every compact interval. This yields

t∫

0

vh(s) ds→
t∫

0

v(s) ds as hց 0.
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We have calculated the limit of the left-hand side in part b): It equals

T (t)f − f = A

t∫

0

T (s)f ds,

which completes the proof. �

Before turning our attention to the main result of this section, let us recall what a closed operator
is. For a linear operator A defined on a linear subspace D(A) of a Banach space X, we define the
graph norm of A by

‖f‖A := ‖f‖+ ‖Af‖ for f ∈ D(A).

Then, indeed, ‖ · ‖A is a norm on D(A). The operator A is called closed if D(A) is complete with
respect to this graph norm, i.e., if D(A) is a Banach space with this graph norm ‖·‖A. The following
proposition yields simple yet useful reformulations of the closedness of a linear operator, we leave
out the proof.

Proposition 2.10. Let A be a linear operator with domain D(A) in X. The following assertions
are equivalent.

(i) A is a closed operator.

(ii) For every sequence (xn) ⊆ D(A) with xn → x and Axn → y in X for some x, y ∈ X one has
x ∈ D(A) and Ax = y.

If A is injective the properties above are further equivalent to the following:

(iii) The inverse A−1 of A is a closed operator.

The main result of this section summarises the basic properties of the generator.

Theorem 2.11. The generator of a semigroup is a closed and densely defined linear operator that
determines the semigroup uniquely.

Proof. Let (fn) ⊆ D(A) be a Cauchy sequence in D(A) with respect to the graph norm. Since for
all f ∈ D(A) the inequalities

‖f‖ ≤ ‖f‖A and ‖Af‖ ≤ ‖f‖A

hold, we conclude that (fn) and (Afn) are Cauchy sequences in X with respect to the norm ‖ · ‖.
Hence, they converge to some f ∈ X and g ∈ X, respectively. For t > 0 we have

T (t)fn − fn =

t∫

0

T (s)Afn ds

by Proposition 2.9. If we set un(s) := T (s)Afn and u(s) := T (s)g, then un → u uniformly on [0, t],
since T is locally bounded. So we can pass to the limit in the identity above, and obtain

T (t)f − f =

t∫

0

T (s)g ds.
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From this we deduce that t 7→ T (t)f is differentiable at 0 with derivative u(0) = g. This means
precisely f ∈ D(A) and Af = g. To conclude, we note

‖f − fn‖A = ‖f − fn‖+ ‖Af −Afn‖ → 0 as n→∞,

i.e., fn → f in graph norm. Therefore, A is a closed operator.

We now show that D(A) is dense in X. Let f ∈ X be arbitrary and define

v(t) :=
1

t

t∫

0

T (s)f ds (t > 0).

By Proposition 2.9 we obtain v(t) ∈ D(A). Since s 7→ T (s)f is continuous, we have v(t)→ T (0)f =
f for tց 0.

Suppose S is a semigroup with the same generator A as T . Let f ∈ D(A) and t > 0 be fixed, and
consider the function u : [0, t]→ X given by u(s) := T (t− s)S(s)f . Then u is differentiable and its
derivative is given by the product rule, see Supplement, Theorem 2.31,

d
dsu(s) = ( d

dsT (t− s))S(s)f + T (t− s) d
ds(S(s)f) = −AT (t− s)S(s)f + T (t− s)AS(s)f.

By using that the semigroup and its generator commute on D(A), see Proposition 2.8.b), we obtain
that the right-hand term is 0, so u must be constant. This implies

S(t)f = u(t) = u(0) = T (t)f,

i.e., the bounded linear operators S(t) and T (t) coincide on the dense subspace D(A), hence they
must be equal everywhere. �

2.3 Two basic examples

Shift semigroups

Recall from Exercise 1.5 the shift semigroups on the spaces Lp(R) with p ∈ [1,∞). For f ∈ Lp(R)
we define

(S(t)f)(s) := f(t+ s) for s ∈ R, t ≥ 0.

Then S(t) is a linear isometry on Lp(R), moreover, S has the semigroup property. We call S the
left shift semigroup on Lp(R).

Proposition 2.12. For p ∈ [1,∞) the left shift semigroup S is strongly continuous on Lp(R).

To identify the generator of S we first define

W1,p(R) :=
{
f ∈ Lp(R) : f is continuous,

there exists g ∈ Lp(R) with f(t)− f(0) = ∫ t0 g(s) ds for t ∈ R
}
.

Note that W1,p(R) is a linear subspace of Lp(R) and for f ∈ W1,p(R) the Lp function g as in the
definition exists uniquely. We call it the derivative of f , and use the notation f ′ := g. In fact, the
function f is almost everywhere differentiable and it derivative equals g almost everywhere. We
define a norm on W1,p(R) by

‖f‖p
W1,p := ‖f‖pp + ‖f ′‖pp.

It is not hard to see that this turns W1,p(R) into a Banach space.
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Proposition 2.13. The generator A of the left shift semigroup S on Lp(R) is given by

D(A) = W1,p(R), Af = f ′.

The proof is left as Exercise 5.

We now turn to more complicated shifts with boundary conditions. Consider the Banach space
Lp(0, 1). For t ≥ 0 and f ∈ Lp(R) define

S0(t)f(s) :=

{
f(t+ s) if s ∈ [0, 1], t+ s ≤ 1,

0 if s ∈ [0, 1], t+ s > 1.

It is easy to see that S0(t) is a bounded linear operator and that S0 has the semigroup property.
For t ≥ 1 we have S0(t) = 0, hence S0(t)

n = 0 for t > 0 and n ∈ N wit n > 1
t
, i.e., S0(t) is a

nilpotent operator. That is why S0 is called the nilpotent left shift on Lp(0,1).

Proposition 2.14. The nilpotent left shift S0 is a strongly continuous semigroup on Lp(0, 1).

We want to identify the generator of S0. For this purpose we define

W1,p
(0)(0, 1) :=

{
f ∈ Lp(0, 1) : f is continuous on [0, 1],

there exists g ∈ Lp(0, 1) with f(t)− f(0) = ∫ t0 g(s) ds for t ∈ [0, 1],

and f(1) = 0
}
.

Similarly to the above, every f ∈ W1,p
(0)(0, 1) has a derivative f ′ ∈ Lp(0, 1), and we can define a

norm on W1,p
(0)(0, 1) by

‖f‖p
W1,p

(0)

:= ‖f‖pp + ‖f ′‖pp,

making it a Banach space.

Proposition 2.15. The generator A of the nilpotent left shift S0 on Lp(0, 1) is given by

D(A) = W1,p
(0)(0, 1), Af = f ′.

The proof of these results is left as Exercise 6.

The Gaussian semigroup

Consider again the heat equation, but now on the entire R:

∂tw(t, x) = ∂xxw(t, x), t ≥ 0, x ∈ R

w(0, x) =w0(x), x ∈ R.
(2.1)

Here w0 is a function on R providing the initial heat profile. We follow the rule of thumb of Lecture
1 and seek the solution to this problem as an orbit map of some semigroup. To find a candidate for
this semigroup we first make some formal computations by using the Fourier transform, which is
given for f ∈ L1(R) by the Fourier integral

f̂(ξ) := F (f)(ξ) :=
1√
2π

∞∫

−∞

e−iξxf(x) dx.
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(We remark that with some extra work the next arguments can be made precise.) Recall that F

maps differentiation to multiplication by the Fourier variable iξ, i.e., F (∂xf(x))(ξ) = iξF (f)(ξ).
If we take the Fourier transform of equation (2.1) with respect to x and interchange the actions of
F and ∂t, we obtain

∂tŵ(t, ξ) = −ξ2ŵ(t, ξ) t ≥ 0, ξ ∈ R

ŵ(0, ξ) = ŵ0(ξ), ξ ∈ R.

This is an ODE for ŵ, which is easy to solve:

ŵ(t, ξ) = e−t|ξ|
2
ŵ0(ξ).

To get w back we take the inverse Fourier transform of this solution:

w(t, ·) = F
−1(ŵ(t, ·)) = 1√

2π
F
−1(e−t|·|

2
) ∗F

−1(ŵ0),

where we used that F−1 maps products to convolutions. At this point we only have to remember
that

F
−1(e−t|·|

2
)(x) =

1√
2t
e−

|x|2

4t .

So if we set

gt(x) :=
1√
4πt

e−
|x|2

4t (t > 0),

then the candidate for the solution to (2.1) takes the form

w(t) = gt ∗ w0 for t > 0.

Let us collect some properties of the function gt.

Remark 2.16. 1. Consider the standard Gaussian function

g(x) :=
1√
4π

e−
x
2

4 .

Then g ≥ 0, ‖g‖1 = 1 and g belongs to Lp(R) for all p ∈ [1,∞].

2. We have gt(x) =
1√
t
g
(

x√
t

)
, hence gt ≥ 0, ‖gt‖1 = 1 and

lim
tց0

∫

|x|>r

gt(s) ds = 0 for all r > 0 fixed.

The function
G(t, x, y) := gt(x− y) (t > 0, x ∈ R, y ∈ R)

is called the heat or Gaussian kernel on R and gives rise to a semigroup, called the heat or
Gaussian semigroup.

Proposition 2.17. Let p ∈ [1,∞). For f ∈ Lp(R) and t > 0 define

(T (t)f)(x) := (gt ∗ f)(x) =
1√
4πt

∫

R

f(y)e−
(x−y)2

4t dy =

∫

R

f(y)G(t, x, y) dy,

T (0)f := f.and set

Then T (t) is a linear contraction on Lp(R), and T is a strongly continuous semigroup.
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Proof. Let f ∈ Lp(R). By Young’s inequality and since gt ∈ L1(R), we obtain that the convolution
gt ∗ f exists and

‖gt ∗ f‖p ≤ ‖gt‖1 · ‖f‖p = ‖f‖p.
In particular, gt ∗ f belongs to Lp(R). Since linearity of f 7→ gt ∗ f is obvious, we obtain that T (t)
is a linear contraction.

To prove the semigroup property, we employ the Fourier transform. To this end fix f ∈ L1(R) ∩
Lp(R). Then we can take the Fourier transform of gt ∗ (gs ∗ f), and we obtain

F (gt ∗ (gs ∗ f)) =
√
2πF (gt) ·F (gs ∗ f) = (2π)F (gt) ·F (gs) ·F (f)

(we use here that F maps convolution to product). Recall from the above that

F (gt)(ξ) =
1√
2π

e−tξ
2
, therefore, F (gt)(ξ) ·F (gs)(ξ) =

1

2π
e−(t+s)ξ2 =

1√
2π

F (gt+s)(ξ).

This yields
F (gt ∗ (gs ∗ f)) =

√
2πF (gt+s) ·F (f) = F (gt+s ∗ f),

hence gt ∗ (gs ∗ f) = gt+s ∗ f . Therefore, T (t)T (s)f = T (t + s)f holds for f ∈ L1(R) ∩ Lp(R). By
the continuity of the semigroup operators and by the denseness of this subspace in Lp, we obtain
the equality everywhere.

From the properties of gt listed in Remark 2.16.2, it follows that gt ∗ f → f in Lp(R) if t ց 0.
Hence the semigroup T is strongly continuous. �

2.4 Powers of generators

It is a crucial ingredient in the definition of the infinitesimal generator A of a strongly continuous
semigroup T that D(A) consists precisely of those elements f for which the orbit map u(t) =
T (t)f is differentiable. One expects that if even Af belongs to D(A), then u is twice continuously
differentiable. This, indeed follows from Proposition 2.8.b):

u̇(t) = Au(t) = AT (t)f = T (t)Af,

hence u̇ is a differentiable function if Af ∈ D(A). This motivates the next construction.

We set D(A0) = X and A0 = I, and for n ∈ N we define

D(An) :=
{
f ∈ D(An−1) : An−1f ∈ D(A)

}
,

Anf = AAn−1f for f ∈ D(An)

by recursion. Then D(A1) is just an alternative notation for D(A). These are all linear subspaces
of X, and by intersecting them we introduce

D(A∞) :=
⋂

n∈N
D(An).

These spaces line up in a hierarchy

X = D(A0) ⊇ D(A) ⊇ D(A2) ⊇ · · · ⊇ D(An) ⊇ · · · ⊇ D(A∞).

The space D(An) consists of those elements for which the orbit map is n-times continuously differ-
entiable. Are there such (nonzero) vectors at all? Yes, there are, and actually quite many:
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Proposition 2.18. Let A be a generator of a semigroup. Then for n ∈ N the spaces D(An) and
D(A∞) are dense in X.

Proof. Since D(A∞) is contained in D(An), it suffices to prove the assertions for the former only.
To do that we need some preparations. Let f ∈ X be fixed. For a smooth function ϕ with compact
support, supp(ϕ) ⊆ (0,∞), define

fϕ :=

∞∫

0

ϕ(s)T (s)f ds.

We first show that fϕ ∈ D(A). For h > 0 we can write

T (h)fϕ − fϕ
h

=
1

h

∞∫

0

ϕ(s)T (h+ s)f ds− 1

h

∞∫

0

ϕ(s)T (s)f ds

=
1

h

∞∫

h

ϕ(s− h)T (s)f ds− 1

h

∞∫

0

ϕ(s)T (s)f ds

=

∞∫

h

ϕ(s− h)− ϕ(s)

h
T (s)f ds− 1

h

h∫

0

ϕ(s)T (s)f ds.

If we let h ց 0, then the second term converges to ϕ(0)T (0)f = 0, while the first term has the
limit

−
∞∫

0

ϕ′(s)T (s)f ds.

This yields fϕ ∈ D(A) and Afϕ = f−ϕ′ . We conclude fϕ ∈ D(A∞) by induction.

We turn to the actual proof and suppose in addition to the above that ϕ ≥ 0 and that
∫∞
0 ϕ(s)ds =

1. We set ϕn(s) = nϕ(ns) and fn := fϕn
. For given ε > 0 we choose a δ > 0 such that ‖T (s)f−f‖ ≤

ε holds for all s ∈ [0, δ]. If n ∈ N is sufficiently large, then suppϕn ⊆ (0, δ), hence we obtain

‖fn − f‖ =
∥∥∥
∞∫

0

ϕn(s)T (s)f ds− f
∥∥∥ =

∥∥∥
∞∫

0

ϕn(s)T (s)f ds− f

∞∫

0

ϕn(s) ds
∥∥∥

=
∥∥∥
∞∫

0

ϕn(s)
(
T (s)f − f

)
ds

∥∥∥ ≤
∞∫

0

ϕn(s)
∥∥T (s)f − f

∥∥ ds

≤ sup
s∈[0,δ]

‖T (s)f − f‖ ·
δ∫

0

ϕn(s) ds ≤ ε.

This shows that fn → f in X. �

Since the generator A is closed its domain D(A) is a Banach space with the graph norm ‖ · ‖A.
Is any of the spaces D(An) dense in this Banach space? To answer this question, we first introduce
the following general notion.
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Definition 2.19. A subspace D of the domain D(A) of a linear operator A : D(A) ⊆ X → X is
called a core for A if D is dense in D(A) for the graph norm, defined by

‖f‖A = ‖f‖+ ‖Af‖ .

We shall often use the following result stating that dense invariant subspaces are dense also in
the graph norm.

Proposition 2.20. Let A be the generator of a semigroup T , and let D be a linear subspace of
D(A) that is ‖ · ‖-dense in X and invariant under the semigroup operators T (t). Then D is a core
for A.

Proof. For f ∈ D(A) we prove that f belongs to the ‖ · ‖A-closure of D. First, we take a sequence
(fn) ⊂ D such that fn → f in X. Since for each n the maps

s 7→ T (s)fn ∈ D and s 7→ AT (s)fn = T (s)Afn ∈ X

are continuous, the map s 7→ T (s)fn ∈ D is even continuous for the graph norm ‖ · ‖A. From this
it follows that the Riemann integral

t∫

0

T (s)fn ds

belongs to the ‖·‖A-closure ofD (use approximating Riemann sums!). Similarly, the ‖·‖A-continuity
of s 7→ T (s)f for f ∈ D(A) implies that

∥∥∥1
t

t∫

0

T (s)f ds− f
∥∥∥
A
→ 0 as tց 0 and

∥∥∥1
t

t∫

0

T (s)fn ds− 1

t

t∫

0

T (s)f ds
∥∥∥
A
→ 0 as n→∞ and for each t > 0.and

This proves that for every ε > 0 we can find t > 0 and n ∈ N such that

∥∥∥1
t

t∫

0

T (s)fn ds− f
∥∥∥
A
< ε. �

We now can easily answer the question from the above.

Proposition 2.21. Let A be a generator of a semigroup. Then each of the spaces D(An) for n ∈ N

and D(A∞) is a core for A.

Proof. All the spaces occurring in the assertion are invariant under T (t), and by Proposition 2.18
they are dense in X. Hence the assertion follows from Proposition 2.20. �

2.5 Resolvent of generators

We saw in Lecture 1 that spectral analysis, more precisely, the determination of eigenvalues and
eigenfunctions of the Dirichlet Laplacian led to a construction of the semigroup generated by this
operator. We conclude this lecture by some basic spectral properties of semigroup generators. Let
us begin with the following fundamental spectral theoretic notions.
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Definition 2.22. Let A be a closed linear operator defined on a linear subspace D(A) of a Banach
space X.

a) The spectrum of A is the set

σ(A) :=
{
λ ∈ C : λ−A : D(A)→ X is not bijective

}
.

b) The resolvent set of A is ρ(A) := C \ σ(A), i.e.,

ρ(A) :=
{
λ ∈ C : λ−A : D(A)→ X is bijective

}
.

c) If λ ∈ ρ(A) then λ − A is injective, hence has an algebraic inverse (λ − A)−1. We call this
operator the resolvent of A at point λ and denote it by

R(λ,A) := (λ−A)−1.

Note that if λ ∈ ρ(A), the operator λ−A is both injective and surjective, i.e., its algebraic inverse

(λ−A)−1 : X → D(A)

is defined on the entire X. Since A is closed so are λ − A and its inverse. As consequence of the
closed graph theorem, see Supplement, Theorem 2.32, we immediately obtain that (λ − A)−1 is
bounded.

Proposition 2.23. For a closed linear operator A and for λ ∈ ρ(A) we have

(λ−A)−1 = R(λ,A) ∈ L (X).

Let us recall also the next fundamental properties of spectrum and the resolvent.

Proposition 2.24. Let X be a Banach space and let A be a closed linear operator with domain
D(A) ⊆ X. Then the following assertions are true:

a) The resolvent set ρ(A) is open, hence its complement, the spectrum σ(A) is closed.

b) The mapping
ρ(A) ∋ λ 7→ R(λ,A) ∈ L (X)

is complex differentiable. Moreover, for n ∈ N we have

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1.

Proof. Statement a) follows from the following Neumann series representation of the resolvent: For
µ ∈ ρ(A) with |λ− µ| < 1

‖R(µ,A)‖ , we have

R(λ,A) =
∞∑

k=0

(λ− µ)kR(µ,A)k+1.

Assertion b) follows from the power series representation in a) and from the fact that a power series
is always a Taylor series. �
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To prove that the resolvent set of a generator A is non-empty, and to relate the resolvent of A to
the semigroup T , the first step is provided by the next lemma.

Lemma 2.25. Let T be a strongly continuous semigroup with generator A. Then for all λ ∈ C and
t > 0 the following identities hold:

e−λtT (t)f − f = (A− λ)

t∫

0

e−λsT (s)f ds if f ∈ X,

=

t∫

0

e−λsT (s)(A− λ)f ds if f ∈ D(A).

Proof. Observe that S(t) = e−λtT (t) is also a strongly continuous semigroup with generator B =
A− λ, see Exercise 3 b). Hence, we can apply Proposition 2.9.b). �

With the help of this lemma we obtain the next, important relations between the resolvent of the
generator and the semigroup.

Proposition 2.26. Let T be a strongly continuous semigroup of type (M,ω) with generator A.
Then the following assertions are true:

a) For all f ∈ X and λ ∈ C with Reλ > ω we have

R(λ,A)f =

∞∫

0

e−λsT (s)f ds = lim
N→∞

N∫

0

e−λsT (s)f ds.

b) For all f ∈ X, λ ∈ C with Reλ > ω and n ∈ N we have

R(λ,A)nf =
1

(n− 1)!

∞∫

0

sn−1e−λsT (s)f ds.

c) For all λ ∈ C with Reλ > ω we have

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
. (2.2)

Proof. From Lemma 2.25 and by taking limit as t→∞ we conclude that for Reλ > ω we have

−f = (A− λ)

∞∫

0

e−λsT (s)f ds if f ∈ X,

=

∞∫

0

e−λsT (s)(A− λ)f ds if f ∈ D(A).

Since this expression gives a bounded operator, a) is proved. To show b), notice that

R(λ,A)nf =
(−1)n−1
(n− 1)!

dn−1

dλn−1R(λ,A)f =
1

(n− 1)!

∞∫

0

sn−1e−λsT (s)f ds.
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Finally, to see c) we make a norm estimate and obtain

‖R(λ,A)nf‖ ≤ 1

(n− 1)!

∞∫

0

sn−1e−ReλsMeωs‖f‖ ds ≤ M‖f‖
(n− 1)!

∞∫

0

sn−1e(ω−Reλ)s ds

=
M

(Reλ− ω)n
‖f‖. �

Let us summarise the above as follows.

Conclusion 2.27. If A is the generator of an operator semigroup T , then it is closed, densely
defined, and a suitable right half plane belongs to its resolvent set, where the estimate (2.2) holds.
The resolvent operators are given by the Laplace transform of the semigroup.

2.6 Supplement

We collect here some standard results used in this lecture.

The strong operator topology

At this point, we do not want to give the definition of the strong operator topology, but just point
out what convergence and boundedness mean in this setting.

Let X,Y be Banach spaces and let (Tn) ⊆ L (X,Y ) be a sequence of bounded linear operators
between X and Y . We say that the sequence (Tn) converges strongly to T ∈ L (X,Y ), if

Tnx→ Tx holds in Y as n→∞ for all x ∈ X.

For the purposes of this course, this is the correct notion of convergence, being, as a matter of fact,
nothing else than pointwise convergence.

A subset K ⊆ L (X,Y ) is called strongly bounded (or bounded poinwise) if for all x ∈ X we
have

sup
{
‖Tx‖ : T ∈ K

}
<∞.

Next, we list some classical functional analysis results concerning these two notions.

Theorem 2.28 (Uniform Boundedness Principle). Let X,Y be Banach spaces and suppose K ⊆
L (X,Y ) is strongly bounded, i.e., for all x ∈ X we have

sup
{
‖Tx‖ : T ∈ K

}
<∞.

Then K is uniformly bounded that is

sup
{
‖T‖ : T ∈ K

}
<∞.

This theorem has the following important consequence:

Theorem 2.29. Let X,Y be Banach spaces, and let (Tn) ⊆ L (X,Y ) be a sequence such that
(Tnx) ⊆ Y converges for all x ∈ X. Then

Tx := lim
n→∞

Tnx

defines a bounded linear operator on X.



26 Lecture 2: Fundamentals of One-Parameter Semigroups

Theorem 2.30. Let X,Y be Banach spaces, let T ∈ L (X,Y ) and let (Tn) ⊆ L (X,Y ) be a norm
bounded sequence. Then the following assertions are equivalent:

(i) For every x ∈ X we have Tnx→ Tx in X.

(ii) There is a dense subspace D ⊆ X such that for all x ∈ X we have Tnx→ Tx in X.

(iii) For every compact set K ⊆ X we have Tnx→ Tx in X uniformly for x ∈ K.

By adapting the classical proof of the product rule of differentiation and by making use of the
theorem above one can easily prove next result.

Theorem 2.31 (Product rule). Let u : [a, b] → X be differentiable, and let F : [a, b] → L (X,Y )
be strongly continuous such that for every t ∈ [a, b] the mapping

Fu : s 7→ F (s)u(t) ∈ Y

is differentiable. Then s 7→ F (s)u(s) ∈ Y is differentiable, and we have

d
dt(Fu)(t) = d

dtF (t) · u(t) + F (t) · d
dtu(t),

where d
dtF (t) · u(t) denotes the derivative of s 7→ F (s)u(t) at s = t.

The last result we wish to recall from functional analysis is the closed graph theorem.

Theorem 2.32 (Closed Graph Theorem). Let X be a Banach space, and let A : X → Y be a closed
and linear operator with dense domain D(A) in X. Then A is bounded if and only if D(A) = X.

The Riemann integral

Denote by C([a, b];X) the space of continuous X-valued functions on [a, b], which becomes a Banach
space with the supremum norm. For a continuous function u ∈ C([a, b];X) we define its Riemann

integral by approximation through Riemann sums. Let us briefly sketch the idea how to do this.
For P = {a = t1 < t2 < · · · < tn = b} ⊆ [a, b] we set

δ(P ) = max
{
tj+1 − tj : j = 0, . . . , n− 1

}
,

and call P a partition of [a, b] and δ(P ) the mesh of P . We define the Riemann sum of u
corresponding to the partition P by

S(P, u) :=
n−1∑

j=0

u(tj)(tj+1 − tj),

where n is the number of elements in P . From the uniform continuity of u on the compact interval
[a, b] it follows that there exists x0 ∈ X such that S(P, u) converges to x0 if δ(P ) → 0. More
precisely, for all ε > 0 there is δ > 0 such that

‖S(P, u)− x0‖ < ε

whenever δ(P ) < δ. We call this x0 ∈ X the Riemann integral of f an denote it by

b∫

a

u(s) ds.

The Riemann integral enjoys all the usual properties known for scalar valued functions. Some of
them are collected in the next proposition.
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Proposition 2.33. a) There is a sequence of Riemann sums S(Pn, u) with δ(Pn)→ 0 converging
to the Riemann integral of u.

b) The Riemann integral is a bounded linear operator on the space C([a, b];X) with values in X.

c) If T ∈ L (X,Y ), then

T

b∫

a

u(s) ds =

b∫

a

Tu(s) ds.

d) If u : [a, b]→ X is continuous, then

v(t) :=

t∫

0

u(s) ds

is differentiable with derivative u.

e) If u : [a, b]→ X is continuously differentiable, then

u(b)− u(a) =

b∫

a

u′(s) ds

holds.

For the proof of these assertions one can take the standard route valid for scalar-valued functions.

Exercises

1. For A ∈ L (X) and t ≥ 0 define

T (t) = etA :=

∞∑

n=0

tnAn

n!
.

Prove that T is strongly continuous semigroup, which is even continuous for the operator norm on
[0,∞) and consists of continuously invertible operators. Determine its generator.

2. Give an example of a Hilbert space and a bounded (i.e., of type (M, 0)) strongly continuous
semigroup thereon which is not a contraction.

3. a) For a strongly continuous semigroup T and an invertible transformation R define S(t) :=
R−1T (t)R. Prove that S is a strongly continuous semigroup as well. Determine its growth bound
and its generator.

b) For a strongly continuous semigroup T and z ∈ C define S(t) := etzT (t). Prove that S is a
strongly continuous semigroup, determine its growth bound and its generator.

c) For a strongly continuous semigroup T and α ≥ 0 define S(t) := T (αt). Prove that S is a
strongly continuous semigroup, determine its growth bound and its generator.
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4. Give an example of strongly continuous semigroup T with ω0(T ) = −∞ but with Mω ≥ 2 for
all exponents ω ∈ R.

5. Prove Proposition 2.13.

6. Prove Propositions 2.14 and 2.15.

7. Consider the closed subspace

C(0)([0, 1]) :=
{
f ∈ C([0, 1]) : f(1) = 0

}

of the Banach space C([0, 1]) of continuous functions on [0, 1]. Define the nilpotent left shift semig-
roup thereon and determine its generator.

8. Determine the generator of the Gaussian semigroup on L2(R) from Section 2.3.

9. Let p ∈ [1,∞) and consider the Gaussian semigroup T on Lp(R). Prove that for all t > 0 and
r ∈ [p,∞] the operator T (t) is bounded from Lp to Lr(R).



Lecture 3

Approximation of Semigroups – Part 1

The main topic of this lecture will be to establish approximation theorems for operator semigroups.
Consider the abstract initial value problem (Cauchy problem)

{

u̇(t) = Au(t), t ≥ 0

u(0) = u0 ∈ X,
(ACP)

where we suppose that A generates the strongly continuous semigroup T on X. In many applica-
tions we are able to construct a sequence of approximating operators An which generate strongly
continuous semigroups Tn and converge to A in some sense. The question is if this implies the
convergence of the semigroups Tn to T?
These approximations usually involve some numerical methods: Either some approximation of

the operator A (for example finite differences, see Example 3.7 below), or an approximation of the
solution u of a stationary problem Au = f (for example finite element or spectral method, see
Example 3.6).

After working through the examples and the exercises, we will see that operator norm convergence
would be simply too much to expect, and to weaken this type of convergence, the pointwise one is
our next bet. Therefore, in this lecture we shall investigate the strong convergence of semigroups,
i.e., the property

Tn(t)f → T (t)f as n→∞ for all f ∈ X (3.1)

uniformly for t in compact intervals of [0,∞).

Remark 3.1. If the convergence stated above holds for the semigroups Tn, T , then the uniform
boundedness principle, Theorem 2.28, immediately implies that ‖Tn(t)‖ has to remain bounded as
n→∞ for all t ≥ 0. More is true: There exist constants M ≥ 1, ω ∈ R such that

‖Tn(t)‖ ≤Meωt holds for all n ∈ N, t ≥ 0. (3.2)

We leave the proof as Exercise 1. This exponential inequality, called stability condition, provides a
necessary condition to have convergence of the semigroups as in (3.1).

3.1 Generator approximations

Usually, after discretising a differential operator, we end up with a matrix, hence not an operator
on the original space, but rather on C

n. So the next important point is that we not only have
approximating operators, but also approximating spaces. This motivates our general setup.

Assumption 3.2. LetXn,X be Banach spaces and assume that there are bounded linear operators
Pn : X → Xn, Jn : Xn → X with the following properties:

• There is a constant K > 0 with ‖Pn‖, ‖Jn‖ ≤ K for all n ∈ N,

29
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• PnJn = In, the identity operator on Xn, and

• JnPnf → f as n→∞ for all f ∈ X.

An important remark on our notation. The symbol ‖ · ‖ refers here to the operator norm in
L (X,Xn) and L (Xn, X), respectively. We use the convention that if it is clear from the context,
we often do not distinguish in the notation between the norms on different spaces.

Example 3.3 (spectral method). Consider the spaces X = ℓ2 and Xn = C
n with the Euclidian

norm and define for f = (fk) ∈ ℓ2 the operator

Pn : ℓ2 → C
n, Pnf := (f1, . . . , fn),

and for y = (y1, . . . , yn) ∈ C
n the operator

Jn : Cn → ℓ2, Jn(y1, y2, . . . , yn) := (y1, . . . , yn, 0, . . .).

Clearly, JnPn equals the projection onto the first n coordinates. For this example all the above
mentioned properties are satisfied, in particular, the last one because

‖JnPnf − f‖2 =

∞∑

k=n+1

|fk|
2 → 0 as n→∞.

This is essentially the same example as if we take X = L2(0, 1), Xn = C
n, Pnf := the first n Fourier

coefficients of f , and Jn(y1, . . . , yn) := the finite trigonometric sum built from the coefficients
y1, . . . , yn (spectral method, see Appendix A.2).

Example 3.4 (finite difference). In this example we try to capture the standard discretisation of
continuous functions through grid points in an abstract way (finite difference method, see Appendix
A.1). Let

X := {f ∈ C([0, 1]) : f(1) = 0} = C(0)([0, 1]) and Xn = C
n,

both with the respective maximum norm, see also Exercise 7 in Lecture 1. We define

(Pnf)k := f( kn), k = 0, . . . , n− 1,

and

Jn(y0, . . . , yn−1) :=
n−1∑

k=0

ykBn,k(x),

where for k ∈ {0, . . . n− 1} and x ∈ [0, 1] we have

Bn,k(x) =







n
(
x− k

n

)
if x ∈

[
k−1
n , kn

)
,

n
(
k+1
n − x

)
if x ∈

[
k
n ,

k+1
n

)
,

0 otherwise,

the hat functions. Then PnJn = ICn and for n → ∞ the convergence JnPnf → f hold true, see
Exercise 2.
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Figure 3.1: The hat functions

After setting the stage for the problems, let us turn our attention back to approximation problems
and introduce a general assumption on the convergence of the generators. When examining the
examples, we learn that the following setup is quite natural.

Assumption 3.5. Suppose that the operators An, A generate strongly continuous semigroups on
Xn and X, respectively, and that there are constants M ≥ 0, ω ∈ R such that the stability condition
(3.2) holds. Further suppose that there is a dense subset Y ⊂ D(A) such that for all g ∈ Y there
is a sequence yn ∈ D(An) satisfying

‖yn − Png‖Xn
→ 0 and ‖Anyn − PnAg‖Xn

→ 0 as n→∞. (3.3)

Clearly, by Assumption 3.2, the convergence stated above is equivalent to

‖JnAnyn −Ag‖ → 0 as n→∞

for all g ∈ Y . We will freely make use of this equivalence later on, depending on which formulation
is more convenient in the given situation. In applications we typically (but not necessarily) have
PnY ⊂ D(An) and yn = Png.

Example 3.6 (spectral method). Taking the setup of Example 3.3 and motivated by the heat
equation introduced in Section 1.1, we define the operator on f = (fk) ∈ X as

Af := (−k2fk)k∈N with D(A) =
{
(fk) ∈ X : (k2fk) ∈ X

}
.

Further, for f ∈ D(A), we define

An(Pnf) := PnAf, i.e., An(y1, y2, . . . , yn) := (−y1,−4y2, . . . ,−n
2yn).

See also Appendix A for some details about the spectral method.

Analogously, motivated by the Schrödinger equation, we define the operator B by

Bf := (ik2fk) for f = (fk) ∈ D(B) := D(A).

The approximating operators are then Bn(y1, . . . , yn) := (iy1, i4y2, . . . , in
2yn).

Example 3.7 (finite difference). Continuing Example 3.4, define the generator

Af := f ′ with D(A) :=
{
f ∈ C1([0, 1]) : f(1) = 0

}
.

For y = (y0, . . . yn−1) ∈ Xn, we define

(Any)k := n(yk+1 − yk) for k := 0, . . . n− 2 and (Any)n−1 := −nyn−1,
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being the standard first-order finite difference scheme. By using that y = Pnf , we can write it in a
slightly different form:

(AnPnf)k := n
(
f(k+1

n )− f( kn)
)

for k = 0, . . . , n− 1.

Then, by the mean value theorem, we obtain

‖JnAnPnf −Af‖∞ =

∥
∥
∥
∥
∥

n−1∑

k=0

f(k+1
n )− f( kn)

1
n

Bn,k − f ′

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

n−1∑

k=0

f ′(ξk)Bn,k − f ′

∥
∥
∥
∥
∥
∞

≤

∥
∥
∥
∥
∥
f ′ −

n−1∑

k=0

f ′( kn)Bn,k

∥
∥
∥
∥
∥
∞

+ max
k=0,...,n−1

|f ′( kn)− f ′(ξk)|

≤

∥
∥
∥
∥
∥
f ′ −

n−1∑

k=0

f ′( kn)Bn,k

∥
∥
∥
∥
∥
∞

+ ω(f ′, 1
n)→ 0 as n→∞.

Here, ω(f ′, s) is the modulus of (uniform) continuity of the function f ′ defined as usual by

ω(f ′, s) := sup
{
|f ′(x)− f ′(y)| sup |x− y| ≤ s

}
.

An important observation concerning this example is the following. If we assume a bit more
regularity and take f ∈ C2([0, 1]), then we obtain

(AnPnf − PnAf)k =
f(k+1

n )− f( kn)
1
n

+ f ′( kn) = f ′′(ξk)
1

2n
,

by Taylor’s formula, and hence,

‖AnPnf − PnAf‖ ≤
‖f ′′‖∞
2n

.

This means that, in this example, we not only have convergence, but even first-order convergence
for twice differentiable functions.

The following Proposition 3.8 will guarantee that for all f ∈ C2([0, 1]) which remain in C2 under
the semigroup, this convergence carries over to the convergence of the semigroups. More precisely,
we have that

f ∈ D(A2) =
{
f ∈ C2([0, 1]) : f(0) = f ′(0) = f ′′(0) = 0

}
for all

and for all t > 0 there is C > 0 such that

‖Tn(t)Pnf − PnT (t)f‖ ≤ C
‖f‖C2

n
.

Motivated by the previous example, we can formulate our first approximation result on semig-
roups.

Proposition 3.8. Suppose that Assumptions 3.2 and 3.5 hold, that PnY ⊂ D(An), and that Y is
a Banach space invariant under the semigroup T satisfying

‖T (t)‖Y ≤Meωt.
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If there are constants C > 0 and p ∈ N with the property that for all f ∈ Y

‖AnPnf − PnAf‖Xn
≤ C

‖f‖Y
np

,

then for all t > 0 there is C ′ > 0 such that

‖Tn(t)Pnf − PnT (t)f‖Xn
≤ C ′

‖f‖Y
np

.

Moreover, this convergence is uniform in t on compact intervals.

In this case we say that we have convergence of order p. Also notice that, as discussed in
Proposition 2.20, the subspace Y will be a core for the generator A (being dense and invariant
under the semigroup), and hence (λ− A)Y ⊂ X will be also a dense set for some/all λ ∈ ρ(A). In
many examples we will take Y := D(Al) for some l ∈ N.

Proof. For simplicity, we first carry out the proof in the special case Xn = X and Jn = Pn = I. It
is clear that for f ∈ Y , we have Af = Anf + (A− An)f . Application of the fundamental theorem
of calculus to the continuously differentiable function [0, t] ∋ s 7→ Tn(t − s)T (s)f implies that the
variation of constants formula

T (t)f = Tn(t)f +

t∫

0

Tn(t− s)(A−An)T (s)f ds

holds. Therefore, we have

‖T (t)f − Tn(t)f‖ ≤

t∫

0

Meω(t−s)‖(A−An)T (s)f‖ ds

≤

t∫

0

Meω(t−s)
C

np
‖T (s)f‖Y ds ≤M2eωt · t ·

C

np
‖f‖Y .

From this the assertion follows. The general case can be considered by applying the fundamental
theorem of calculus to the modified function [0, t] ∋ s 7→ Tn(t− s)PnT (s)f to obtain the variation
of constants formula

PnT (t)f = Tn(t)Pnf +

t∫

0

Tn(t− s)
(
PnA−AnPn

)
T (s)f ds.

From here, the argument is the same as above. �

3.2 Resolvent approximations

We will see that in many applications the situation is slightly more complicated than we had before.

Example 3.9 (spectral method). Going back to Example 3.6, we can see quickly that it is
difficult and unnatural to obtain similar estimates on the convergence of the generators. But we
can immediately infer the following.
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If g = (gn) ∈ X, then there is f = (fn) ∈ D(A) such that g = Af , f = A−1g. Hence,

‖JnPnf − f‖ = ‖JnPnA
−1g −A−1g‖ = ‖(0, . . . , 0, (n+ 1)−2gn+1, . . .)‖

≤
1

(n+ 1)2
‖JnPng − g‖ ≤

1

(n+ 1)2
‖g‖.

Since, by definition, AnPn = PnA, this implies that

‖JnA
−1
n Pn −A−1‖ ≤

1

(n+ 1)2
,

which means that it is natural to expect the convergence of the resolvent operators.1

Hence, in order to infer the convergence of the semigroups, we have to prove the analogue of
Proposition 3.8 but now with resolvent convergence.

Proposition 3.10. Assume that Assumptions 3.2 and 3.5 hold. If there are C > 0 and p ∈ N such
that

‖A−1n Pn − PnA
−1‖ ≤

C

np
,

then for all t > 0 there is C ′ > 0 such that

‖Tn(t)Png − PnT (t)g‖Xn
≤ C ′

‖g‖A2

np

for all g ∈ D(A2). Furthermore, this convergence is uniform in t on compact intervals2.

A surprising and important observation here is that although we assume operator norm conver-
gence of the resolvents, we do not get back norm convergence of the approximating semigroups in
general. This observation will be illustrated in an example before the proof.

Remark 3.11. 1. It is clear that instead of the convergence of A−1n to A−1 we can assume Jn(λ−
An)

−1Pn → (λ−A)−1 for some λ ∈ ρ(A) ∩ ρ(An).

2. In concrete cases, as we shall also see in the examples below, these results are far from being
sharp. To obtain better results, we also need more structural properties of the approximation.

Example 3.12 (spectral method). We refer to Example 3.6 again, and define the semigroups
generated by A and B as

T (t)f := etAf = (e−tf1, e
−4tf2, . . . , e

−k2tfk, . . .)

and
S(t)f := etBf = (eitf1, e

i4tf2, . . . , e
ik2tfk, . . .).

The approximating semigroups are Tn(t) = diag(e−t, e−4t, . . . , e−n
2t), that is,

JnTn(t)Pn = JnPnT (t).

Similarly, we have Sn(t) = diag(eit, ei4t, . . . , ein
2t). We conclude that

‖JnPnT (t)f − T (t)f‖2 =
∞∑

k=n+1

e−2k
2t|fk|

2 ≤ e−2(n+1)2t
∞∑

k=n+1

|fk|
2 ≤ e−2(n+1)2t‖f‖2,

1Recall that A−1 = −R(0, A), the resolvent defined in Lecture 2.
2We use the notation ‖g‖A2 := ‖g‖+ ‖A2f‖ for the graph norm of A2.
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which shows that for t > 0 we get a convergence in operator norm being quicker than any polyno-
mial.

For the other example, however, we observe that

‖JnPnS(t)f − S(t)f‖2 =

∞∑

k=n+1

|eik
2tfk|

2 =

∞∑

k=n+1

|fk|
2.

Let us introduce again f = (fn) ∈ X for g = (gn) ∈ D(B) such that f = Bg, g = B−1f . Then we
can repeat the argument:

‖JnPnS(t)g − S(t)g‖2 =
∞∑

k=n+1

|eik
2tgk|

2 =
∞∑

k=n+1

| 1
k2
fk|

2

≤
1

(n+ 1)4

∞∑

k=n+1

|fk|
2 ≤

1

(n+ 1)4
‖f‖2 =

1

(n+ 1)4
‖Bg‖2.

This shows that in this case we can only recover the convergence order p = 2 for g ∈ D(B). Thus,
we have to be careful even with this simple example.

Proof of Proposition 3.10. In order to simplify matters, we again concentrate first on the calcula-
tions in the case Xn = X, Jn = Pn = I. Let us start by fixing some t0 > 0. Then for all t ∈ [0, t0]
we obtain that

(
Tn(t)− T (t)

)
A−1f

= Tn(t)(A
−1 −A−1n )f

︸ ︷︷ ︸
+ A−1n (Tn(t)− T (t))f + (A−1n −A−1)T (t)f

︸ ︷︷ ︸
.

(3.4)

It is clear from the stability assumption that the first and the last term of this sum converge to 0
in the operator norm and at the desired rate, i.e.,

‖Tn(t)(A
−1 −A−1n )f‖ ≤Meωt0‖A−1 −A−1n ‖ · ‖f‖,

and
‖(A−1 −A−1n )T (t)f‖ ≤Meωt0‖A−1 −A−1n ‖ · ‖f‖.

Hence, we have to concentrate on the middle term. Instead of this term, we consider first a more
symmetric one where the fundamental theorem of calculus comes to help. Indeed, let us first show
that

A−1n

(
T (t)− Tn(t)

)
A−1h =

t∫

0

Tn(t− s)
(
A−1 −A−1n

)
T (s)h ds (3.5)

holds for all h ∈ X and t > 0. To this end, observe that the function

[0, t] ∋ s 7→ Tn(t− s)A−1n T (s)A−1h ∈ X

is differentiable by Theorem 2.31, and its derivative is

d
ds

(
Tn(t− s)A−1n T (s)A−1h

)
= Tn(t− s)

(
−AnA

−1
n T (s) +A−1n T (s)A

)
A−1h

= Tn(t− s)
(
A−1 −A−1n

)
T (s)h.
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Hence, the fundamental theorem of calculus yields formula (3.5).
Now we can see that for h ∈ X the inequality

‖A−1n (T (t)− Tn(t))A
−1h‖ ≤

t∫

0

Meω(t−s) · ‖A−1 −A−1n ‖ · ‖T (s)h‖ ds

≤ t0M
2eωt0‖A−1 −A−1n ‖ · ‖h‖

holds. Summarising the estimates from above, we conclude that for g ∈ D(A2) we can introduce
f = Ag and h = Af to obtain that

‖Tn(t)g − T (t)g‖ ≤ ‖A−1 −A−1n ‖Meωt0(t0M‖A
2g‖+ 2‖Ag‖),

which yields the desired estimate. �

3.3 The First Trotter–Kato Theorem

We turn our attention now to the general approximation theorems with the weakest possible as-
sumptions. We start by investigating convergence of generators. As we have seen before, convergence
of operators and convergence of the corresponding resolvents are connected.

Lemma 3.13. Suppose that Assumption 3.2 is satisfied and that An, A are closed operators on Xn

and X, respectively, such that there is some λ ∈ ρ(An)∩ ρ(A) for all n ∈ N and there is a constant
M ≥ 0 with the property

‖R(λ,An)‖ ≤M for all n ∈ N.

Then the following assertions are equivalent.

(i) There is a dense subset Y ⊂ D(A) such that (λ−A)Y is dense in X, and for all f ∈ Y there
is a sequence fn ∈ D(An) satisfying ‖fn − Pnf‖Xn

→ 0 for which

‖Anfn − PnAf‖Xn
→ 0 as n→∞. (3.6)

(ii) ‖R(λ,An)Pnf − PnR(λ,A)f‖Xn
→ 0 as n→∞ for all f ∈ X.

Proof. (i) ⇒ (ii): It is sufficient to show the convergence for the dense subspace (λ − A)Y . So let
us take f ∈ Y and g := (λ − A)f . By assumption, we can choose a sequence fn ∈ D(An) so that
(fn − Pnf)→ 0 and (Anfn − PnAf)→ 0, hence

gn := (λ−A)gn

satisfies (gn − Png)→ 0. Therefore, we obtain

‖R(λ,An)Png − PnR(λ,A)g‖ ≤ ‖R(λ,An)Png −R(λ,An)gn‖+ ‖R(λ,An)gn − PnR(λ,A)g‖

≤ ‖R(λ,An)‖ · ‖Png − gn‖+ ‖fn − f‖ → 0 as n→∞.

(ii) ⇒ (i): We set Y := D(A). For given f ∈ D(A) let g := (λ − A)f and fn := R(λ,An)Png. We
can see that

Anfn = AnR(λ,An)Png = λR(λ,An)Png − Png,

PnAf = PnAR(λ,A)g = λPnR(λ,A)g − Png.and

Hence, from the assumption it follows

(Anfn − PnAf)→ 0. �
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Now we can show that, assuming stability and using ideas presented in the previous section,
this convergence of the generators is equivalent to the (strong) convergence of the approximating
semigroups. Though unnecessary, for the sake of completeness we formulate as appears in textbooks.

Theorem 3.14 (First Trotter–Kato Approximation Theorem). Suppose that Assumption 3.2 is
satisfied and that An, A generate strongly continuous semigroups in Xn and X, respectively, and
that there are M ≥ 0, ω ∈ R such that the stability condition (3.2) holds. Then the following are
equivalent.

(i) There is a dense subspace Y ⊂ D(A) such that there is λ > 0 with (λ − A)Y being dense in
X. Furthermore, for all f ∈ Y there is a sequence fn ∈ D(An) satisfying

‖fn − Pnf‖ → 0 and ‖Anfn − PnAf‖ → 0 as n→∞. (3.7)

(ii) ‖R(λ,An)Pnf − PnR(λ,A)f‖ → 0 as n→∞ for all f ∈ X and some/all λ > ω.

(iii) ‖Tn(t)Pnf − PnT (t)f‖ → 0 as n→∞ for all f ∈ X uniformly for t in compact intervals.

Proof. In view of Lemma 3.13, only the equivalence of (ii) and (iii) has to be shown.

(iii) ⇒ (ii): From the integral representation of the resolvent we see that

‖R(λ,An)Pnf − PnR(λ,A)f‖ ≤

∞∫

0

e−λt‖T (t)f − Tn(t)f‖ dt.

The desired convergence follows then from the Lebesgue dominated convergence theorem.

(ii)⇒ (iii): We repeat here the arguments from the proof of Proposition 3.10 in a careful way. Then
we can see how we can refine our arguments. From the uniform boundedness principle, Theorem
2.28 and from the stability condition it follows that it suffices to show strong convergence on a
dense subset. Fixing t0 > 0 we obtain for all t ∈ [0, t0] that

(Tn(t)− T (t))R(λ,A)f =

= Tn(t)(R(λ,A)−R(λ,An))f
︸ ︷︷ ︸

+ R(λ,An)(Tn(t)− T (t))f + (R(λ,An)−R(λ,A))T (t)f
︸ ︷︷ ︸

.

It is clear from the stability assumption that the first and the last term of this sum converge to 0,
that is,

‖Tn(t)(R(λ,A)−R(λ,An))f‖ ≤Meωt0‖R(λ,A)−R(λ,An)f‖ → 0,

and
‖(R(λ,A)−R(λ,An))T (t)f‖ ≤ ‖(R(λ,A)−R(λ,An))T (t)f‖ → 0

as n → ∞. Note that, since the set {T (t)f : t ∈ [0, t0]} is compact, the second term converges
uniformly (i.e., independently of t) to zero, see Proposition 2.30.
Hence, we have to concentrate on the middle term. Here, repeating previous arguments from the

proof of Proposition 3.10, we obtain that for all h ∈ X

‖R(λ,An)(T (t)− Tn(t))R(λ,A)h‖ ≤

t∫

0

Meω(t−s) · ‖(R(λ,A)−R(λ,An))T (s)h‖ ds.

Observe again that the set {T (t)h : t ∈ [0, t0]} is compact and hence the integrand converges
uniformly in s ∈ [0, t0]. Thus, we obtain that the middle term also converges to zero in the desired
way. �
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3.4 Exercises

1. Prove the exponential estimate, the stability condition, from Remark 3.1.

2. Consider the operators Jn and Pn in Example 3.4 and show that for each f ∈ X, JnPnf → f ,
i.e., for each f ∈ C(0)([0, 1]) we have

n−1∑

k=0

f( kn)Bn,k(x)→ f(x)

as n→∞, uniformly in x ∈ [0, 1].

3. Let X := L1(0, 1), Xn = C
n, and define the operators

Jn(y1, . . . , yn) :=

n∑

k=1

yk · χ[(k−1)/n,k/n],

(Pnf)k := n ·

k

n∫

k−1

n

f(x)dx,

and the norm

‖(yk)‖n :=
1

n

n∑

k=1

|yk|

for (yk) ∈ Xn. Here χ stands for the characteristic function of a set. Prove that this scheme satisfies
the conditions of Assumptions 3.2. Perform analogous calculations to Example 3.7.

4. Finish the proof of Proposition 3.10.

5. Solve the exercises in Appendix A.



Lecture 4

The Lax Equivalence Theorem

We continue here the study of approximation theorems for semigroups by changing the field of
space discretisations to time discretisations. Consider the initial value problem (abstract Cauchy
problem)

{

u̇(t) = Au(t), t ≥ 0

u(0) = u0 ∈ X,
(ACP)

where we suppose that A generates the strongly continuous semigroup T on the Banach space X.
We saw in the previous Lecture 3 how to put spatial discretisations in an abstract setting. Generally,
however, it is not usual to approximate the solution of an abstract Cauchy problem by exponential
functions, but by some time discretisations, for example by using a finite difference scheme. They
are in the focus of our interest this week.

Definition 4.1. Let T be semigroup with generator A, and consider the abstract Cauchy problem
(ACP) on X. Consider further a strongly continuous function F : [0,∞)→ L (X) with F (0) = I.

a) Suppose that there is D ⊆ D(A) a dense subspace in X such that

lim
hց0

F (h)T (t)f − T (t+ h)f

h
= 0

holds for all f ∈ D locally uniformly in t. Then we call F a consistent finite difference

scheme (or finite difference method). To be more precise, we say that F is consistent with
(ACP) on the subspace D.

b) A consistent finite difference scheme is called stable, if for all t0 > 0 there is a constant M ≥ 1
such that

‖F (h)n‖ ≤M

holds for all h ≥ 0 and n ∈ N with hn ≤ t0.

c) A consistent finite difference scheme is called convergent, if for all t > 0, hk → 0, nk → ∞
with hknk ∈ [0, t] and hknk → t we have

T (t)f = lim
k→∞

F (hk)
nkf

for all f ∈ X.

We mention the following examples.

Example 4.2. The semigroup T , i.e., the function F (h) = T (h) is the best possible approximation.
Certainly, this example has all the properties from the definition above, but is irrelevant from the
numerical point of view.

39
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The next example is an extremely important one, motivated by Euler’s formula for the exponential
function.

Example 4.3 (Implicit Euler scheme). By Proposition 2.26.a) we know that there is ω ∈ R

such that every λ ≥ ω belongs to the resolvent set ρ(A) of A. For h ∈ (0, 1
ω
] we can define

F (h) = 1
h
R( 1

h
, A) = (I − hA)−1, and F (0) = I.

(For h > 1
ω
we may set F (h) = F ( 1

ω
), but this is not important, because we shall be interested in

small h values.) This numerical scheme is called implicit Euler scheme. We shall investigate its
properties later.

Example 4.4 (Crank–Nicolson scheme). We define the Crank–Nicolson scheme by

F (h) = (I + h
2A)(I −

h
2A)−1 for h ∈ (0, 1

ω
] and F (0) = I.

Note that in our terminology the abstract Cauchy problem (ACP), and, in particular, information
about the operator A is already incorporated in the finite difference scheme F . Hence, if we speak
for example of the implicit Euler scheme, we mean the implicit Euler scheme for that particular
problem, and not the implicit Euler scheme in general.
Consistency means in a way that the finite difference scheme is locally (i.e., for h small) a good

approximation, in other words that the local error ‖F (h)f − T (h)f‖ is small. The condition above
is in applications hard to verify, since T is a priori unknown. Motivated by the finite dimensional
ODE case, we relate the consistency condition to the derivative of F at t = 0.

Proposition 4.5. Let Y ⊆ D(A) be a Banach space that is dense in X and is continuously
embedded in the Banach space D(A). Suppose that it is invariant under the semigroup T so that
the restriction1 is a strongly continuous semigroup again. Then a finite difference scheme F is
consistent with (ACP) on Y if and only if

Af = lim
hց0

F (h)f − f

h
= F ′(0)f (4.1)

holds for all f ∈ Y .

Proof. Suppose first that F is consistent. Since Y ⊆ D(A), we have by definition

lim
hց0

T (h)f − f

h
= Af for f ∈ Y .

By specialising t = 0 in the definition of consistency we obtain

0 = lim
hց0

F (h)f − T (h)f

h
= lim

hց0

F (h)f − f + f − T (h)

h
.

This yields the convergence in (4.1).

For the other direction, suppose that (4.1) holds. Then the function G : [0, 1] → L (Y,X) defined
by

G(h) :=







F ′(0) for h = 0,
F (h)− I

h
for h ∈ (0, 1]

1We restrict, of course, the semigroup operators: T |Y (t) = T (t)|Y .
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is strongly continuous. First of all note that for h > 0 indeed G(h) ∈ L (Y,X), since Y is continu-
ously embedded in D(A) hence in X. On the other hand we have G(0) = A ∈ L (Y,X), again by
the continuous embedding Y ⊆ D(A). The strong continuity on (0, 1] is obvious, whereas at 0 it
follows from the assumption (4.1). In particular, we obtain from Proposition 2.2 that

∥

∥

∥

F (h)− I

h

∥

∥

∥

L (Y,X)
≤M for all h ∈ [0, 1] and for some M ≥ 0.

The same arguments yield

∥

∥

∥

T (h)− I

h

∥

∥

∥

L (Y,X)
≤M for all h ∈ [0, 1] and for some M ≥ 0.

We now prove consistency on Y . Take t0 > 0. By assumption, T is strongly continuous on the
Banach space Y , whence for f ∈ Y fixed the set

C :=
{

T (s)f : t ∈ [0, t0]
}

⊆ Y

is compact (being the continuous image of a closed interval). By using Proposition 2.30, we conclude

F (h)− I

h
g → Ag and

T (h)− I

h
g → Ag

uniformly for g ∈ C as h→ 0. This implies the uniform convergence

F (h)− T (h)

h
T (t)f → 0

for t ∈ [0, t0] as h→ 0, i.e., consistency. �

4.1 The Lax Equivalence Theorem

It turned out quite early that for partial differential equations finite difference schemes do not
always converge. Famous examples are due to Richardson2 or Courant, Friedrichs and Lewy3.
Using the notation and the notions above, we can formulate the following fundamental result.

Theorem 4.6 (Lax Equivalence Theorem4). For a consistent finite difference scheme, stability is
equivalent to convergence.

Proof. Suppose first that the consistent finite different scheme F is convergent but not stable. Fix
t0 > 0 such that

sup
{

‖F (h)n‖ : h ≥ 0, n ∈ N, nh ∈ [0, t0]
}

=∞,

and take a sequence hk → 0 with nkhk ∈ [0, t0] and ‖F (hk)
nk‖ → ∞. By passing to the subsequence

we may suppose that nkhk → t for some t ∈ [0, t0]. Convergence and the uniform boundedness
principle, Theorem 2.28, now imply boundedness of ‖F (hk)

nk‖, hence a contradiction. So F is
stable.

2L. F. Richardson, Weather Prediction by Numerical Process. Cambridge University Press, London 1922.
3R. Courant, K. Friedrichs, H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,”

Math. Annalen 100 (1928), 32–74.
4P. D. Lax and R. D. Richtmyer, “Survey of the stability of linear finite difference equations”, Comm. Pure Appl.

Math. 9 (1956), 267–293.
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Fix t > 0 and take sequences hk → 0, nk → ∞ with hknk ∈ [0, t] and hknk → t. Notice first of all
that, by the strong continuity of T , it suffices to prove

F (hk)
nkf − T (nkhk)f → 0.

Now, one can use the well-known algebraic identity on the difference of two nth powers to obtain
the “telescopic sum”

F (hk)
nkf −T (nkhk)f = F (hk)

nkf −T (hk)
nkf =

nk−1
∑

j=0

F (hk)
nk−1−j

(

F (hk)−T (hk)
)

T (hk)
jf. (4.2)

From this point on, the proof is a standard epsilon-argument. Taking f ∈ D and fixing ε > 0, it
follows by the consistency assumption in Definition 4.1 a) that there is N ∈ N so that

‖F (hk)T (s)f − T (hk)T (s)f‖ ≤ εhk

holds s ∈ [0, t] for all k ≥ N and t ∈ [0, t0]. For k ≥ N we can now estimate (4.2) as follows

‖F (hk)
nkf − T (nkhk)f‖ ≤

nk−1
∑

j=0

‖F (hk)
nk−1−j‖ · εhk ≤

nk−1
∑

j=0

M · εhk ≤Mtε.

This proves the convergence on the space D. The claim follows then from the stability condition
and the denseness of the set D in X. �

Applications of the Lax equivalence theorem are numerous. We list here some of them.

Corollary 4.7 (Implicit Euler Scheme). Assume that the operator A generates the strongly con-
tinuous semigroup T of type (M, 0) where M ≥ 1. Then for all f ∈ X we have

T (t)f = lim
n→∞

(

n
t
R(n

t
, A)

)n
f = lim

n→∞

(

I − t
n
A
)−n

f.

Proof. Stability follows from the properties of the generator discussed in Lecture 2, especially from
equation (2.2). Let us introduce the function

F (t) :=

{

I for t = 0,
1
t
R(1

t
, A) for t > 0.

Then, from the identity λR(λ,A)− I = AR(λ,A) we see that for f ∈ D(A)

F (h)f − f

h
= 1

h
R( 1

h
, A)Af.

In order to apply the Lax equivalence theorem 4.6, we need to check consistency, i.e., the convergence
of this expression to Af as h→ 0 (use Proposition 4.5). The proof can be finished by applying the
following result, which we state separately because of its importance. �

Proposition 4.8. Let A be a closed, densely defined operator. Assume that there are M ≥ 1 and
ω ∈ R such that for all λ > ω, we have λ ∈ ρ(A) and ‖λR(λ,A)‖ ≤M . Then

a) λR(λ,A)f → f for all f ∈ X as λ→∞, and

b) λR(λ,A)Af → Af for all f ∈ D(A) as λ→∞.
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Proof. Taking g ∈ D(A), we see that λR(λ,A)g = R(λ,A)Ag + g. By assumption,

‖R(λ,A)Ag‖ ≤
M

λ
‖Ag‖,

and hence λR(λ,A)g → g as λ → ∞. By the denseness of D(A) and the boundedness, the con-
vergence follows for all g ∈ X. The second statement is an immediate consequence of the first
one. �

The operators λR(λ,A), λ > 0, are called Yosida approximants.

Remark 4.9. It can be proved that although the Crank–Nicolson scheme is consistent it is not
stable for every generator. The left shift semigroup on C0(R) or on L1(R) provides a notable
counterexample. We will come back to this problem in later lectures.

The following approximation formula is usually called Lie-Trotter product formula5 in func-
tional analysis and has deep applications. We will come back to it in later lectures in more detail.

Corollary 4.10. Suppose that the operators A, B, and C are generators of strongly continuous
semigroups T , S, and U , respectively. Suppose further that

D(A) ∩D(B) = D(C) and for f ∈ D(A) ∩D(B) we have Cf = Af +Bf,

and that there is M ≥ 1, ω ∈ R such that

∥

∥

(

S( t
n
)T ( t

n
)
)n∥

∥ ≤Meωt.

Then

U(t)f = lim
n→∞

(

S( t
n
)T ( t

n
)
)n

f

for all f ∈ X, locally uniformly in t ≥ 0.

Proof. We introduce F (t) = S(t)T (t) and check the consistency. For f ∈ D(A)∩D(B) we conclude
that

F (t)f − f

t
= S(t)

T (t)f − f

t
+

S(t)f − f

t
.

Clearly, we have for f ∈ D(A) ∩D(B) by definition that

S(t)f − f

t
→ Bf,

T (t)f − f

t
→ Af,

S(t)g → g for all g ∈ X

as t → 0. Since the set
{

T (t)f−f
t

: t ∈ (0, 1]
}

∪ {0} is compact, we can apply Proposition 2.30 to

infer that

lim
tց0

F (t)f − f

t
= Bf +Af = Cf,

which proves the assertion. �

5H. F. Trotter, “On the product of semi-groups of operators,” Proc. Amer. Math. Soc. 10 (1959), 545–551.
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4.2 Order of convergence

The quantitative version of the Lax equivalence theorem is quite immediate. Before stating it, we
need the following definitions.

Definition 4.11. Let A generate the semigroup T on X and let F be a finite difference scheme.
Suppose that there is a dense subspace Y ⊂ X invariant under the semigroup which is a Banach
space and let p > 0.

a) The finite difference scheme F is called consistent of order p > 0 on Y , if there is a subspace
Y ⊂ D(A) dense in X and invariant under the semigroup operators T , so that there is a C > 0
such that for all f ∈ Y we have

‖F (h)f − T (h)f‖ ≤ Chp+1‖f‖Y . (4.3)

b) The finite difference scheme F is called convergent of order p on Y , if for all t0 > 0 there is
K > 0 such that for all g ∈ Y we have

‖F (h)ng − T (nh)g‖ ≤ Kt0h
p‖g‖Y

for all n ∈ N, h ≥ 0 with nh ∈ [0, t0].

We will occasionally say that the finite difference scheme has consistency/convergence order p > 0
on the subspace Y . Let us stress that the order p may depend on the subspace Y . This will be
extremely important in applications later on.

Proposition 4.12. Suppose that there is a subspace Y ⊂ D(A) dense and invariant under the
semigroup operators T (t), which is a Banach space with its norm, satisfying

‖T (t)‖Y ≤Meωt.

Let F be a stable finite difference scheme which is consistent of order p > 0 on Y . Then the finite
difference scheme is convergent of order p on Y .

Proof. The proof goes along the same lines as the one for the Lax equivalence theorem 4.6, the
only difference is that we have some bound for the local error ‖F (h) − T (h)‖. For simplicity, we
may take ω ≥ 0. Let t0 > 0 be fixed. For g ∈ Y , n ∈ N and h ≥ 0 with nh ∈ [0, t0] we can write

‖F (h)ng − T (nh)g‖ ≤
n−1
∑

j=0

∥

∥F (h)n−1−j
∥

∥

∥

∥(F (h)− T (h))T
(

jh
)

g
∥

∥

≤

n−1
∑

j=0

MChp+1
∥

∥T
(

jh
)

g
∥

∥

Y
≤

n−1
∑

j=0

MChp+1Meωjh‖g‖Y

≤M2Ceωt0t0h
p‖g‖Y = Kt0h

p‖g‖Y . �

Remark 4.13. We will elaborate later on the choice of the subspace Y . For example, if X =
L2(0, π), you may think of some Sobolev space Y ⊂ X. It is a dense subset, but a Hilbert space
with its own norm. Actually, we will spend quite a lot of time later on with the following two topics:
Having a large scale of possible invariant subspaces Y at hand, and developing technical tools to
verify the consistency estimate (4.3) for various methods.
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It is possible to make the convergence of the implicit Euler scheme quantitative along these lines.
Going in this direction, we note first that domains of powers of the generator are good candidates
to be such subspaces Y .

Proposition 4.14. Let A generate the semigroup T of type (M,ω), where M ≥ 1 and ω ∈ R. For
n ∈ N, define

Xn := D(An), ‖f‖n := ‖f‖+ ‖Anf‖,

the domain of An with its graph norm. Then Xn is a Banach space, the restriction Tn(t) := T (t)|Xn

defines a strongly continuous semigroup Tn of the same type (M,ω) in Xn.

Proof. We leave the proof of the fact that this space is a Banach space as Exercise 1. By Proposition
2.18, Xn is invariant and dense in the space X. Notice that for f ∈ Xn,

‖T (h)f − f‖n = ‖T (h)f − f‖+ ‖An(T (h)f − f)‖ = ‖T (h)f − f‖+ ‖T (h)Anf −Anf‖ → 0

as h→ 0 by the strong continuity of T in X. Finally,

‖T (t)f‖n = ‖T (t)f‖+ ‖AnT (t)f‖ ≤Meωt‖f‖+ ‖T (t)Anf‖ ≤Meωt (‖f‖+ ‖Anf‖) = Meωt‖f‖n

shows that Tn is of type (M,ω). �

The following can be considered as a very simple special case of a celebrated result by Brenner
and Thomée6 on the convergence of rational approximation schemes.

Corollary 4.15. Let A generate the semigroup T of type (M, 0) where M ≥ 1. Consider the
implicit Euler scheme of Corollary 4.7. Then there is C > 0 such that for all f ∈ D(A2)

∥

∥(I − hA)−nf − T (nh)f
∥

∥ ≤ Kt0h‖f‖2,

holds for all n ∈ N, h ≥ 0 such that nh ∈ [0, t0].

Proof. Stability follows from (2.2), because A is a generator. We have to deal with consistency. We
prove consistency on D(A2). So take f ∈ D(A2), and note that

F (h) = (I − hA)−1 = 1
h
R( 1

h
, A) = AR( 1

h
, A) + I (4.4)

holds. Hence, by Proposition 2.9, and since f ∈ D(A) we have

F (h)f − T (h)f = AR( 1
h
, A)f −A

h
∫

0

T (s)f ds.

= R( 1
h
, A)Af −

h
∫

0

T (s)Af ds =

h
∫

0

(

1
h
R( 1

h
, A)− T (s)

)

Af ds.

In a similar manner as before, we analyse the integrand. Since g = Af ∈ D(A) we obtain

(

1
h
R( 1

h
, A)− T (s)

)

g = AR( 1
h
, A)g −A

h
∫

0

T (s)g = R( 1
h
, A)Ag −

h
∫

0

T (s)Ag ds.

6P. Brenner and V. Thomée, “On rational approximations of semigroups,” SIAM J. Numer. Anal. 16 (1979),
683-694.
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By (2.2), the inequality
∥

∥R( 1
h
, A)Ag

∥

∥ ≤ hM‖Ag‖

follows. Since we are integrating a bounded function, we have

∥

∥

∥

∥

∥

∥

h
∫

0

T (s)Ag ds

∥

∥

∥

∥

∥

∥

≤ sM‖Ag‖ ≤ hM‖Ag‖.

Summarizing, for f ∈ D(A2), the estimate

‖F (h)f − T (h)f‖ ≤ h2(2M‖A2f‖)

holds. From Proposition 4.12 the assertion follows. �

4.3 Exercises

1. Let A be the generator of a semigroup, and consider the space Xn = D(An) with the graph
norm.

a) For n ∈ N and x ∈ D(An) define ‖|x|‖ := ‖x‖+ ‖Ax‖+ · · ·+ ‖Anx‖. Prove that ‖| · |‖ and ‖ · ‖n
are equivalent norms.

b) Prove that Xn is a Banach space.

2. Let X = ℓ2 and m = (mn) be a sequence with Remn ≤ 0. Consider the semigroup T generated
by the multiplication operator A = Mm and define the Crank–Nicolson method as

F (h) = (I + h
2A)(I − h

2A)
−1.

a) Show that it is stable.

b) Show that it is consistent.

3. Consider the heat equation of Section 1.1 and show that the implicit Euler scheme converges in
the operator norm, and has first order convergence.

4. Solve the exercises in the appendix.



Lecture C

Exercises

1. Let F : R → R be continuously differentiable with supx∈R |F
�(x)| < ∞. Define the flow

Φ : R× R → R as the solution of the nonlinear ODE
�

d

dt
y(t) = F (y(t))

y(0) = s�

i.e., Φ(t� s) := y(t). Take X := C0(R) and define
�
T (t)f

�
(s) := f

�
Φ(t� s)

�

for t ≥ 0, s ∈ R.

a) Show that T is a contraction semigroup (i.e., of type (1� 0)) and identify its generator.

b) What is the corresponding abstract Cauchy problem? Which partial differential equation can
we associate with it? Relate the semigroup T to the method of characteristics.

2. Let T be a semigroup on the Banach space X with generator A. Prove that for all f ∈ D(A2)
we have the Taylor formula

T (t)f = f + tAf +

t�

0

(t− s)T (s)A2fds.

Find a general Taylor formula for f ∈ D(An).

3. Let T be a contraction semigroup on the Banach space X with generator A. Prove that

�Af�2 ≤ 4�A2f� · �f�

holds for all f ∈ D(A2).

4. Let T be a semigroup of type (M� 0) on a Banach space X. For f ∈ X define

�|f�| := sup
�
�T (t)f� : t ≥ 0

�
.

Prove that the norms � · � and �| · �| are equivalent, and that T is contraction semigroup for the
new norm.

5. Let T be a semigroup on the Banach space X and let B ∈ L (X). Define

S(t) := etB.

Prove that the stability condition in the Lie–Trotter product formula, in Corollary 4.10, holds, i.e.
�
�
�
�
T ( t

n
)S( t

n
)
�n

�
�
� ≤ Meωt for all t ≥ 0

with appropriate constants M and ω.

47



48 Lecture C : Exercises

6. Let T be a semigroup with generator A. Prove that the Crank–Nicolson scheme is consistent
with the corresponding Cauchy problem on D(A).

7. Prove that the stability of a general finite difference scheme F (from Definition 4.1) is equivalent
to each of the following conditions:

(i) There is t0 > 0 and M ≥ 0 such that

�F (h)n� ≤ M for all n ∈ N, h ≥ 0 with nh ∈ [0� t0].

(ii) For all t0 ≥ 0 there is M ≥ 0 such that

�F ( t

n
)k� ≤ M for all t ∈ [0� t0], n ∈ N and k = 1� . . . � n.

8. Consider the Runge–Kutta methods based on

a) the Gaussian quadrature with one node

1/2 1/2

1

b) the Gaussian quadrature with two nodes

1/2−
√
3/6 1/4 1/4−

√
3/6

1/2 +
√
3/6 1/4 +

√
3/6 1/4

1/2 1/2

c) the Radau IIA quadrature with two nodes

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

Show the stablity of these methods when applied to

a) the heat equation presented in Section 1.1,

b) any abstract Cauchy problem �
d

dt
u(t) = Au(t)

u(0) = u0

with diagonalisable operator A which has a discrete spectrum {λi : i ∈ N} with λi ≤ l ∈ R. Are
there any restrictions on the time step?



Lecture 5

Approximation of semigroups – Part 2

In Lectures 3 and 4 we learned about methods for approximating the solutions to the Cauchy
problem

{

u̇(t) = Au(t), t ≥ 0

u(0) = u0 ∈ D(A),
(ACP)

provided that A is the generator of a semigroup T . In this lecture we try to see the issue from a
different perspective: We do not suppose in advance that A is a generator, but approximate it via
operators An which generate semigroups Tn on X. Then we hope that Tn will converge to some
object, and it happens to be a semigroup, whose generator is A or at least coincides with A on a
large subspace.

In other words, our aim is to use approximation theorems to prove that a certain operator is
the generator of a strongly continuous semigroup of linear operators. This approximation idea for
showing well-posedness of (ACP) (i.e., existence of a semigroup generated by A) was already used
by Courant, Friedrichs and Lewy1 (1928), and in innumerous publications ever since.

Recall that in the study of approximation methods for semigroups the convergence of resolvent
operators played an essential role. In Lecture 3 such issues were easily handled, again by the fact
that A was assumed to be a generator, in particular it had a resolvent. Now, this matter will more
complex and somewhat harder, so we begin with the investigation of convergence of resolvents, more
precisely, with the connection between the convergence of operators and convergence of resolvents.
Since the results are rather technical in nature, we suggest that on the first reading you should skip
the proofs and jump to Section 5.2.

5.1 Resolvent convergence

The next example shows that the limit of a convergent sequence of resolvents need not be the
resolvent of any operator.

Example 5.1. For a given Banach space X, consider the operators An := −nI. Then for λ > 0 we
have that R(λ,An) =

1
λ+n

I converges to 0 in the operator norm as n → ∞. The limit is certainly
not a resolvent of any operator (if the Banach space is at least one-dimensional).

Under additional assumptions one can nevertheless ensure that the limit of resolvent operators is
again a resolvent of some operator. Before turning to such results, we need some further preparation.

Recall from Lecture 2, particularly from Proposition 2.10, that an operator A is closed if for each
sequence fn ∈ D(A) such that fn → f and Afn → g, we have g ∈ D(A) and Af = g. Now, we call

1R. Courant, K. Friedrichs, H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,”
Math. Annalen 100 (1928), 32–74.
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an operator B closable if it has an extension2 which is a closed operator. The next proposition
shows if B is closable, then it has a smallest closed extension, called the closure of B and denoted
byB.

Proposition 5.2. For an operator B with domain D(B) the following statements hold.

a) The assertions below are equivalent:

(i) Operator B is closable.

(ii) The closure of the graph of B

graphB :=
{

(f,Bf) : f ∈ D(B)
}

⊆ X ×X

(which is a closed subspace of X ×X) is the graph of an operator A, i.e., (f, g), (f, h) ∈
graphB implies g = h.

(iii) If fn ∈ D(B) with fn → 0 and Bfn → g, then g = 0.

b) If B is closable, let A be the operator from a). Then A is the smallest closed extension of B.

c) Operator B is closable if and only if λ−B is closable for λ ∈ R. We have λ−B = λ−B.

d) If B has a continuous and injective left inverse C, then B is closable. Moreover, if B has dense

range, then C = B
−1

.

Proof. We prove d) only, the rest of the assertions is left to the reader as Exercise 1. Suppose
fn ∈ D(B), fn → 0 and Bfn → g. Then fn = CBfn, so we obtain by continuity that Cg = 0. Since
C is injective, g = 0, and by part a) B is closable.

Assume now that the range of B is dense and let us prove CBf = f for all f ∈ D(B). Taking
f ∈ D(B), there is a sequence fn ∈ D(B) with fn → f and Bfn → Bf . From this we conclude

fn = CBfn → CBf,

i.e., f = CBf . This implies in particular that B is injective.

Next we show that ran(B) is closed. Suppose fn ∈ D(B) with Bfn → g. Then fn = CBfn → Cg,
and we obtain Cg ∈ D(B) and BCg = g since B is closed. It follows that g ∈ ranB. To conclude
the proof we collect the properties of B: It has dense range by assumption, but as we have proved
its range is closed, so ranB = X. But B is also injective, hence B : D(B) → X is bijective, so by

Proposition 2.10, the operator B is continuously invertible, and of course we have C = B
−1

. �

The next proposition connects the convergence of operators to the convergence of their resolvents,
i.e., it is in the spirit of Lemma 3.13 from Lecture 3. Note, however, that in contrast to that lemma,
generally no equivalence between the two properties can be stated here.

Proposition 5.3. For every n ∈ N let An be a densely defined closed operator. Suppose that there
is λ ∈ ∩n∈N ρ(An) such that

‖R(λ,An)‖ ≤M for all n ∈ N and for some M ≥ 0.

Consider the following assertions:

2The operator A is an extension of B if D(B) ⊆ D(A) and A|D(B) = B.
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(i) There is a dense subspace D ⊂ X and a linear operator A : D → X such that (λ − A)D is
dense in X. Furthermore, for all f ∈ D there are fn ∈ D(An) with

fn → f and Anfn → Af for n→∞.

(ii) The limit
R(λ)f := lim

n→∞
R(λ,An)f

exists for all f ∈ X and defines a bounded linear operator with dense range.

Then (i) implies (ii). Under the additional assumption that R(λ) has a trivial kernel (ii) implies
(i). If (i) holds and kerR(λ) = {0}, then A is closable, and R(λ,A) = R(λ).

Proof. Take f ∈ D and set g = (λ − A)f . Then, by the assumptions, we find fn ∈ D(An) with
fn → f and Anfn → Af for n→∞. Let

gn := (λ−An)fn,

then gn → g = (λ − A)f as n → ∞. We now show that the elements R(λ,An)g form a Cauchy
sequence in X. For n,m ∈ N we have

R(λ,An)g −R(λ,Am)g = R(λ,An)(g − gn) +
(

R(λ,An)gn −R(λ,Am)gm

)

+R(λ,Am)(gm − g).

Since ‖R(λ,An)‖ ≤M for all n ∈ N, the first and the last term converge to zero as n,m→∞. For
the middle term we have

R(λ,An)gn −R(λ,Am)gm = fn − fm → 0

as n,m→∞. Therefore, the limit

R(λ)g := lim
n→∞

R(λ,An)g

exists for all g ∈ (λ − A)D. By Theorem 2.30 the limit exists for all g ∈ (λ−A)D = X, and we
have R(λ) ∈ L (X), and (ii) is proved.

To prove (ii) ⇒ (i) suppose that R(λ) is injective and let D := ranR(λ), which is dense by
assumption. For f ∈ D set g = R(λ)−1f , and define fn = R(λ,An)g. Then we can write

Anfn −Amfm = AnR(λ,An)g −AmR(λ,Am)g

= (An − λ)R(λ,An)g + λR(λ,An)g − λR(λ,Am)g − (Am − λ)R(λ,Am)g

= λ
(

R(λ,An)g −R(λ,Am)g
)

,

which shows that (Anfn) is a Cauchy in X. Therefore we can define the linear operator

Af := lim
n→∞

Anfn = lim
n→∞

AnR(λ,An)R(λ)−1f.

For f ∈ D we have fn → f with fn defined above, so (i) is proved.

Suppose (i) is true, and that kerR(λ) = {0}. For f ∈ D let fn → f with fn ∈ D(An) and
Anfn → Af . Then clearly we have

R(λ)(λ−A)f = lim
n→∞

R(λ,An)(λfn −Anfn) = f.

Since by assumption R(λ) is injective, Proposition 5.2.c) implies that A is closable and R(λ,A) =
R(λ). �
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We need to find extra conditions to be able to conclude that the operator obtained in (ii) of the
previous proposition is injective. The next statement is a first step in this direction.

Proposition 5.4. For each n ∈ N let An generate a semigroup of the same type (M,ω) with ω ≥ 0.
Then the set

Λ :=
{

µ : µ > ω, lim
n→∞

R(µ,An) exists
}

is either empty or Λ = (ω,∞).

Proof. We prove that set Λ is both open and relatively closed in (ω,∞). Using that it is non-empty,
by connectedness of (ω,∞) we obtain the assertion.

First of all recall from Proposition 2.26 that

‖R(µ,An)
k‖ ≤ M

(µ− ω)k
holds for all k ∈ N and µ > ω.

If µ > ω, then we have

R(µ′, An) =
∞
∑

k=0

(µ− µ′)kR(µ,An)
k+1

with uniform and absolute convergence in operator norm for all µ′ > 0 with |µ′ − µ| ≤ δ(µ − ω).
The convergence of this series is even uniform in n ∈ N. For µ ∈ Λ and µ′ as above, we prove that
µ′ ∈ Λ. Let ε > 0 and f ∈ X, then there is N ∈ N such that

∥

∥

∥

∞
∑

k=N+1

(µ− µ′)kR(µ,An)
k+1

∥

∥

∥
≤ ε for all n ∈ N.

Since by assumption R(µ,An)f converges, so does R(µ,An)
kf . Hence there is n0 ∈ N such that

∥

∥

∥

N
∑

k=0

(µ− µ′)kR(µ,An)
k+1 −

N
∑

k=0

(µ− µ′)kR(µ,Am)k+1
∥

∥

∥
≤ ε

whenever n,m ≥ n0. Altogether we obtain

‖R(µ′, An)f −R(µ′, Am)f‖ ≤ 3ε for all n,m ≥ n0.

This proves that R(µ′, An)f converges, showing that Λ is open. Let µ be an accumulation point of

Λ in (ω,∞). Then there is µ′ ∈ Λ with |µ− µ′| ≤ µ′−ω
2 . Thus, by the arguments above, µ belongs

to Λ, showing that Λ is closed. �

Now we can state the next fundamental result on convergence of resolvents of generators.

Proposition 5.5. For n ∈ N let An generate semigroups of type (M,ω) with ω ≥ 0, such that for
some λ > ω the limit

R(λ)f := lim
n→∞

R(λ,An)f

exists3 for all f ∈ X. If R(λ) has dense range, then it is injective and equals the resolvent R(λ,B)
of a densely defined operator B.

3In other words, R(λ,A) = s− limR(λ,An), meaning that the strong limit exists.
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Proof. By Proposition 5.4 we can define

R(µ)f := lim
n→∞

R(µ,An)f

for all µ > ω and f ∈ X. Clearly R(µ) is then a bounded linear operator. Since for µ, µ′ > ω the
resolvent identity

R(µ′, An)−R(µ,An) = (µ− µ′)R(µ,An)R(µ′, An)

holds, by passing to the limit we obtain the equality

R(µ′)−R(µ) = (µ− µ′)R(µ)R(µ′) = (µ− µ′)R(µ′)R(µ), (5.1)

or after rewriting

R(µ′) = R(µ)
(

(µ− µ′)R(µ′) + I
)

=
(

(µ− µ′)R(µ′) + I
)

R(µ).

From this we can conclude the equalities kerR(µ) = kerR(µ′) and ranR(µ) = ranR(µ′) for all
µ, µ′ > ω.

By the definition of R(µ) and since ‖(µ− ω)R(µ,An)‖ ≤M we have

‖R(µ)‖ ≤ M

µ− ω
for all µ > ω.

In particular R(µ) → 0 in operator norm for µ → ∞ and µR(µ) is uniformly bounded for µ > ω.
From (5.1) it follows

µR(µ)R(λ)f = R(λ)f −R(µ)f + λR(λ)R(µ)f.

Hence
lim
µ→∞

µR(µ)R(λ)f = R(λ)f.

By assumption ranR(λ) is dense, so we conclude by Theorem 2.30 the convergence

lim
µ→∞

µR(µ)g = g,

for all g ∈ X. This also yields that R(µ) is injective for all µ > ω.

To conclude the proof, we define B := λ − R(λ)−1 with D(B) = ranR(λ). Then B is a closed
and densely defined operator, with R(λ,B) = R(λ). �

We are now prepared for general approximation theorems, and begin with the commutative case.

5.2 Commuting approximations: Generation theorems

In many applications one encounters approximating operators that are bounded and commute. The
first result is a simple but rather important special case of a general approximation theorem, the
second Trotter–Kato theorem below.

Recall from Exercise 1 in Lecture 2 that the exponential function of a bounded linear operator
B ∈ L (X) defines a semigroup of type (1, ‖B‖) via

S(t) = etB =

∞
∑

n=0

tnBn

n!
.
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Proposition 5.6. For n ∈ N let An ∈ L (X) be bounded operators commuting with each other.
Suppose the following:

(i) There exist M ≥ 1 and ω ∈ R such that

∥

∥etAn

∥

∥ ≤Meωt for all t ≥ 0, n ∈ N.

(ii) There is a dense subset D ⊂ X such that

lim
n→∞

Anf =: Af exists for all f ∈ D.

(iii) The set (λ−A)D is dense for some λ > ω.

Then operator A is closable and A generates a strongly continuous semigroup T given by

T (t)f := lim
n→∞

etAnf

for all f ∈ X.

Proof. We first prove that the sequence (etAnf) is convergent for all f ∈ X. To this end, note that
for n,m ∈ N we have Am = An + (Am − An). Using ideas already presented before, note that the
function

[0, t] ∋ s 7→ e(t−s)AmesAnf

is continuously differentiable for all f ∈ X, and its derivative is given by

[0, t] ∋ s 7→ e(t−s)Am(Am −An)e
sAnf.

Using the fundamental theorem of calculus we can conclude that

etAmf − etAnf =

t
∫

0

e(t−s)Am(Am −An)e
sAnf ds =

t
∫

0

e(t−s)AmesAn(Am −An)f ds,

where in the last step we used the commutativity assumption. As a consequence we obtain

‖etAmf − etAnf‖ ≤ tM2eωt‖Amf −Anf‖.

This shows that for all f ∈ D, the functions un : [0,∞)→ L (X) defined by un(t) = etAnf form a
Cauchy sequence in each of the Banach spaces C([0, t0];X) for t0 ≥ 0. Therefore we can define

T (t)f := lim
n→∞

etAnf,

and the convergence is uniform on every interval [0, t0] with t0 ≥ 0. From this convergence it follows
that the operator is linear with ‖T (t)f‖ ≤ Meωt‖f‖ for all t ≥ 0 and f ∈ D. Hence T (t) extends
to a bounded linear operator on X. The next properties are also consequences of the convergence
above:

1. We have T (0) = I and T (t+ s) = T (t)T (s) for all t, s ≥ 0.

2. The function t 7→ T (t)f is continuous for all f ∈ D.
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From Proposition 2.5.b) it follows that T is a strongly continuous semigroup on X.

Let us denote by B the generator of T . Our aim i to show that B = A. Since etAnf converges
locally uniformly to T (t)f , we conclude by the first Trotter–Kato theorem, Theorem 3.14 that

R(λ,B)f = lim
n→∞

R(λ,An)f.

But Proposition 5.3 yields
R(λ)f = lim

n→∞
R(λ,An)f,

where the range of R(λ) is dense. By Proposition 5.5 the operator R(λ) is injective and R(λ) =
R(λ,B), so again Proposition 5.3 implies R(λ) = R(λ,A). These yield R(λ,B) = R(λ,A), hence
A = B. �

The previous proposition provides some means for proving that a given operator A, or more
precisely its closure A, is a generator of some semigroup. Now suppose A is an operator for which
the implicit Euler scheme is defined (see Example 4.3). If A was a generator, then of course the
Euler scheme would be convergent. Let us look at if we can obtain the convergence without assuming
the generator property of A. We sketch one strategy how to do this. Fix t > 0 and take

Ah := 1
h
AR( 1

h
, A) = 1

h
( 1
h
R( 1

h
, A)− I) ∈ L (X),

the Yosida approximants, where h = t
n
. Then Ahf → Af for all f ∈ D(A) as h ց 0 (see

Proposition 4.8), and we immediately obtain the convergence of e·Ah to a semigroup T . To show
the convergence of the implicit Euler method, it remains to estimate

∥

∥

∥
etAhf −

(

1
h
R( 1

h
, A)

)n

f
∥

∥

∥
=

∥

∥

∥
en
(

1
h
R( 1

h
,A)−I

)

f −
(

1
h
R( 1

h
, A)

)n

f
∥

∥

∥
.

To be able to do that we need the following general result, which is a straightforward generalisation
of a corresponding scalar statement.

Lemma 5.7. Let S ∈ L (X) be a power bounded operator, i.e., suppose ‖Sm‖ ≤M for all m ∈ N

and some M ≥ 0. Then
∥

∥

∥
en(S−I)f − Snf

∥

∥

∥
≤
√
nM‖Sf − f‖ (5.2)

for every n ∈ N and f ∈ X.

Proof. To prove that we only need some elementary calculus. Fix n ∈ N and, by using the power
series representation of the exponential function, note that

en(S−I) − Sn = e−n
(

enS − enSn
)

= e−n
∞
∑

k=0

nk

k!

(

Sk − Sn
)

. (5.3)

For k, n ∈ N0 we have

Sk − Sn =























k−1
∑

i=n

(Si+1 − Si) if k ≥ n,

n−1
∑

i=k

(Si − Si+1) if k < n.

By using ‖Sm‖ ≤M , we obtain

‖Skf − Snf‖ ≤ |n− k| ·M · ‖Sf − f‖.
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Substituteing this in (5.3) we obtain

‖en(S−I)f − Snf‖ ≤ e−nM‖Sf − f‖
∞
∑

k=0

nk

k!
|n− k|.

By the Cauchy–Schwartz inequality we can estimate this further as

‖en(S−I)f − Snf‖ ≤ e−nM‖Sf − f‖
(

∞
∑

k=0

nk

k!

)
1
2
(

∞
∑

k=0

nk

k!
|n− k|2

)
1
2

= e−nM‖Sf − f‖(en) 1
2 (nen)

1
2 =

√
nM‖Sf − f‖.

In the last line we used the identity

∞
∑

k=0

nk

k!
(n− k)2 = nen. �

Before completing the “proof” of the convergence of the Euler scheme, let us formulate a more
general product formula. The following important result is shown in the commuting case first, since
its proof relies on the second Trotter–Kato approximation theorem (at this point only available for
commuting approximations).

Proposition 5.8 (Commuting Chernoff Product Formula). Consider a function

F : [0,∞)→ L (X)

with F (t)F (s) = F (s)F (t) for all t, s > 0 and F (0) = I. Suppose that for some ω ∈ R and M ≥ 0

∥

∥F (t)n
∥

∥ ≤Meωtn for all n ∈ N, (5.4)

and that there exists D ⊂ X such that (λ−A)D is dense for some λ > 0 and

Af := lim
hց0

F (h)f − f

h

exists for all f ∈ D. Then the closure A of A generates a bounded strongly continuous semigroup
T which is given by

T (t)f := lim
n→∞

(

F ( t
n
)
)n
f

for all f ∈ X. The convergence here is locally uniform in t.

Proof. By replacing F (t) with e−ωtF (t) and A with A−ω we may suppose ω = 0. For h > 0 define

Ah :=
F (h)− I

h
∈ L (X).

By assumption we have Ahf → Af for all f ∈ D as hց 0. Furthermore, using that

etAh = e
t

h
(F (h)−I) = e−

t

h e
t

h
F (h),

we can estimate

‖etAh‖ ≤ e−
t

h

∞
∑

n=0

tn‖F (h)n‖
hnn!

≤Me−
t

h

∞
∑

n=0

tn

hnn!
= M.
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This shows that the conditions of Proposition 5.6 are satisfied, meaning that A generates a strongly
continuous semigroup T given by

T (t)f = lim
n→∞

e
tA t

n f = lim
n→∞

en(F ( t

n
)−I)f,

where the convergence is uniform for t ∈ (0, t0], for every t0 > 0. By the assumption F (0) = I, we
obtain

T (t)f = lim
n→∞

en(F ( t

n
)−I)f

uniformly on [0, t0].

On the other hand, by Lemma 5.7 we have for f ∈ D

‖F ( t
n
)f − f‖ = t

n
‖A t

n

f‖,

and hence
∥

∥

∥
en(F ( t

n
)−I)f − F ( t

n
)nf

∥

∥

∥
≤
√
nM‖F ( t

n
)f − f‖ = tM√

n
‖A t

n

f‖ → 0

as n→∞ with locally uniform convergence in t. By assumption (5.4) we can apply Theorem 2.30
and conclude the proof (this last mentioned theorem does not explicitly yield the local uniform
convergence in t, to obtain that one needs a small twist, see Exercise 6). �

Returning to the Euler scheme note that up to now we did not say a word about the stability,
which is certainly needed if we long for convergence.

Proposition 5.9. For an operator A the following assertions are equivalent:

(i) There exist constants M ≥ 1 and ω ∈ R so that (ω,∞) ⊆ ρ(A) and

‖R(λ,A)n‖ ≤ M

(λ− ω)n
for all λ > ω and n ∈ N. (5.5)

(ii) There exist constants K ≥ 1 and ω′ ≥ 0 so that (ω′,∞) ⊂ ρ(A) and
∥

∥

∥

(

1
h
R( 1

h
, A)

)k
∥

∥

∥
≤ Kekhω

′

for all k ∈ N and all h ∈ (0, 1
ω′
) (5.6)

(in case ω′ = 0 the interval extends to ∞).

Proof. In both implications we use the substitution h = 1
λ
. If (ii) is true, then we can write

∥

∥

(

λR(λ,A)
)n∥

∥ ≤ Ken
ω
′

λ .

∥

∥

(

(λ− ω′)R(λ,A)
)n∥

∥ ≤ Ken
ω′

λ

(

1− ω′

λ

)n

≤ K,and hence

for all n ∈ N and λ > ω′ meaning that (i) holds with ω = ω′ and M = K.

Suppose now that (i) holds. Then for all k ∈ N and λ > max{0, ω} we have
∥

∥

(

λR(λ,A)
)k∥

∥ ≤M λk

(λ−ω)k
≤Mek

ω

λ−ω .

So, in case ω ≤ 0, we can set ω′ := ω, K := M and obtain (ii). Otherwise take ω′ > ω > 0 arbitrary.
Then for λ > ω′ we have

∥

∥

(

λR(λ,A)
)k∥

∥ ≤Me
k ω

λ
· 1
1−ω

λ ≤Me
k ω
′

λ
· 1
1− ω

ω′ .

Hence, (ii) holds with the choice K = Me
ω
′

ω′−ω . �
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Operators satisfying (5.5) are called Hille–Yosida operators4. We see therefore that the stability
of the Euler scheme for A is equivalent to the fact that A is a Hille–Yosida operator.

Theorem 5.10 (Hille–Yosida). Suppose that A is densely defined Hille-Yosida operator. Then A

is the generator of a strongly continuous semigroup T given by the implicit Euler method. More
precisely, for every t0 > 0 and f ∈ X we have

T (t)f = lim
n→∞

(

n
t
R(n

t
, A)

)n
f = lim

n→∞

(

I − t
n
A
)−n

f

with uniform convergence for t ∈ [0, t0].

Proof. Let ω′ > max{ω, 0}. As sketched above we apply Proposition 5.6 to the function

F (h) :=











I for h = 0,
1
h
R( 1

h
, A) for h ∈ (0, 1

ω′
),

ω′R(ω′, A) for h ≥ 1
ω′
.

Stability follows from Proposition 5.9. Further, from the identity λR(λ,A) − I = AR(λ,A) we
conclude that

F (h)f − f

h
= 1

h
R( 1

h
, A)Af → Af for f ∈ D(A).

Since for λ > ω we have (λ−A)D(A) = X, all the conditions of Proposition 5.6 are satisfied, and
the proof is complete. �

5.3 General approximation theorems

We turn our attention to the general form of the approximation theorems presented in the previous
section and try to get rid of the commutation assumption.

Theorem 5.11 (Second Trotter–Kato Approximation Theorem). For n ∈ N let An generate the
semigroup Tn, and suppose that all Tn have the same type (M,ω). Then the following assertions
are equivalent:

(i) There is a densely defined linear operator A : D → X such that (λ− A)D is dense for some
λ > ω. Moreover, for all f ∈ D there is fn ∈ D(An) with

fn → f and Anfn → Af for n→∞.

(ii) The limit
R(λ)f = lim

n→∞
R(λ,An)f

exists for all f ∈ X and for some (and then for all) λ > ω. The operator R(λ) has dense
range.

(iii) There is a semigroup T with generator B such that

Tn(t)f → T (t)f as n→∞

for all f ∈ X locally uniformly in t.

4E. Hille, Functional Analysis and Semigroups, Amer. Math.Soc. Coll. Publ., vol. 31, Amer. Math. Soc., 1948.
and K. Yosida, On the differentiability and the representation of one-parameter semigroups of linear operators, J.
Math. Soc. Japan 1 (1948), 1521.
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Moreover, under these equivalent conditions, we have B = A, and R(λ) = R(λ,B) for all λ > ω.

Proof. By rescaling, i.e., by replacing Tn(t) by e−ωtTn(t), we may suppose ω = 0 (cf. Exercise C.3).
Proposition 5.3 yields the implication (i) ⇒ (ii), and since R(λ) is injective by Proposition 5.5, we
obtain R(λ) = R(λ,A).

Suppose that in (ii) R(λ) exists for some λ > 0, then by Proposition 5.4 R(µ) exists for all µ > 0,
and by Proposition 5.5 R(µ) are all injective. So Proposition 5.3 yields the implication (ii) ⇒ (i).
By Proposition 5.5 we have that R(λ) = R(λ,B) for a closed operator B, and we even obtain
R(µ) = R(µ,B) (why?). From this we infer

‖λnR(λ)n‖ = ‖λnR(λ,B)n‖ ≤M for all λ > 0.

Hence by the Hille–Yosida theorem, Theorem 5.10 operator B generates a semigroup T , and by the
first Trotter–Kato theorem, Theorem 3.14 we see R(λ) = R(λ,B). Hence (iii) is proved.

The implication (iii) ⇒ (i) follows from the first Trotter–Kato Theorem 3.14. �

Now one can easily prove Chernoff’s theorem in the following general form. The proof is exactly
the same as for the commutative version, one only needs to apply the second Trotter–Kato theorem
from above.

Theorem 5.12 (Chernoff Product Formula). Let

F : [0,∞)→ L (X)

be a function with F (0) = I such that for some ω ≥ 0 and M ≥ 0 we have

‖F (t)n‖ ≤Meωnt for all n ∈ N, t ≥ 0.

Suppose furthermore that there is D ⊂ X such that the limit

Af := lim
hց0

F (h)f − f

h

exists for all f ∈ D, and that (λ−A)D is dense for some λ > ω. Then the closure A of A generates
a strongly continuous semigroup T which is given by

T (t)f := lim
n→∞

(

F ( t
n
)
)n

f

for all f ∈ X, and the convergence is uniform for t ∈ [0, t0] for each t0 > 0.

5.4 Exercises

1. Prove Proposition 5.2.

2. Prove the identity:
∞
∑

k=0

nk

k!
(n− k)2 = nen

needed in Lemma 5.7.
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3. Prove that in Proposition 5.5 for λ, µ > ω one has R(λ) = R(λ,B) and R(µ) = R(µ,B) for the
same operator B.

4. Consider the Banach space X := ℓ2 and recall that for a sequence m ⊆ C the multiplication
operator corresponding to m is denoted by Mm. Now for n ∈ N denote by 1{1,2,...,n the characteristic
sequence of the set {1, 2, . . . , n}. For a given sequence m ⊆ C define mn := m · 1{1,...,n} and
An := Mmn

the corresponding multiplication operators. Check the various conditions of the second
Trotter–Kato theorem for this sequence of operators.

5. Let A be a generator of a semigroup T on the Banach space X, and let B ∈ L (X) be a
bounded linear operator. Prove by means of suitable approximations (and not using the Hille–
Yosida Theorem) that A+B with D(A+B) = D(A) is a generator of a semigroup.

6. Do the twist in the proof of Proposition 5.8. More precisely, prove that if F, Fn : [0, t0]→ L (X)
are strongly continuous functions that are uniformly bounded, then the following assertions are
equivalent.

(i) Fn(t)x→ F (t)x uniformly on [0, t0] as n→∞ for each x ∈ X.

(ii) Fn(t)x→ F (t)x uniformly on [0, t0] as n→∞ for each x ∈ D from a dense subspace D.

(iii) Fn(t)x→ F (t)x uniformly on [0, t0]×K as n→∞ for each compact set K ⊆ X.



Lecture 6

The Lumer–Phillips Theorem

In the previous lecture we saw the characterisation of generators of strongly continuous semigroups,
called Hille–Yosida theorem. Unfortunately, even in the case of relatively simple problems, it is
practically impossible to check all the properties listed: It is already difficult to estimate the operator
norm of the resolvent, let alone all powers of it. We also have to make sure that our operator is
closed, which also might be a painful task in particular situations.

In this lecture we study a class of operators, for which the above two difficulties may be remedied
in a satisfactory way.

6.1 Dissipative operators

Due to their importance, we now return to the study of contraction semigroups, i.e., semigroups
T where the semigroup operators are contractive, and look for a characterisation of their generator
that does not require explicit knowledge of the resolvent. The following is a key notion towards this
goal.

Definition 6.1. A linear operator A on a Banach space X is called dissipative if

‖(λ−A)f‖ ≥ λ ‖f‖ (6.1)

for all λ > 0 and f ∈ D(A).

Note that it suffices to establish the validity of the inequality above only for unit vectors f ∈ X,
‖f‖ = 1. For f = 0 the inequality is trivial, for f 6= 0 one can normalise. Note also that we did
not require here the density of the domain or any other analytic properties of the operator. To
familiarise ourselves with dissipative operators we state some of their basic properties.

Proposition 6.2. For a dissipative operator A the following properties hold.

a) λ−A is injective for all λ > 0 and

∥

∥(λ−A)−1g
∥

∥ ≤ 1

λ
‖g‖

for all g in the range ran(λ−A) := (λ−A)D(A).

b) λ − A is surjective for some λ > 0 if and only if it is surjective for each λ > 0. In that case,
one has (0,∞) ⊂ ρ(A).

c) A is closed if and only if the range ran(λ−A) is closed for some (hence all) λ > 0.

d) If ran(A) ⊂ D(A), e.g., if A is densely defined, then A is closable. Its closure A is again
dissipative and satisfies ran(λ−A) = ran(λ−A) for all λ > 0.

61
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Proof. a) is just a reformulation of estimate (6.1).

To show b) we assume that (λ0 − A) is surjective for some λ0 > 0. In combination with a), this
yields λ0 ∈ ρ(A) and ‖R(λ0, A)‖ ≤ 1

λ0
. The series expansion for the resolvent

R(λ,An) =

∞
∑

k=0

(λ0 − λ)kR(λ0, An)
k+1

yields (0, 2λ0) ⊂ ρ(A). The dissipativity of A implies that

‖R(λ,A)‖ ≤ 1

λ

for 0 < λ < 2λ0. Proceeding in this way, we see that λ−A is surjective for all λ > 0, and therefore
(0,∞) ⊂ ρ(A).

c) The operator A is closed if and only if λ− A is closed for some (hence all) λ > 0. This is again
equivalent to

(λ−A)−1 : ran(λ−A)→ D(A)

being closed. By a) this operator is bounded. Hence, by the closed graph theorem, see Theorem
2.32, it is closed if and only if its domain, i.e., ran(λ−A), is closed.
d) Take a sequence fn ∈ D(A) satisfying fn → 0 and Afn → g. By Proposition 5.2.a) we have to
show that g = 0. The inequality (6.1) implies that

‖λ(λ−A)fn + (λ−A)w‖ ≥ λ ‖λfn + w‖

for every w ∈ D(A) and all λ > 0. Passing to the limit as n→∞ yields

‖−λg + (λ−A)w‖ ≥ λ‖w‖ and hence
∥

∥

∥
−g + w − 1

λ
Aw

∥

∥

∥
≥ ‖w‖.

For λ→∞ we obtain that
‖ − g + w‖ ≥ ‖w‖

and by choosing w from the domain D(A) arbitrarily close to g ∈ ran(A), we see that

0 ≥ ‖g‖.

Hence g = 0.

In order to verify that A is dissipative, take f ∈ D(A). By definition of the closure of a linear
operator, there exists a sequence fn ∈ D(A) satisfying fn → f and Afn → Af when n→∞. Since
A is dissipative and the norm is continuous, this implies that ‖(λ − A)f‖ ≥ λ‖f‖ for all λ > 0.
Hence A is dissipative. Finally, observe that the range ran(λ−A) is dense in ran(λ−A). Since by
assertion c) ran(λ−A) is closed in X, we obtain the final assertion in d). �

From the resolvent estimate in the Hille–Yosida theorem, Theorem 5.10, it is evident that the
generator of a contraction semigroup satisfies the estimate (6.1), and hence is dissipative. On the
other hand, as we shall see in a moment, many operators can be shown directly to be dissipative
and densely defined. Therefore we reformulate Theorem 5.10 in such a way as to single out the
property that ensures that a densely defined, dissipative operator is a generator.

Theorem 6.3 (Lumer–Phillips). For a densely defined, dissipative operator A on a Banach space
X the following statements are equivalent:
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(i) The closure A of A generates a contraction semigroup.

(ii) The range ran(λ−A) is dense in X for some (hence all) λ > 0.

Proof. (i) ⇒ (ii) The Hille–Yosida theorem, Theorem 5.10, implies that ran(λ − A) = X for all
λ > 0. Since by Proposition 6.2.d) ran(λ−A) = ran(λ−A), we obtain (ii).

(ii) ⇒ (i) By the same argument, the denseness of the range ran(λ − A) implies that (λ − A) is
surjective. Proposition 6.2.b) shows that (0,∞) ⊂ ρ(A), and dissipativity of A implies the estimate

‖R(λ,A)‖ ≤ 1

λ
for λ > 0.

This was required in Theorem 5.10 to assure that A generated a contraction semigroup. �

The above theorem gains its significance when viewed in the context of the abstract Cauchy
problem associated to an operator A.

Remark 6.4. Assume that the operator A is known to be closed, densely defined, and dissipative.
Then the Lumer–Phillips theorem, Theorem 6.3 yields the following fact:

In order to ensure that the (time dependent) initial value problem

u̇(t) = Au(t), u(0) = u0 (ACP)

can be solved for all u0 ∈ D(A), it is sufficient to prove that the (stationary) resolvent equation

f −Af = g (RE)

has solutions for all g in some dense subset in the Banach space X. As an example recall the
treatment of the heat equation presented in Section 1.1. In many examples (RE) can be solved
explicitly while (ACP) cannot.

Let us investigate the question further how to decide whether an operator is dissipative. When
introducing dissipative operators, we had aimed for an easy (or at least more direct) way to cha-
racterising generators. Up to now, however, the only way to arrive at the norm inequality (6.1) was
by explicit computation of the resolvent and then deducing the norm estimate

‖R(λ,A)‖ ≤ 1

λ
for λ > 0.

Fortunately, there is a simpler method that works particularly well in concrete function spaces
such as C0(Ω) or L

p(Ω, µ). Due to its importance and since this is the simplest case, we start with
the Hilbert space case.

Proposition 6.5. Let X be a Hilbert space. An operator A is dissipative if and only if for every
f ∈ D(A) we have

Re〈Af, f〉 ≤ 0. (6.2)

Note that in this theorem the important direction is that (6.2) implies dissipativity. Fortunately,
this is also easy to prove.
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Proof. Assume (6.2) is satisfied for f ∈ D(A), ‖f‖ = 1. Then we have

‖λf −Af‖ ≥ |〈λf −Af, f〉|
≥ Re〈λf −Af, f〉 ≥ λ

for all λ > 0. This proves one of the implications.

To show the converse, we take f ∈ D(A), ‖f‖ = 1, and assume that ‖λf −Af‖ ≥ λ for all λ > 0.
Consider the normalised elements

gλ :=
λf −Af
‖λf −Af‖ .

Then for all λ > 0 we have

λ ≤ ‖λf −Af‖ = 〈λf −Af, gλ〉 = λRe〈f, gλ〉 − Re〈Af, gλ〉.

By estimating one of the terms on right-hand side trivially we can conclude the following two
inequalities:

λ ≤ λ− Re〈Af, gλ〉 and λ ≤ λRe〈f, gλ〉+ ‖Af‖

are valid for each λ > 0. These yield for λ = n

Re〈Af, gn〉 ≤ 0 and 1− 1

n
‖Af‖ ≤ Re〈f, gn〉.

Since the unit ball of a Hilbert space is weakly (sequentially) compact, we can take a weakly
convergent subsequence (gnk

) with weak limit g ∈ H. Then we obtain

‖g‖ ≤ 1, Re〈Af, g〉 ≤ 0, and Re〈f, g〉 ≥ 1.

Combining these facts, it follows that g = f and that it satisfies (6.2). �

To introduce the general case we start with a Banach space X and its dual space X ′. By the
Hahn–Banach theorem, see Theorem 6.16, for every f ∈ X there exists φ ∈ X ′ such that

φ(f) = 〈f, φ〉 = ‖f‖2 = ‖φ‖2

holds. Hence, for every f ∈ X the following set, called its duality set,

J(f) :=
{

φ ∈ X ′ : 〈f, φ〉 = ‖f‖2 = ‖φ‖2
}

, (6.3)

is nonempty. Such sets allow a new characterisation of dissipativity.

Proposition 6.6. An operator A is dissipative if and only if for every f ∈ D(A) there exists
j(f) ∈ J(f) such that

Re〈Af, j(f)〉 ≤ 0. (6.4)

If A is the generator of a strongly continuous contraction semigroup, then (6.4) holds for all f ∈
D(A) and arbitrary φ ∈ J(f).
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Proof. Assume (6.4) is satisfied for f ∈ D(A), ‖f‖ = 1, and some j(f) ∈ J(f). Then 〈f, j(f)〉 =
‖j(f)‖2 = 1 and

‖λf −Af‖ ≥ |〈λf −Af, j(f)〉| ≥ Re〈λf −Af, j(f)〉 ≥ λ

for all λ > 0. This proves the important implication. The other implication is only included for the
sake of completeness, you may skip this part on the first reading.

To show the converse, we take f ∈ D(A), ‖f‖ = 1, and assume that ‖λf − Af‖ ≥ λ for all λ > 0.
Choose φλ ∈ J(λf −Af) and consider the normalised elements

ψλ :=
φλ

‖φλ‖
.

Then, similarly to the proof of Proposition 6.5, the inequalities

λ ≤ ‖λf −Af‖ = 〈λf −Af, ψλ〉 = λRe〈f, ψλ〉 − Re〈Af, ψλ〉
≤ min {λ− Re〈Af, ψλ〉, λRe〈f, ψλ〉+ ‖Af‖}

are valid for each λ > 0. This yields for λ = n

Re〈Af, ψn〉 ≤ 0 and 1− 1

n
‖Af‖ ≤ Re〈f, ψn〉.

Let ψ be a weak∗ accumulation point of (ψn), which exists by the Banach–Alaoglu theorem, see
Theorem 6.17. Then

‖ψ‖ ≤ 1, Re〈Af, ψ〉 ≤ 0, and Re〈f, ψ〉 ≥ 1.

Combining these facts, it follows that ψ belongs to J(f) and satisfies (6.4).

Finally, suppose that A generates a contraction semigroup T on X. Then, for every f ∈ D(A) and
arbitrary φ ∈ J(f), we have

Re〈Af, φ〉 = lim
hց0

(Re〈T (h)f, φ〉
h

− Re〈f, φ〉
h

)

≤ lim sup
hց0

(‖T (h)f‖ · ‖φ‖
h

− ‖f‖
2

h

)

≤ 0.

This completes the proof. �

Remark 6.7. Note that the requirement in (6.4) can be relaxed in many applications to

Re〈Af, j(f)〉 ≤ ω (6.5)

for some given ω ≥ 0. Operators with this property are called quasi-dissipative. Clearly, if A is
quasi-dissipative, then A− ω is dissipative.

6.2 Examples

We continue here with a discussion of these new notions and results in concrete examples. We begin
with identifying the duality sets J(f) for some classical function spaces.
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Example 6.8. 1. Let Ω be a locally compact Hausdorff space (for example an open or a closed
subset of Rd). Consider

X := C0(Ω) :=
{

f : f is continuous and vansihes at infinity
}

.

This is a Banach space with the supremum norm ‖ · ‖∞. For 0 6= f ∈ X, the set J(f) ⊂ X ′

contains (multiples of) all point measures supported by those points s0 ∈ Ω where |f | reaches
its maximum. More precisely,

{

f(s0) · δs0 : s0 ∈ Ω and |f(s0)| = ‖f‖∞
}

⊂ J(f). (6.6)

2. Let (Ω,A , µ) be a σ-finite measure space, let p ∈ [1,∞) and X := Lp(Ω,A , µ). Then X ′ =
Lq(Ω,A , µ), where 1

p
+ 1

q
= 1. For 0 6= f ∈ X define

φ(s) :=

{

f(s) · |f(s)|p−2 · ‖f‖2−p if f(s) 6= 0,

0 otherwise.
(6.7)

Then
φ ∈ J(f) ⊂ Lq(Ω,A , µ).

We note here without proof that for the reflexive Lp spaces (i.e., for 1 < p < ∞), as for every
Banach space with a strictly convex dual, the sets J(f) are singletons. Hence, for p ∈ (1,∞) one
has J(f) = {φ}, while for p = 1 every function φ ∈ L∞(Ω,A , µ) satisfying

‖φ‖∞ ≤ ‖f‖1 and φ(s) |f(s)| = f(s) ‖f‖1 if f(s) 6= 0

belongs to J(f), i.e., on the set {s ∈ Ω : f(s) = 0} we can give arbitrary values to φ as long as
they are smaller than ‖f‖1.

3. It is easy, but important, to determine J(f) in case of f ∈ H, H a Hilbert space. After the
canonical identification of H with its dual H ′, the duality set of f ∈ H is

J(f) = {f}.

Hence, a linear operator on H is dissipative if and only if

Re〈Af, f〉 ≤ 0

for all f ∈ D(A) in accordance with Proposition 6.5.
Let us list now some important operators where dissipativity can be tested. For simplicity, we

concentrate here only on the point how to test dissipativity.

Example 6.9. Consider the Laplace operator with Dirichlet boundary conditions from Section
1.1, i.e., we take X = L2(0, π) and consider the operator

(Af)(x) := f ′′(x) =
d2

dx2
f(x)

with domain

D(A) :=
{

f ∈ L2(0, π) : f cont. differentiable on [0, π],

f ′′ exists a.e., f ′′ ∈ L2, f ′(x)− f ′(0) =
∫ x

0 f
′′(s) ds for x ∈ [0, π]

and f(0) = f(π) = 0
}

.
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Clearly,

〈Af, f〉 =
π

∫

0

f ′′(s)f(s) ds = −
π

∫

0

f ′(s)f ′(s) ds = −‖f ′‖2 ≤ 0,

showing the dissipativity of A.

The previous example immediately gives rise to certain generalisations.

Example 6.10. Let A = Mm be a multiplication operator on ℓ2 with the sequence m = (mn).
Then A is dissipative if and only if Remn ≤ 0 for all n ∈ N.

Let us analyse now the second derivative in the space of continuous functions. We consider however
Neumann boundary conditions.

Example 6.11. Let us consider in X := C([0, 1]) the Laplace operator with Neumann boundary
conditions given by

Af := f ′′, D(A) :=
{

f ∈ C2([0, 1]) : f ′(0) = f ′(1) = 0
}

.

To show dissipativity, we use the description of J(f) from Example 6.8.1. Take f ∈ D(A) and
s0 ∈ [0, 1] such that |f(s0)| = ‖f‖. Then by (6.6) we have f(s0)δs0 ∈ J(f). Clearly, the real-valued
function

g(x) = Re
(

f(s0)f(x)
)

takes its maximum at x = s0, meaning that if s0 ∈ (0, 1), then

Re〈f ′′, f(s0)δs0〉 =
(

Re f(s0)f
)′′
(s0) = g′′(s0) ≤ 0.

If s0 = 0 or s0 = 1, then the boundary condition f ′(s0) = 0 implies g′(s0) = 0, and hence g′′(s0) ≤ 0
also in these cases. Hence A is dissipative.

Example 6.12. Consider now the first derivative in various function spaces.

1. Let X = L2(R) and Af = f ′ with

D(A) = C1
c(R) :=

{

f ∈ C1(R) : the support of f is compact
}

.

Then

〈Af, f〉 =
∫

R

f ′ · f = −
∫

R

f · f ′ = −〈f,Af〉 = −〈Af, f〉

for f ∈ D(A), showing that

〈Af, f〉+ 〈Af, f〉 = 0, i.e., 〈Af, f〉 ∈ iR.

This means that both A and −A are dissipative.

2. Turning our attention to the space of continuous functions, consider

X = C(0)([0, 1]) = {f ∈ C([0, 1]) : f(1) = 0}
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and Af = f ′ with D(A) =
{

f ∈ C1([0, 1]) ∩X : f ′ ∈ X
}

. Suppose f takes its maximum at
s0 ∈ [0, 1]. Similarly to Example 6.11 define again the real-valued function

g(x) = Re
(

f(s0)f(x)
)

.

Then in case s0 ∈ (0, 1) it follows that

Re〈f ′, f(s0)δs0〉 =
(

Re f(s0)f
)′
(s0) = g′(s0) = 0.

Since by definition g′(1) = 0, we only have to check the case when s0 = 0. But then clearly
g′(s0) ≤ 0. Hence A is dissipative.

6.3 Perturbations

As an application, let us mention some basic perturbation results. The idea behind perturbation
theorems is always the same: We start with a generator A and assume that the operator B is “nice
enough”. Then A+B generates a semigroup. Let us clarify what “nice enough” could mean here.

As a warm-up, let us recall the results from Exercise 5.5.

Theorem 6.13. If A generates a semigroup T of type (M,ω) and B ∈ L (X), then A + B with
D(A+B) = D(A) generates a semigroup S of type (M,ω + ‖B‖).

Proof. First we change to the operator to A− ω and then use the renorming procedure presented
in Exercise C.4. Then we can assume without the loss of generality that A generates a semigroup
of type (1, 0), i.e., a contraction semigroup.
As a next step, we show that the operator A+B has non-empty resolvent set. More precisely, if

λ > 0, we can use the identity

λ−A−B = (I −BR(λ,A)) (λ−A), (6.8)

showing that if ‖BR(λ,A)‖ < 1, then λ ∈ ρ(A+B) and

R(λ,A+B) = R(λ,A)

∞
∑

n=0

(BR(λ,A))n . (6.9)

By assumption, A is a generator of a contraction semigroup, and hence λ‖R(λ,A)‖ ≤ 1. Hence, if
λ > ‖B‖, then λ ∈ ρ(A+B) and (6.9) holds.

We present here two strategies to continue.

a) Clearly, A+B − ‖B‖ is dissipative, i.e.,

Re〈(A+B)f, j(f)〉 = Re〈Af, j(f)〉+Re〈Bf, j(f)〉 ≤ 0 + ‖B‖ · ‖f‖ · ‖j(f)‖

by the dissipativity of A and the boundedness of B. Since, λ− (A+B) is surjective for λ > ‖B‖,
we have by the Lumer–Phillips theorem, Theorem 6.3 that A+B generates a semigroup of type
(1, ‖B‖).

b) We may also use the results of Exercise C.5 and see that for A and B the conditions of Chernoff’s
theorem, Theorem 5.12 are satisfied. Hence, A + B generates a semigroup. See also Exercise
5.5. �
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Clearly, we can immediately extend the previous proof to some unbounded perturbations.

Theorem 6.14. Let A generate a contraction semigroup and let B be dissipative. Suppose D(A) ⊂
D(B) and that there is a λ > 0 with the property that BR(λ,A) ∈ L (X) and

‖BR(λ,A)‖ < 1.

Then A+B with domain D(A+B) = D(A) generates a contraction semigroup.

We close this lecture by the following example: Recall from Lecture 2 the Gaussian semigroup T
on Lp(R), where p ∈ [1,∞). For f ∈ Lp(R) we have

(T (t)f)(x) := (gt ∗ f)(x) =
1√
4πt

∫

R

f(y)e−
(x−y)2

4t dy if t > 0,

T (0)f := f.and

The generator of T is the Laplace operator

∆f = f ′′, D(∆) = W2,p(R).

The semigroup T consists of contractions, or equivalently, ∆ is dissipative (cf. Example 6.9). If
v ∈ L∞(R), then the multiplication operator B = Mv is bounded on L

p(R). So by Theorem 6.13
the operator ∆ + B with domain W2,p(R) generates a semigroup. However, we want to consider
not necessarily bounded multiplications operators, say we suppose v ∈ Lq(R) for some q ≥ 1. To
establish the estimate ‖BR(λ,∆)‖ < 1 we first need to make sure that the for f ∈ Lp(R) the
function v ·R(λ,∆)f belongs to Lp(R). To show that one may use Hölder’s inequality:

‖v ·R(λ,∆)f‖p ≤ ‖v‖q · ‖R(λ,∆)f‖r (6.10)

where 1
p
= 1

r
+ 1

q
, and here we have to suppose q ≥ p. This shows that we need to estimate the

operator norm of
R(λ,∆) : Lp(R)→ Lr(R).

To this end, recall from (the solution of) Exercise 2.9 that

‖T (t)f‖r ≤ ct
− 1

2

(

1
p
− 1

r

)

‖f‖p = ct
− 1

2q ‖f‖p for all t > 0.

By using this estimation and by taking the Laplace transform of T (t)f (see Proposition 2.26.a))
we obtain the following estimate for the resolvent:

‖R(λ,∆)f‖r ≤ c‖f‖p
∞
∫

0

t
− 1

2q e−λt dt = c‖f‖pΓ
(

1− 1
2q

)

λ
1
2q
−1

(6.11)

if 1
2q < 1, i.e., if q > 1

2 . Now we are prepared for the following result:

Proposition 6.15. Consider the Laplace operator ∆ with D(∆) = W2,p(R). Let q ≥ p and let
v ∈ Lq(R) be a function with Re v ≤ 0. Define B := Mv the multiplication operator by v with
domain D(B) = Lp(R) ∩ Lr(R) (where 1

p
= 1

r
+ 1

q
). Then ∆+B with domain W2,p(R) generates a

contraction semigroup.

Proof. We check the conditions of Theorem 6.14. The dissipativity of B follows from the assumption
on the range of v. The condition ‖BR(λ,∆)‖ < 1 for λ large follows from inequalities (6.10) and
(6.11) and from the assumption that q ≥ p > 1

2 . �
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6.4 Supplement

The Hahn–Banach Theorem

Let X be a Banach space. A linear functional φ : X → C is called bounded if there is a constant
such that

‖φ(f)‖ ≤M‖f‖ for all f ∈ X.

The set

X ′ :=
{

φ : φ is a bounded linear functional on X
}

of all bounded linear functionals is a linear space, and becomes a Banach space with the functional
norm

‖φ‖ := sup
f∈X
‖f‖≤1

|φ(x)| = sup
f∈X
‖f‖≤1

|〈f, φ〉|.

Here we used the convenient notation φ(f) = 〈f, φ〉. If φ ∈ X ′ then

|〈f, φ〉| ≤ ‖φ‖ · ‖f‖

holds for all f ∈ X. The space X ′ is called the dual space of X. That X ′ is large enough for every
Banach space is highly non-trivial, and is actually the statement of the Hahn–Banach1 theorem.
Note however that in specific examples the dual space can be determined.

Theorem 6.16 (Hahn–Banach). Let X be a Banach space, and let X ′ be its dual space. Then the
following assertions are true:

a) For f ∈ X, f 6= 0 there is φ ∈ X ′ with φ(f) = ‖f‖ and ‖φ‖ = 1. Or, which is the same, for
every 0 6= f ∈ X there is φ ∈ X ′ with φ(f) = ‖f‖2 = ‖φ‖2.

b) For f, g ∈ X one has f = g if and only if 〈f, φ〉 = 〈g, φ〉 for all φ ∈ X ′.

c) A subspace Y is dense in X if and only the zero functional is the only bounded linear functional
that vanishes on Y .

The Banach–Alaoglu Theorem

Let φn, φ ∈ X ′. We call φn weak∗-convergent to φ if for all f ∈ X

〈f, φn − φ〉 → 0 holds as n→∞.

The functional φ is called theweak∗-limit of the sequence, and if exists, then it is obviously unique.
We call φ a weak∗-accumulation point of the sequence (φn) if for all f ∈ X and ε > 0 there is a
subsequence (φnk

) with

|〈f, φnk
− φ〉| ≤ ε for all k ∈ N.

Obviously, if (φn) has a weak
∗-convergent subsequence φ, then φ is an accumulation point of the

sequence. The converse implication is in general not true. The next rather weak formulation of a
central result from functional analysis suffices for our purposes.

1H. Hahn: Über lineare Gleichungssysteme in linearen Räumen. Journal für die reine und angewandte Mathematik
157 (1927), 214-229. and S. Banach: Sur les fonctionelles linéaires. In: Studia Mathematica 1 (1929), 211-216.
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Theorem 6.17 (Banach–Alaoglu2). Let X be a Banach space and consider its dual space. Let

B′ :=
{

φ ∈ X ′ : ‖φ‖ ≤ 1
}

⊆ X ′

be the unit ball in X ′. Then every sequence (φn) ⊆ B′ has a weak∗-accumulation point in B′. If X
is reflexive or separable, then every sequence (φn) ⊆ B′ has a weak∗-convergent subsequence with
limit in B′.

6.5 Exercises

1. Let Ω = (0, π)× (0, π) and define on L2(Ω) the operator A as

Af = ∆f, D(A) :=
{

f ∈ C2(Ω) : the support of f is compact
}

.

Show that A is dissipative and its closure generates a contraction semigroup.

2. Let X = C[−1, 0] and 0 < τ1 < τ2 < . . . < τn = 1. Consider the operator Af := f ′ with

D(A) :=

{

f ∈ C1[−1, 0] : f ′(0) =
n

∑

i=1

cif(−τi)
}

,

where ci ∈ C, i = 1, . . . , n. This operator plays an important role in the theory of delay differential
equations. Show that A is quasi-dissipative.

3. Give a necessary and sufficient condition on m : Ω → C such that the multiplication operator
Mm is dissipative (with maximal domain) in Lp(Ω).

4. Suppose that A generates a contraction semigroup and B : D(B) → X satisfies D(A) ⊆ D(B)
and has the following property: There is a ∈ [0, 12) and b > 0 such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖ for all x ∈ D(A).

Prove that for large λ > 0 one has ‖BR(λ,A)‖ < 1.

5. Let X = C0(R) and Af = f ′′ + f ′ with D(A) =
{

f ∈ C2(R) ∩X : f ′′ + f ′ ∈ X
}

. Show that it
generates a contraction semigroup.

2L. Alaoglu, Weak topologies of normed linear spaces. Ann. Math. 41 (1940), 252–267.



Lecture 7

Complex Powers of Closed Operators

Having finished with the theoretical questions on well-posedness of evolution equations, we now
turn our attention on technical matters which will be extremely important in proving convergence
rates for various discretisation procedures. Note that in Lectures 3 and 4 the existence of Banach
space Y invariant under some given semigroup T was of enormous importance. Our aim in this
lecture is to arm you with important examples for such spaces. As a warm up, let us first summarise
the results of Exercise 4.1.

Proposition 7.1. Let A be the generator of a semigroup of type (M,ω) in the Banach space X,
and consider the space Xn = D(An) with the graph norm which we denote by ‖ · ‖An.

a) For n ∈ N and f ∈ D(An) define ‖|f‖|n := ‖f‖+ ‖Af‖+ · · ·+ ‖Anf‖. Then ‖| · ‖|n and ‖ · ‖An

are equivalent norms.

b) The spaces Xn are Banach spaces and are invariant under the semigroup T . If we set Tn(t) :=
T (t)|Xn, then Tn is a semigroup of type (M,ω) on Xn.

For applications these spaces are quite often too small and some intermediate spaces are needed.
The purpose of this lecture is to find some possible candidates for such invariant subspaces that fit
well in the scale of D(An), n = 1, 2, . . . .

To motivate this a bit further, let us consider the next example:

Example 7.2. Recall from Lecture 1 the multiplication operator M on ℓ2 by the sequence −n2,
which corresponds to the Dirichlet Laplacian on [0, π] after diagonalisation (more precisely after
applying the spectral theorem for selfadjoint operators)

D(M) =
{

(xn) ∈ ℓ2 : (n2xn) ∈ ℓ2
}

and M(xn) = (−n2xn).

For α ≥ 0 define

D((−M)α) =
{

(xn) ∈ ℓ2 : (n2αxn) ∈ ℓ2
}

and (−M)α(xn) = (n2αxn).

(The minus sign here is only a matter of convention.) It is not hard to see that (−M)α is a closed
operator, hence D((−M)α) is a Banach space with the graph norm. Equally easy is to see that
(−M)k is indeed the kth power of (−M) for k ∈ N, and that the semigroup T defined by

T (t)(xn) = (e−n
2txn) ∈ ℓ2

leaves this space invariant (much more(!) is true). Hence the spaces D((−M)α) fulfill the require-
ments formulated above.

Thus we set out for the quest for fractional powers of closed operators. For the purposes of this
lecture we shall leave semigroups (almost completely) behind, and develop some beautiful operator
theoretic notions.

73
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7.1 Complex powers with negative real part

We want to define complex powers of operators A, i.e., we want to plug in A into the function
F (x) = xz where z ∈ C is fixed. This means that we want to develop a functional calculus for
this particular function F and for some reasonable class of operators. To be able to do that we
shall need the complex power functions defined on the complex plane. Let log : C \ (−∞, 0] → C

be the principal branch of the logarithm, i.e., log(λ) = log |λ| + i arg(λ), where we have fixed
the function arg with values in (−π, π). Since log is holomorphic, we can define the holomorphic
function λ 7→ λz = ez log(λ) on C \ (−∞, 0] for any given z ∈ C. Now the basic idea comes from
Cauchy’s integral theorem for this particular situation:

az =

∮

λz

λ− a
dλ

where we integrate along a curve that passes around a 6∈ (−∞, 0] in the positive direction and avoids
the negative real axis. Therefore, by analogy, or motivated by multiplication operators (cf. Exercise
2) we have to give meaning to expressions like

∮

λzR(λ,A) dλ.

Of course the curve that we are integrating over has to lie in the resolvent set of A and pass
around the spectrum of σ(A) in the positive direction. Two difficulties arise here immediately: the
spectrum may be unbounded, hence the integration curve has to be unbounded (and anyway the
term “passing around” does not make sense any more), and convergence issues for the integral have
to be taken care of. This section includes a fair amount of technicalities, but the single idea has
been explained above. The next assumption tackles both mentioned difficulties as we shall shortly
see.

Assumption 7.3. Suppose for A : D(A)→ X one has (−∞, 0] ⊆ ρ(A) and

‖R(λ,A)‖ ≤
M

1 + |λ|
for all λ ≤ 0 and some M ≥ 0.

All operators1 A occurring in this section will be assumed to have the property above. The next
is an important example for such operators, leading back for a moment to semigroups.

Example 7.4. If A generates a strongly continuous semigroup of type (M ′, ω) with ω < 0, then,
as consequence of (2.2) in Proposition 2.26, we see that for λ > 0

‖R(λ,A)‖ ≤
M

λ− ω
≤

M ′

λ+ 1
.

Hence −A satisfies the above estimate in Assumption 7.3 for some M ′.

The next fundamental result shows that although only (−∞, 0] ⊆ ρ(A) was assumed, one gains
a sector around the negative real axis, where the resolvent can be estimated satisfactorily well.

1Some authors use the names sectorial operator or positive operator for objects having this property. We decided

not to give them a name.
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Proposition 7.5. Suppose A is as in Assumption 7.3. Then there is θ0 ∈ (π2 , π) and r0 > 0 such
that the set

Λ :=
{

z ∈ C : | arg(z)| ∈ (θ0, π]
}

∪
{

z ∈ C : |z| ≤ r0
}

⊆ ρ(A)

belongs to the resolvent set of A. Moreover, there is M0 ≥ 0 so that for every λ ∈ Λ one has

‖R(λ,A)‖ ≤
M0

1 + |λ|
. (7.1)

θ0

r0

Λ

ρ(A)

Figure 7.1: The resolvent set of A and the set Λ

Proof. First of all note that for some r0 > 0 the closed ball B(0, r0) is contained in ρ(A), since ρ(A)
is open. So on this ball the resolvent is bounded. On the other hand, we have µ ∈ ρ(A) and

R(µ,A) =

∞
∑

k=0

(λ− µ)kR(λ,A)k+1

whenever |µ− λ| < ‖R(λ,A)‖−1, i.e., the open ball B(λ,− λ
M
) is contained in ρ(A). From this the

first assertion follows for θ0 = π − arctan( 1
M
). If | arg λ| ∈ (θ0, π], then

‖R(µ,A)‖ ≤

∞
∑

k=0

|Reµ− µ|k
Mk

(1 + |Reµ|)k+1
=

∞
∑

k=0

| Imµ|k
Mk

(1 + |Reµ|)k+1

≤
M1

1 + |Reµ|
≤

M0

1 + |µ|
. �

Remark 7.6. The next two estimates will be crucial for proving convergence of some integrals and
for estimating them:

1. By the proposition above we have

‖R(λ,A)‖ ≤
M0

|λ|
for all λ ∈ Λ, |λ| > r0 > 0,

and

‖R(λ,A)‖ ≤M1 for all λ ∈ Λ, |λ| ≤ r0.
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2. For λ ∈ C \ (−∞, 0] we have
∣

∣λz
∣

∣ = |λ|Re ze− Im z·arg(λ) ≤ |λ|Re zeπ| Im z| = M2|λ|
Re z

for every fixed z. In particular for Re z < 0, we have a decay as |λ| → ∞.

We shall often use these estimates without further mentioning. Next we turn our attention to
integration paths. To abbreviate a little we shall call a piecewise continuously differentiable path
admissible if it belongs to Λ and goes from∞eiθ to∞e−iθ for some θ ∈ (θ0, π). Important examples
for admissible curves are given by the following parametrisations:

Example 7.7. let θ ∈ (θ0, π) and let γ1(s) = seiθ + a and let γ2(s) = se−iθ + a, s ∈ [0,∞). For
a > 0 sufficiently small the curve γ = −γ1 + γ2 is admissible.

a

θ

γ1

γ2

Figure 7.2: An admissible curve γ

Here is the first result giving meaning to the expression we sought for.

Lemma 7.8. For γ an admissible curve and z ∈ C with Re z < 0 the complex path integral

1

2πi

∫

γ

λzR(λ,A) dλ ∈ L (X)

converges in operator norm locally uniformly in {z : Re z < 0}, and is independent of γ.

Proof. The integrand is holomorphic, and since

‖λzR(λ,A)‖ ≤
M |λ|Re zeπ| Im z|

1 + |λ|
(7.2)

holds, it follows that the integral is absolutely and locally uniformly convergent.

The independence of the integral from γ follows from Cauchy’s integral theorem and from the
estimate above. �

The next result shows that our new definition for the power would be consistent with the usual
one.

Proposition 7.9. For n ∈ N and z = −n we have

Az = A−n =
1

2πi

∫

γ

λ−nR(λ,A) dλ.
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Proof. We may assume that γ is an admissible curve of the form given in Example 7.7. Let us
consider the part of γ inside of B(0, r) that we close on the left by a circle arc around 0 of radius
r. Hence we obtain the closed curve γr. The residue theorem applied to

λ−nR(λ,A) =

∞
∑

k=0

(−1)kλk−n(−A)−k+1 = −

∞
∑

k=0

λk−nA−k+1

yields
1

2πi

∫

γr

λ−nR(λ,A) dλ = A−n,

since γr is negatively oriented. If we let r →∞ we obtain the assertion by the estimate in (7.2). �

Now we can create a definition out of what we have seen.

Definition 7.10. For z ∈ C with Re z < 0 define the operator

Az :=
1

2πi

∫

γ

λzR(λ,A) dλ. (7.3)

We call Az the power of A.

As one might have expected we have the following algebraic property.

Proposition 7.11. For z, w ∈ C with Re z,Rew < 0 we have

AzAw = Az+w.

Proof. Take two admissible curves γ and γ̃ such that γ lies to the left of γ̃. Then we have

Az =
1

2πi

∫

γ

λzR(λ,A) dλ and Aw =
1

2πi

∫

γ̃

µwR(µ,A) dµ.

We calculate the product of the two powers

AzAw =
1

(2πi)2

∫

γ̃

∫

γ

λzµwR(µ,A)R(λ,A) dλ dµ =
1

(2πi)2

∫

γ̃

∫

γ

λzµw

λ− µ

(

R(µ,A)−R(λ,A)
)

dλ dµ

by the resolvent identity. We can continue by Fubini’s theorem

=
1

2πi

∫

γ̃

R(µ,A)
1

2πi

∫

γ

λzµw

λ− µ
dλ dµ−

1

2πi

∫

γ

R(λ,A)
1

2πi

∫

γ̃

λzµw

λ− µ
dµ dλ

=
1

2πi

∫

γ̃

µzµwR(µ,A) dµ− 0 = Aw+z,

where we also used Cauchy’s integral theorem. �

Before turning to the full definition including positive fractional powers we study the properties
of Az as a function of z ∈ {w : Rew < 0}.
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Proposition 7.12. The mapping

{w : Rew < 0} ∋ z 7→ Az ∈ L (X)

is holomorphic.

Proof. Since the integrand in (7.3) is holomorphic and since the integral is locally uniformly
convergent in {w : Rew < 0} (see Lemma 7.8), the assertion follows immediately. �

The next result provides important formulas in which the path integral is replaced by integration
on the real line. To ensure convergence at 0 we need to have a condition on the exponent.

Proposition 7.13. For z ∈ C with −1 < Re z < 0 we have

Az =
sin(πz)

π

∞
∫

0

szR(−s,A) ds = −
sin(πz)

π

∞
∫

0

sz(s+A)−1 ds. (7.4)

Proof. Choose the admissible curve γ as in Example 7.7. Then

Az =
1

2πi

∫

γ

λzR(λ,A) dλ

= −
1

2πi

∞
∫

0

(seiθ + a)zR(seiθ + a,A)eiθ ds+
1

2πi

∞
∫

0

(se−iθ + a)zR(se−iθ + a,A)e−iθ ds

= −
1

2πi

∞
∫

0

eiθ(z+1)(s+ ae−iθ)zR(seiθ + a,A) ds+
1

2πi

∞
∫

0

e−iθ(z+1)(s+ eiθa)zR(se−iθ + a,A) ds.

If we let a→ 0 and θ ր π, then we obtain

= −
1

2πi

∞
∫

0

eiπ(z+1)szR(−s,A) ds+
1

2πi

∞
∫

0

e−iπ(z+1)szR(−s,A) ds =
sin(πz)

π

∞
∫

0

szR(−s,A) ds.

This passage to the limit is allowed, since we can estimate the integrand

‖eiθ(z+1)(s+ ae−iθ)zR(seiθ + a,A)‖ ≤ K
sRe z

1 + s
,

which is integrable near s = 0 since Re z > −1 and is integrable near ∞ since Re z < 0. Hence we
can apply Lebesgue’s dominated convergence theorem. �

A trivial consequence of this theorem is the identity

aα = −
sin(πa)

π

∞
∫

0

sα

s+ a
ds (7.5)

for a ∈ (−1, 0). This is one of the scalar identities motivating the formulas behind fractional powers
of operators.
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Proposition 7.14. For α ∈ C with Reα ∈ (−1, 0) we have

‖Aα‖ ≤M
| sin(πα)|

sin(πReα)
.

In particular, the mapping
(−1, 0) ∋ α 7→ Aα ∈ L (X)

is uniformly bounded.

Proof. We use the representation (7.4) from Proposition 7.13. For α ∈ (−1, 0) we have

‖Aα‖ =
∥

∥

∥

sin(πα)

π

∞
∫

0

sαR(−s,A) ds
∥

∥

∥
≤
| sin(πα)|

π

∞
∫

0

sReα M

1 + s
ds = M

| sin(πα)|

sin(πReα)
,

by identity (7.5). For real α the assertion follows from this trivially. �

Corollary 7.15. If A is densely defined, then T (t) := A−t, t > 0 and T (0) = I defines a strongly
continuous semigroup.

Proof. The mapping T has the semigroup property by Proposition 7.11. Since T : [0, 1]→ L (X) is
bounded by Proposition 7.14, it suffices to check the strong continuity at 0 on the dense subspace
D(A) (see Proposition 2.5). For t ∈ (0, 1) and f ∈ D(A) we have by Proposition 7.13 and by
identity (7.5) for a = 1 that

A−tf − f =
sin(πt)

π

∞
∫

0

s−t
(

R(−s,A)−R(−s, I)
)

ds =
sin(πt)

π

∞
∫

0

s−t

1 + s
R(−s,A)(I −A)f ds.

From this it follows

‖A−tf − f‖ ≤M
sin(πt)

π

∞
∫

0

s−t

1 + s
‖R(−s,A)‖ · ‖(I −A)f‖ ds ≤

sin(πt)

π

∞
∫

0

s−t

(1 + s)2
ds‖(I −A)f‖,

which converges to 0 as tց 0. �

7.2 Complex powers

We expect that Az = (A−z)−1 should hold, so Az should be injective. The first result tells that this
intuition—unlike many others concerning complex powers—is true.

Proposition 7.16. For z ∈ C with Re z < 0 the operator Az is injective.

Proof. Let n ∈ N be such that −n < Re z and take w := −n− z. Then we have

AzAw = AwAz = Az+w = A−n.

By Proposition 7.9, the operator A−n is the nth power of the inverse A−1 of A so it is injective,
hence so are Az and Aw. �

The result above allows us to formulate the next definition.
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Definition 7.17. Let z ∈ C. If Re z < 0, then the operator Az is defined in (7.3). If Re z > 0, then
we set

D(Az) := ran(A−z) and Az := (A−z)−1,

which exists by Proposition 7.16. If Re z = 0, then we define

D(Az) :=
{

f ∈ X : Az−1f ∈ D(A)
}

and Azf := AAz−1f.

In particular, we set A0 = I. The operator Az is called the complex power of A.

First, we study algebraic properties of the complex powers Az.

Proposition 7.18. a) For z ∈ C with Re z < −n, n ∈ N we have that

ran(Az) ⊆ D(An) and AnAzf = An+zf for all f ∈ X.

b) For z ∈ C with Re z < 0, f ∈ D(An), n ∈ N we have

Azf ∈ D(An) and AzAnf = AnAzf.

c) For z ∈ C with 0 ≤ Re z < n we have

D(Az) =
{

f ∈ X : Az−nf ∈ D(An)
}

and Azf = AnAz−nf.

Proof. a) We first prove the assertion for n = 1 and assume Re(z) < −1. Let γ be an admissible
curve. Since

‖λzAR(λ,A)‖ = ‖λz(λR(λ,A)− I)‖ ≤ (M0 + 1)|λ|Re zeπ| Im z|,

and since λzAR(λ,A) is bounded on compact parts of γ, we see that the integral Az converges in
the norm of L (X,D(A)). Since A is closed we obtain

AAz =
1

2πi

∫

γ

λz+1R(λ,A) dλ−
1

2πi

∫

γ

λz dλ.

By closing γ on the right by large circle arc of radius r > 0 and by letting r → ∞, we see that
integral on the right hand side is 0 by Cauchy’s integral theorem. Hence the assertion follows.

For general n ∈ N we can argue inductively. Indeed, let n ∈ N, n ≥ 2, and let z ∈ C be with
Re z < −n. Then Re(z + 1) < −(n − 1), hence ran(Az+1) ⊆ D(An−1) and An−1Az+1f = An+zf

follows for f ∈ X by the induction hypothesis. We already proved Az+1 = AAz. From these the
assertion follows.

b) Since R(λ,A) and An commute on D(An), it follows that Az and An commute on D(An). This
implies the assertion.

c) If Re z > 0, then D(Az) = ran(A−z). By Proposition 7.11 we have A−n = A−zAz−n. Hence
f ∈ ran(A−z) if and only if Az−nf ∈ ran(A−n) = D(An) and the asserted equality follows. Suppose
Re z = 0, and notice that the assertion is true for n = 1 by the definition of Az. For n ∈ N, n ≥ 2
we have

Az−n = A1−nAz−1.

This implies that Az−nf ∈ D(An) if and only if Az−1 ∈ D(A). �

The next result is the extension of the “semigroup property” from Proposition 7.11.
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Proposition 7.19. For z, w ∈ C with Re z < Rew the following assertions are true:

a) One has D(Aw) ⊆ D(Az) and Azf = Az−wAwf for all f ∈ D(Aw)

b) For every f ∈ D(Aw) we have Azf ∈ D(Aw−z) and Awf = Aw−zAzf .

c) If f ∈ D(Az) and Azf ∈ D(Aw−z), then f ∈ D(Aw).

Proof. a) Let n ∈ N satisfy n > Rew, and let f ∈ D(Aw), then by Proposition 7.18.c) we have
Aw−nf ∈ D(An). Proposition 7.11 yields A−n+zf = Az−wA−n+wf ∈ D(An), so actually again by
Proposition 7.18.c) we conclude x ∈ D(Az).

b) Let f ∈ D(Aw) and let n ∈ N satisfy n > Rew and n > Rew − Re z. Then we can write

A−n+w−zAwf = A−n+w−zAz−wAwf = A−nAwf,

hence by Proposition 7.18.c) we obtain Az ∈ D(Aw−z) and Aw−zAzf = Awf .

c) Take f ∈ D(Az) such that Azf ∈ D(Aw−z). Let n ∈ N satisfy n > Rew and n > Rew − Re z.
Proposition 7.11 yields

Aw−2nf = Aw−n−zAz−nf = Aw−n−zA−nAzf = A−nAw−z−nAzf.

By Proposition 7.18.c) the right-hand side belongs to D(A2n), so again this proposition gives
f ∈ D(Aw). The equality

Awf = A2nAw−2nf = A2nA−nAw−z−nAzf = Aw−zAzf

also follows. �

7.3 Domain embeddings

As mentioned in the introduction, our main interest in powers of operators lies in the excellent
properties of their domains. Hence, we turn to study various norms on D(Az) for Re z > 0.

Proposition 7.20. a) For z ∈ C the operator Az is closed.

b) For Re z > 0 the graph norm of Az is equivalent to

‖f‖Az := ‖Azf‖ for all f ∈ D(Az).

c) For z, w ∈ C with 0 ≤ Re z < Rew the embedding

D(Aw) →֒ D(Az)

is continuous.

Proof. a) If Re(z) 6= 0, either Az or A−z is bounded, hence both of them are closed. If Re(z) = 0,
then Az = AAz−1, where Az−1 is bounded. By Exercise 1 the product is closed.

b) Since Az has bounded inverse A−z, we have ‖f‖ ≤ ‖A−z‖ · ‖Azf‖. From this it follows that the
graph norm is equivalent to ‖ · ‖Az .

c) By Proposition 7.19.a) we have D(Aw) ⊆ D(Az) and

Az−wAwf = Azf for all f ∈ D(Aw),

hence ‖Az‖ ≤ ‖Az−w‖ · ‖Aw‖. �
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To be able to relate the various norms ‖·‖Aα more precisely, we need the next alternative formula
for complex powers.

Proposition 7.21 (Balakrishnan’s formula). For α ∈ C with 0 < Reα < 1 we have

Aαf =
sin(πα)

π
A

∞
∫

0

sα−1(s+A)−1f ds =
sin(πα)

π
A

∞
∫

0

sα−1(s+A)−1f ds for all f ∈ D(A).

Proof. Since −1 < Reα− 1 < 0 we obtain from (7.4) in Proposition 7.13

Aα−1f =
sin(πα)

π

∞
∫

0

sα−1(s+A)−1f ds. (7.6)

Since sα−1(s+A)−1f ∈ D(A) for every s > 0 and since

∞
∫

0

sα−1(s+A)−1Af ds

is a convergent improper integral, the closedness of A implies that the right-hand side in (7.6)
belongs to D(A) and that

AAα−1f =
sin(πα)

π
A

∞
∫

0

sα−1(s+A)−1f ds =
sin(πα)

π

∞
∫

0

sα−1(s+A)−1Af ds.

By Proposition 7.19.a) we have Aαf = AAα−1f , hence the statement is proved. �

Remark 7.22. The above proof can be modified to yield the following more general statement:
For α, β ∈ C with 0 < Reα < Reβ ≤ 1 we have

Aαf = sin(π(β−α))
π

∞
∫

0

sα−β(s+A)−1Aβf ds = sin(π(β−α))
π

∞
∫

0

sα−β(s+A)−1Aβf (7.7)

for all f ∈ D(Aβ)

We can make use of this representation to obtain finer relations between the ‖ · ‖Aα norms.

Proposition 7.23. For α, β ∈ C with 0 < Reα < Reβ < 1 there is K0 ≥ 0 such that the following
assertions holds:

a) For all f ∈ D(Aβ)

‖Aαf‖ ≤ K0

(

tReα−Reβ+1‖f‖+ tReα−Reβ‖Aβf‖
)

for all t > 0. (7.8)

b) For all f ∈ D(Aβ)

‖Aαf‖ ≤ 2K0‖f‖
Reβ−Reα · ‖Aβf‖1−(Reβ−Reα). (7.9)
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Proof. For f ∈ D(Aβ) we have by Remark 7.22 that

‖Aαf‖ ≤ | sin(π(β−α))|
π

(

t
∫

0

‖sα−βAβ(s+A)−1‖ · ‖f‖ ds+

∞
∫

t

‖sα−β(s+A)−1‖ · ‖Aβf‖ ds
)

≤ | sin(π(β−α))|
π

(

t
∫

0

‖sα−βAβ−1A(s+A)−1‖ · ‖f‖ ds+

∞
∫

t

‖sα−β(s+A)−1‖ · ‖Aβf‖ ds
)

≤ | sin(π(β−α))|
π

(

‖Aβ−1‖

t
∫

0

sReα−Reβ
(

1 +
Ms

1 + s

)

ds‖f‖+

∞
∫

t

sReα−Reβ M

s+ 1
ds‖Aβf‖

)

≤ | sin(π(β−α))|
π

(

tReα−Reβ+1(1 +M)‖Aβ−1‖ · ‖f‖+MtReα−Reβ‖Aβf‖
)

≤ K0

(

tReα−Reβ+1‖f‖+ tReα−Reβ‖Aβf‖
)

.

This proves assertion a).

For f = 0 the desired inequality (7.9) is trivial. For f 6= 0 set t = ‖Aβf‖
‖f‖ in the inequality above to

conclude

‖Aαf‖ ≤ 2K0‖f‖
Reβ−Reα‖Aβf‖1−(Reβ−Reα). �

Remark 7.24. The proof above works whenever Aβ−1 is bounded, for example also for β = 1. In
particular, we obtain for α ∈ [0, 1]

‖Aαf‖ ≤ K‖f‖1−α‖Af‖α for all f ∈ D(A), (7.10)

the limiting cases α = 0 and α = 1 being trivial.

With some more work one can prove the following general version of interpolation type inequalities,
which we mention here without proof.

Theorem 7.25 (Moment inequality). For α < β < γ there is K ≥ 0 such that

‖Aβf‖ ≤ K‖Aαf‖
γ−β
γ−α · ‖Aγf‖

β−α
γ−α holds for all f ∈ D(Aγ).

Corollary 7.26. Let α ∈ (0, 1] and let B be a closed operator such that D(B) ⊇ D(Aα). Then the
following assertions are true:

a) There is a K ≥ 0 such that

‖Bf‖ ≤ K‖Aαf‖ for all f ∈ D(Aα).

b) There is K0 ≥ 0 such that

‖Bf‖ ≤ K0

(

sα‖f‖+ sα−1‖Af‖
)

holds for all s > 0 and f ∈ D(Aα).

Proof. a) Since by Exercise 1 the operator BA−α is closed, and since it is by assumption everywhere
defined, it is bounded by the closed graph theorem, see Theorem 2.32. Boundedness of BA−α means
precisely the assertion.

b) The assertion follows from part a) and Proposition 7.23.a). �
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After having seen the fine structure of the embeddings of domains of complex powers, let us close
this lecture by returning to the motivating question. To which the last result gives one possible
answer.

Proposition 7.27. Let A generate a semigroup T of type (M,ω) with ω < 0 and consider the
powers (−A)z for Re z > 0. The domain D((−A)z) is invariant under the semigroup T . The
restriction of T to this subspace is a strongly continuous semigroup of bounded linear operators for
the norm ‖ · ‖(−A)z . The type of this semigroup is (M,ω).

Proof. Since the bounded operator (−A)−z commutes with −R(−λ,−A) = R(λ,A), as a conse-
quence of the convergence of the implicit Euler scheme(see Theorem 5.10), we obtain that (−A)−z

commutes with the semigroup operators T (t). This implies that ran((−A)−z) = D((−A)z) is inva-
riant under the semigroup. Moreover, we have

‖(−A)zT (t)f‖ ≤ ‖T (t)‖ · ‖(−A)zf‖,

so T (t) ∈ L (D((−A)z)). The strong continuity follows from

‖(T (t)− I)f‖(−A)z = ‖(−A)z(T (t)− I)f‖ = ‖T (t)(−A)zf − (−A)zf‖. �

Exercises

1. Suppose A : D(A)→ X is closed and B ∈ L (X) is bounded.

a) Prove that the product AB with

D(AB) =
{

f ∈ X : Bx ∈ D(A)
}

.

is closed.

b) Give an example for A and B such that BA with D(BA) = D(A) is not closed.

2. Let m = (mn) ⊆ C be a sequence. Give a sufficient and necessary condition on m so that the
multiplication operator Mm fulfills Assumption 7.3. Determine in that case the powers of Mm.

3. Prove that for t ∈ R and f ∈ D(Ait) we have Aitf ∈ D(A−it) and A−itAitf = f .

4. Prove the identity (7.7) in Remark 7.22.

5. Suppose A is densely defined, and take z ∈ C with Re z < 0. Prove that T (t) := Azt, t > 0 and
T (0) = I defines a strongly continuous semigroup.

6. Assume we have proved assertion b) in Proposition 7.23. Deduce part a) from that.

7. Let α ∈ (0, 1). Prove that for all λ > 0 sufficiently large we have

‖AαR(−λ,A)‖ < 1.

Compare this to Exercise 6.5.

8. Prove what has been remaining from Proposition 7.1.



Lecture 8

Intermediate Spaces

In the present lecture we give some further examples of spaces lying in the original Banach space X
and being invariant under a given semigroup T semigroup. As a motivation let us first reconsider
the convergence of the finite difference scheme from Example 3.7.

Example 8.1. Let

X :=
{

f ∈ C([0, 1]) : f(1) = 0
}

= C(0)([0, 1]) and Xn = C
n,

both with the respective maximum norm, and introduce the operators

(Pnf)k := f( k
n
), k = 0, . . . , n− 1,

Jn(y0, . . . , yn−1) :=

n−1
∑

k=0

ykBn,k(x).and

Recall that the operator

Af := f ′ with D(A) :=
{

f ∈ C1([0, 1]) : f(1) = 0, f ′(1) = 0
}

is the generator of the nilpotent left shift semigroup on X, and is to be approximated by an
appropriate sequence An. For y = (y0, . . . , yn−1) ∈ Xn, we define

(Any)k := n(yk+1 − yk) for k = 0, . . . , n− 2 and (Any)n−1 := −nyn−1,

being the standard first-order finite difference scheme. Suppose now that f ∈ C1,α([0, 1]) for 0 <
α ≤ 1, i.e, we assume that f ′ is α-Hölder continuous, see also Example 8.16 below. By handling
the real and imaginary parts of f separately, we may assume that f is real and we see that

∣

∣(AnPnf − PnAf)k
∣

∣ =

∣

∣

∣

∣

∣

f(k+1
n
)− f( k

n
)

1
n

− f ′( k
n
)

∣

∣

∣

∣

∣

=
∣

∣f ′(ξk)− f
′( k

n
)
∣

∣ .

This means that there is a constant C = C(f) > 0 so that

‖AnPnf − PnAf‖ ≤
C

nα

holds for all n ∈ N. So the approximation has “order” α ∈ (0, 1]. Summarising, though we relaxed
the smoothness condition on f , we still get a convergence estimate.

As this example shows, there is another possibility to find an appropriate intermediate space bet-
ween X and X1 than taking the fractional powers: Instead of D(A) let us consider the spaces where
the semigroup is not necessarily differentiable but only Hölder continuous. The aim of this lecture
is to explore this possibility.

85
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8.1 Favard spaces

We start with the basic definitions.

Definition 8.2. Let T be a semigroup of type (M,ω) with ω < 0 and let α ∈ (0, 1]. The space

Fα :=
{

f ∈ X : sup
t>0

∥

∥

1
tα
(T (t)f − f)

∥

∥ <∞
}

‖f‖Fα := sup
t>0

∥

∥

1
tα
(T (t)f − f)

∥

∥with the norm

is called the Favard space of order α (of the semigroup T ).

Although we usually do not record it in notation, the Favard space does depend on the semigroup.
In most cases it should be always clear from the context Which semigroup is actually meant.
However, we shall occasionally write Fα(T ) to avoid ambiguity.
Note also that the supremum condition in the definition of Fα depends only on the behaviour of
the function t 7→ T (t)f near zero.

It is easy to see that Fα is a normed linear space. Moreover, from the definition it follows imme-
diately that for 0 < α < β ≤ 1 we have

D(A) ⊆ Fβ ⊆ Fα ⊆ X.

Moreover, the corresponding norms can be compared:

Lemma 8.3. a) For α, β ∈ (0, 1) with α < β the embeddings

D(A) →֒ Fβ →֒ Fα →֒ X

are continuous, where D(A) is equipped with the graph norm (in this case equivalent to f 7→
‖Af‖).

b) The Favard norm ‖ · ‖F1
and the graph norm ‖ · ‖1 are equivalent on D(A).

The proof of this lemma is left as Exercise 3.

Proposition 8.4. Let T be a semigroup of type (M,ω) with ω < 0, and let α ∈ (0, 1]. Then Fα is
a Banach space and it is invariant under the semigroup T . For all t ≥ 0 we have T (t) ∈ L (Fα).

Proof. First we show that Fα is complete. To this end, take a Cauchy sequence (xm) ⊂ Fα, which
is a Cauchy sequence by Lemma 8.3 in X, hence it has a limit f ∈ X. For t > 0 fixed we have that

∥

∥

1
tα
(T (t)f − f)

∥

∥ = lim
m→∞

∥

∥

1
tα
(T (t)fm − fm)

∥

∥ ≤ lim sup
m→∞

‖fm‖Fα ,

which implies that
f ∈ Fα and ‖f‖Fα ≤ lim sup

m→∞
‖fm‖Fα .

Since fm − fn → f − fn in X as m→∞, the argumentation above yields

‖f − fn‖Fα ≤ lim sup
m→∞

‖fm − fn‖Fα .

From this we can conclude that for every ε > 0

‖f − fn‖Fα ≤ ε
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holds if n ∈ N sufficiently large. This shows that fn → f in Fα, meaning that Fα is complete.

The space Fα is clearly invariant under the semigroup, and we have the estimate

‖T (s)f‖Fα = sup
t>0

∥

∥

1
tα
(T (t)T (s)f − T (s)f)

∥

∥ = sup
t>0

∥

∥T (s) 1
tα
(T (t)f − f)

∥

∥ ≤ ‖T (s)‖ · ‖f‖Fα

showing that T (s) ∈ L (Fα) and that ‖T (s)‖Fα ≤ ‖T (s)‖. �

Remark 8.5. The restriction of the semigroup T to Fα need not be strongly continuous on Fα.
This small observation will play an important role later.

The next result is a characterisation of the Favard spaces of T in terms of the generator A. More
precisely, it states that resolvent decay in in infinity is connected to Hölder continuity of the
semigroup near zero.

Proposition 8.6. Suppose that A generates a semigroup T of type (M,ω) with ω < 0 and let
α ∈ (0, 1]. Then we have for the Favard space of T that

Fα =
{

f ∈ X : sup
λ>0

‖λαAR(λ,A)f‖ <∞
}

,

and the Favard norm ‖ · ‖Fα is equivalent to

‖|f‖|Fα := sup
λ>0

‖λαAR(λ,A)f‖ .

Proof. That ‖|·‖|Fα is a norm we leave as Exercise 5. Take f ∈ Fα. For λ > 0 we have by Proposition
2.26 that

λαAR(λ,A)f = λα+1R(λ,A)f − λαf = λα+1

∞
∫

0

e−λs(T (s)f − f)ds,

‖λαAR(λ,A)f‖ ≤ λα+1

∞
∫

0

e−λssα‖f‖Fαds = ‖f‖Fα

∞
∫

0

e−rrαdr = Γ(α+ 1)‖f‖Fα .hence

This yields
sup
λ>0

‖λαAR(λ,A)f‖ ≤ Γ(α+ 1)‖f‖Fα . (8.1)

Conversely, suppose that ‖|f‖|Fα := supλ>0 ‖λ
αAR(λ,A)f‖ <∞. Fix t > 0 and recall from Propo-

sition 2.9 that T (t)f − f = A
∫ t

0 T (s)fds holds. Let us decompose f as

f = λR(λ,A)f −AR(λ,A)f =: fλ − gλ,

where λ > 0 is to be specified later. Since fλ ∈ D(A), we have

T (t)fλ − fλ =

t
∫

0

T (s)Afλds = λ

t
∫

0

T (s)AR(λ,A)fds,

implying that

‖T (t)fλ − fλ‖ ≤ λtM‖AR(λ,A)f‖ = λ1−αtM‖λαAR(λ,A)f‖. (8.2)
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For gλ we use the trivial estimate

‖T (t)gλ − gλ‖ ≤ 2M‖gλ‖ = 2M‖AR(λ,A)f‖ = 2Mλ−α‖λαAR(λ,A)f‖. (8.3)

The estimates in (8.2) and (8.3) imply

∥

∥

1
tα
(T (t)f − f)

∥

∥ ≤
∥

∥

1
tα
(T (t)fλ − fλ)

∥

∥+
∥

∥

1
tα
(T (t)gλ − gλ)

∥

∥

≤ (tλ)1−αM‖λαAR(λ,A)f‖+ 2M(tλ)−α‖λαAR(λ,A)f‖ (8.4)

and, by (8.1) we obtain

∥

∥

1
tα
(T (t)f − f)

∥

∥ ≤M‖|f‖|Fα(tλ)
1−α + 2M‖|f‖|Fα(tλ)

−α.

By choosing λ = 1
t
we see that

∥

∥

1
tα
(T (t)f − f)

∥

∥ ≤ 3M‖|f‖|Fα , i.e., f ∈ Fα. (8.5)

The asserted equality is proved. The equivalence of the norms follows from the estimates in (8.1)
and (8.5). �

8.2 Hölder spaces

The next class of intermediate spaces for a semigroup T is connected to the strong continuity of T
on subspaces of Fα.

Definition 8.7. Let T be a semigroup of type (M,ω) with ω < 0, and let α ∈ (0, 1). We define

Xα :=
{

f ∈ X : lim
tց0

∥

∥

1
tα
(T (t)f − f)

∥

∥ = 0
}

and the norm

‖f‖Xα = ‖f‖Fα = sup
t>0

∥

∥

1
tα
(T (t)f − f)

∥

∥ ,

which makes Xα a normed linear space, called the abstract Hölder space of order α (of the
semigroup T ). To stick to the more precise notation we shall sometime write Xα(T ).

It is clear from the definition that the Hölder space Xα is a subspace of the Favard space Fα.

Proposition 8.8. Let T be a semigroup of type (M,ω) with ω < 0 and let α ∈ (0, 1). Then Xα is
a Banach space and it is invariant under the semigroup T . For all t ≥ 0 we have T (t) ∈ L (Xα).

The proof of this result is left as Exercise 2. The next result compares the Favard and Hölder spaces
of different order.

Proposition 8.9. For 0 < α < β ≤ 1 we have

D(A) →֒ Xβ →֒ Fβ →֒ Xα →֒ X

with continuous embeddings.
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Proof. For β = 1 we have D(A) = Xβ , so the assertion follows by Lemma 8.3. We may assume
β < 1. The continuity of the embedding Xβ →֒ Fβ is then trivial. Therefore, in view of Lemma 8.3
again, it suffices to prove that Fβ →֒ Xα is continuous. For f ∈ Fβ we have

∥

∥

1
tα
(T (t)f − f)

∥

∥ = tβ−α
∥

∥

1
tβ
(T (t)f − f)

∥

∥ ≤ tβ−α‖f‖Fβ
.

This estimate yields f ∈ Xα, and the by Lemma 8.3 the continuity of the embedding follows,
too. �

Although T may not be strongly continuous on Fα on the space Xα, generally smaller than Fα,
strong continuity holds.

Proposition 8.10. Let T be a semigroup of type (M,ω) with ω < 0 and with generator A, and let
α ∈ (0, 1]. Then we have for the Hölder space of T that

Xα =
{

f ∈ Fα : lim
tց0

‖T (t)f − f‖Fα = 0
}

,

i.e., the space Xα is the space of strong continuity for the function t 7→ T (t) in Fα. Moreover, we
have

Xα = D(A)Fα .

Proof. Let first α ∈ (0, 1] and take f ∈ Xα. For a given ε > 0 choose δ > 0 so that

∥

∥

1
sα
(T (s)f − f)

∥

∥ ≤
ε

2M
holds for 0 < s < δ.

Then, for 0 < s < δ and t > 0, we have

∥

∥

1
sα
(T (s)− I)(T (t)− I)f

∥

∥ ≤ 2M
∥

∥

1
sα
(T (s)− I)f

∥

∥ ≤ 2M
ε

2M
= ε.

Furthermore, there is δ′ > 0 so that if 0 < t < δ′, then

‖T (t)f − f‖ ≤
δαε

2M
.

Hence, for s > δ and 0 < t < δ′, we have

∥

∥

1
sα
(T (s)− I)(T (t)− I)f

∥

∥ ≤ 2M 1
sα
‖T (t)f − f‖ ≤ 2M 1

δα
δαε

2M
= ε.

To sum up, for t < δ′ we have

‖T (t)f − f‖Fα = sup
s>0

∥

∥

1
sα
(T (s)− I)(T (t)− I)f

∥

∥ ≤ ε.

Hence limtց0 ‖T (t)f − f‖Fα = 0, meaning that t 7→ T (t)|Xα is strongly continuous, and hence a
semigroup.

Suppose now that f ∈ Fα is such that t 7→ T (t)f is strongly continuous. Using again the argument
that the convergence of the Riemann sums in the Fα-norm implies the convergence in the X norm,
it follows that

lim
rց0

∥

∥

∥

∥

∥

f −
1

r

r
∫

0

T (s)fds

∥

∥

∥

∥

∥

Fα

= 0,
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which implies that f ∈ D(A)Fα .

Let now f ∈ D(A)Fα . Suppose first α 6= 1, and take ε > 0. Then there is g ∈ D(A) so that
‖f − g‖Fα ≤

ε
2 holds. Furthermore, we have

‖T (t)g − g‖ ≤ tM‖Ag‖.

We conclude

∥

∥

1
tα
(T (t)f − f)

∥

∥ ≤
∥

∥

1
tα
(T (t)g − g)

∥

∥+
∥

∥

1
tα
(T (t)(f − g)− (f − g))

∥

∥ ≤ t1−αM‖Ag‖+ ‖f − g‖Fα ≤ ε

for t > 0 sufficiently small. This shows that f ∈ Xα in the case α 6= 1. Now, suppose α = 1. Then,
by Lemma 8.3.b), X1 = D(A) is a Banach space if equipped with the Favard norm ‖ · ‖F1

. So
actually we have D(A)Fα = X1.

We have therefore proved

Xα ⊆
{

f ∈ X : lim
tց0

‖T (t)f − f‖Fα = 0
}

⊆ D(A)Fα ⊆ Xα. �

Here is a description, analogous to Proposition 8.6, of the Hölder spaces of T in terms the generator
of T .

Proposition 8.11. Suppose that A generates a semigroup of type (M,ω) with ω < 0 and let
α ∈ (0, 1). Then we have

Xα =
{

f ∈ X : lim
λ→∞

‖λαAR(λ,A)f‖ = 0
}

.

Proof. Since ‖λR(λ,A)‖ ≤M for all λ > 0, for f ∈ D(A) we clearly have limλ→∞ ‖λ
αAR(λ,A)f‖ =

0. By Proposition 8.10 we obtain

Xα = D(A)Fα ⊆
{

f ∈ X : lim
λ→∞

‖λαAR(λ,A)f‖ = 0
}

,

because the set on the right hand side is clearly closed in the Favard norm.

Suppose now f ∈ X is such that limλ→∞ ‖λ
αAR(λ,A)f‖ = 0. By (8.4) we have

∥

∥

1
tα
(T (t)f − f)

∥

∥ ≤ (tλ)1−αM‖λαAR(λ,A)f‖+ 2M(tλ)−α‖λαAR(λ,A)f‖.

If we take λ = 1
t
and let t→ 0, we obtain the assertion. �

8.3 Higher order intermediate spaces

In order that we can define higher order intermediate spaces, say, between D(A) and D(Ak)f for
k ∈ N, we first recall the next result from Proposition 7.1.

Proposition 8.12. Let A be the generator of a semigroup of type (M,ω) in the Banach space X,
and consider the space Xn = D(An) with the graph norm which we denote by ‖ · ‖An.

a) For n ∈ N and f ∈ D(An) define ‖|f‖|n := ‖f‖+ ‖Af‖+ · · ·+ ‖A
nf‖. Then ‖| · ‖|n and ‖ · ‖An

are equivalent norms.
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b) The spaces Xn are Banach spaces and are invariant under the semigroup T . If we set Tn(t) :=
T (t)|Xn, then Tn is a semigroup of type (M,ω) on Xn.

By part a) we have that Xn is continuously embedded in Xk for all k, n ∈ N0 with n > k. With
the help of this proposition we can extend the scale of the spaces Fα and Xα for all α > 0.

Definition 8.13. Suppose that A generates a semigroup T of type (M,ω) with ω < 0 and let
α > 0. Set X0 = X, T0 = T and write α = k + α′ with k ∈ N0 and α

′ ∈ (0, 1]. We define

Fα = Fα′(Tk) = the Favard space of Tk of order α
′

Xα = Fα′(Tk) = the Hölder space of Tk of order α
′.

Remark 8.14. 1. For α ∈ N this new definition is consistent with the one in Proposition 8.12.

2. For α ∈ (0, 1) this definition gives back what we already had in the previous two sections.

3. If T is of type (M,ω), then these spaces are defined via the rescaled semigroup given by
e−(ω+1)tT (t).

The next result gives the relation between theses intermediate spaces.

Proposition 8.15. Let 0 < α < β and let T be a semigroup. Then the following assertion are true:

a) Xα is closed subspace of Fα.

b) Fβ is contained in Xα and the embedding

Fβ →֒ Xα

is continuous.

c) The space Xβ is dense in Xα for all 0 ≤ α < β.

d) The spaces Fα and Xα are invariant under the semigroup T . Let Tα be the semigroup T restricted
to the abstract Hölder space Xα. Then Tα is a strongly semigroup on Xα.

Proof. a) Write α = k + α′ with k ∈ N0 and α
′ ∈ (0, 1]. Then, if α′ 6= 1 the assertion follows from

Proposition 8.8 applied to Tk and α
′.

b) Write α = k + α′, β = n + β′ with k, n ∈ N0 and α
′, β′ ∈ (0, 1]. If k = n, then α′ < β′ and the

assertion follows by Proposition 8.9. For f ∈ Fα = Fα′(Tk) we have f ∈ Xβ′(Tk) = Xβ

1
tα
(T (t)f − f)

In the case n > k we have by Lemma 8.3 the continuous embeddings

Xn →֒ Xk+1 = X1(Tk) →֒ Xα′(Tk).

Also by Lemma 8.3 we obtain that Fα = Fα′(Tk) is continuously embedded in Xk. This finishes the
proof of b).

c) Write α = k + α′ with k ∈ N0 and α
′ ∈ (0, 1]. It suffices to prove that Xn = D(An) is dense in

Xα if n ≥ k+1. But for such n the space Xn = D(An) is dense in Xk+1 = D(Ak+1) by Proposition
2.18. Whereas Xk+1 is densely and continuously embedded in Xα = Xα′(Tk) by Propositions 8.10
and 8.9. This complete the proof.

Assertion d) follows immediately from the definition. �
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8.4 Basic examples

As we have seen, the spaces Fα and Xα are related to Hölder continuity of semigroup orbits. The
next example underlines this fact and, at least partly, the chosen terminology.

Example 8.16. Consider the first derivative, the generator of the left shift semigroup S in BUC(R).
We determine the Favard and the Hölder spaces for this semigroup. More precisely, we rescale T (t) =
e−tS(t) and then determine the corresponding intermediate spaces. First we suppose α ∈ (0, 1).
Recall that a function f : R→ C is called α-Hölder continuous if

sup
s,t∈R
s 6=t

|f(t)− f(s)|

|t− s|α
<∞,

and it is called little-α-Hölder continuous if

lim
hց0

sup
s,t∈R

0<|t−s|<h

|f(t)− f(s)|

|t− s|α
= 0.

For the abstract Favard and Hölder spaces of the left shift we have then

Fα = Cα
b(R) :=

{

f ∈ Cb(R) : f is α-Hölder continuous
}

Xα = hα(R) :=
{

f ∈ Cb(R) : f is little-α-Hölder continuous
}

.and

The Favard norm is equivalent to

‖f‖Cα
b
(R) = ‖f‖∞ + sup

s,t∈R
s 6=t

|f(t)− f(s)|

|t− s|α
.

For α = 1 we have

F1 = Lipb(R) =
{

f ∈ Cb(R) : f is Lipschitz continuous
}

with equivalent norm

‖f‖Lipb(R) = ‖f‖∞ + sup
s,t∈R
s 6=t

|f(t)− f(s)|

|t− s|
.

For general α > 0, we write α = k + α′ with k ∈ N0 and α
′ ∈ (0, 1]. Then we have

Fα = Ck,α′

b (R) :=
{

f ∈ Cb(R) : f is k-times differentiable with f
(k) ∈ Cα′

b (R)
}

and, if α 6∈ N

Xα = hk,α
′
(R) :=

{

f ∈ Cb(R) : f is k-times differentiable with f
(k) ∈ hα

′
(R)

}

.

We leave the proof of these assertions as Exercise 4.
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To determine the Favard and the Hölder spaces of the left shift on L1(R) is more complicated. So
we state the result for F1 only, and that without proof.

Example 8.17. Consider the left shift semigroup in L1(R). Then for its Favard space we have

F1 = UBV1(R) :=
{

f ∈ L1(R) : f is a.e. equal to g : R→ C of uniformly bounded variation
}

.

Recall that a function g is of uniformly bounded variation if

∞
∨

−∞
g = sup

R>0

R
∨

−R

g <∞,

where
∨R
−R g is the variation of g on [−R,R] given by

R
∨

−R

g = sup
{ n
∑

j=1
|g(tj)− g(tj−1)| : n ∈ N, −R = t0 < t1 < · · · < tn = R

}

.

Now, such a function g has at most countable discontinuity points, at which the left and right limits
exist. If we modify the function g at these points so that it becomes left continuous, the variation
will still remain the same. Now for f ∈ UBV1(R) there is a unique left continuous function g which
is of uniformly bounded variation and which coincides with f almost everywhere (more precisely,
f is the L1-equivalence class of g). We define

∨∞
−∞ f :=

∨∞
−∞ g. The Favard norm F1 is then

equivalent to

f 7→
∞
∨

−∞
f + ‖f‖1.

8.5 Relation to fractional powers

Recall from Lecture 7 that if A generates a semigroup of type (M,ω) with ω < 0, then it is possible
to define the fraction (or complex powers) of −A. In this section we want to compare the domains
D((−A)α) to the abstract intermediate spaces introduce in the above. In the first to auxiliary
results we only suppose that −A satisfies the Assumption 7.3, i.e., that the complex powers can be
defined as described in Lecture 7.

Lemma 8.18. Suppose −A is as in Assumption 7.3 and let α ∈ (0, 1). Then we have

sup
s∈[0,∞)

‖sαAR(s,A)f‖ ≤ K‖(−A)αf‖

for all f ∈ D((−A)α).

Proof. By Proposition 7.13 we have

(−A)−α = −
sin(πα)

π

∞
∫

0

s−αR(s,A)ds = −
sin(πα)

π

∞
∫

0

t(ts)−αR(ts, A)ds

for all t > 0. We can then write

(−A)−αtαAR(t, A) =−
sin(πα)

π

1
∫

0

s−αAR(ts, A) · tR(t, A)ds

−
sin(πα)

π

∞
∫

1

s−α−1(ts)R(ts, A) ·AR(t, A)ds.
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Since for t ≥ 0 we have ‖tR(t, A)‖ ≤M and ‖AR(t, A)‖ ≤M + 1, we obtain

‖A−αtαAR(t, A)g‖ ≤ K‖g‖.

If we plug in g = (−A)αf , we obtain the assertion. �

Lemma 8.19. Suppose that −A is as in Assumption 7.3. For α, β ∈ (0, 1) with α < β we have

‖(−A)αf‖ ≤ K sup
s∈[0,∞)

‖sβAR(s,A)f‖

for all f ∈ D(A). (By the way the right-hand side is finite for all f ∈ D(A).)

Proof. Let f ∈ D(A). Then we have ‖sβAR(s,A)f‖ ≤ Msβ

1+s
‖Af‖, so the expression on the right-

hand side is finite. Moreover, by Proposition 7.21 we have that

(−A)αf =
sin(πα)

π

∞
∫

0

sα−1R(s,A)Afds

and we can split the integration into two parts

(−A)αf =
sin(πα)

π

1
∫

0

sα−1AR(s,A)fds+
sin(πα)

π

∞
∫

1

sα−β−1sβAR(s,A)−1fds.

Now the first term can be estimated as

sin(πα)

π

∥

∥

∥

1
∫

0

sα−1AR(s,A)fds
∥

∥

∥
≤ (1 +M0)‖f‖

sin(πα)

π

1
∫

0

sα−1ds

≤ K0‖f‖ ≤ K0(‖AR(1, A)f‖+ ‖A
−1AR(1, A)f‖) ≤ K1 sup

s∈[0,∞)
‖sβAR(s,A)f‖.

For the second term we have

sin(πα)

π

∥

∥

∥

∞
∫

1

sα−β−1sβAR(s,A)fds
∥

∥

∥
≤
sin(πα)

π

∞
∫

1

sα−β−1ds · sup
s∈[0,∞)

‖sβAR(s,A)f‖

≤ K2 sup
s∈[0,∞)

‖sβAR(s,A)f‖.

By putting the two estimates together we conclude the proof. �

Theorem 8.20. Let A be the generator of a semigroup T of type (M,ω) with ω < 0 and let
0 < α < β < 1. Then

Xβ ⊆ Fβ →֒ D
(

(−A)α
)

→֒ Xα ⊆ Fα

with continuous embeddings.
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Proof. Let γ ∈ (α, β). By Proposition 8.6 the Favard norm on Fγ is equivalent to

‖|f‖|Fγ := sup
λ>0

‖λγAR(λ,A)f‖ .

Now by Lemma 8.19 we conclude that the normed space D(A) ⊆ Xγ with the norm ‖| · ‖|Fγ is

continuously embedded in D
(

(−A)α
)

, hence so is its closure Xγ = D(A)Fγ (see also Proposition
8.10). Now, by Proposition 8.15 we have Fβ →֒ Xγ with continuous embedding, so altogether we
obtain the continuous embedding

Fβ →֒ D
(

(−A)α
)

Lemma 8.18 yields the continuous embedding

D
(

(−A)α
)

→֒ D(A)Fα = Xα. �

8.6 Outlook

We mention here a few facts without proofs. Notice first of all that given a semigroup T of type
(M,ω) with ω < 0 we have by definition

Fα =
{

f ∈ X : t 7→ ψ(t) := 1
tα
‖T (t)f − f‖ ∈ L∞

(

(0,∞)
)

}

.

Since ω < 0, the fact that f belongs to Fα does not say too much about the behaviour of T (t)f
for large t, rather it tells quite a lot about small t values. We may try to dig out more information
by giving more weight to small t values. Therefore, we consider the measure dt

t
which is absolutely

continuous with respect to the Lebesgue measure on (0,∞) with Radon–Nikodým derivative 1
t
.

This measure is even equivalent to the Lebesgue measure so the corresponding L∞ spaces and the
L∞ norms will be the same. Hence, as a matter of fact, no new information has been obtained.
However, we may go over the Lp-scale, where we get a more detailed picture. For p ∈ [1,∞] let us
denote by Lp

∗(0,∞) the Lp space with respect to the measure dt
t
from above. For α ∈ (0, 1) and

p ≥ 1 we define

(

X,D(A)
)

α,p
:=

{

f ∈ X : t 7→ ψ(t) := 1
tα
‖T (t)f − f‖ ∈ Lp

∗(0,∞)
}

,

with the norm

‖f‖(X,D(A))α,p
:= ‖f‖+ ‖ψ‖Lp

∗(0,∞).

These spaces are Banach spaces and they are invariant under the semigroup T .

Moreover, it is possible to show—in analogy to Proposition 8.6—that

(

X,D(A)
)

α,p
=

{

f ∈ X : λ 7→ φ(λ) := λα‖AR(λ,A)f‖ ∈ Lp
∗(0,∞)

}

,

and that

‖|f‖|(X,D(A))α,p
:= ‖φ‖Lp

∗(0,∞)

defines an equivalent norm. Furthermore, one has the continuous embeddings

D(A) →֒
(

X,D(A)
)

α,p
→֒

(

X,D(A)
)

α,r
→֒

(

X,D(A)
)

α,∞
= Fα



Lecture 9

Analytic Semigroups

Recall the Gaussian semigroup from Lecture 2 defined for f ∈ L2(R) by

(T (t)f)(x) := (gt ∗ f)(x) =
1√
4πt

∫

R

f(y)e−
(x−y)2

4t dy =

∫

R

f(y)G(t, x, y)dy,

T (0)f := f.and

Then T is a bounded strongly continuous semigroup on L2(R). In Exercise 2.8 you were asked to
determine its generator, which is

Af(s) = f ′′(s) with D(A) = H2(R).

First of all we make the following observation: One can show that for all f ∈ L2(R) and t > 0

T (t)f ∈
{
g ∈ C∞(R) : all derivatives of g belong to L2(R)

}
⊆ D(A),

hence the mapping t 7→ T (t)f is differentiable on (0,∞) for all f ∈ L2(R). It is also not hard to see
that the mapping

(0,∞) ∋ t 7→ tAT (t)

is bounded.

The second important fact to observe is the following. For f ∈ L2(R) and z ∈ C with Re z > 0 one
can define

(T (z)f)(x) :=
1√
4πz

∫

R

f(y)e−
(x−y)2

4z dy.

Then
T : {z : Re z > 0} → L (L2(R)) is a holomorphic function

and, following the arguments in Lecture 2, one easily proves that T (z)T (w) = T (z + w) holds for
all z, w ∈ C with Re z,Rew > 0.

This lecture is devoted to the study of the two properties above from an operator theoretic point
of view.

9.1 Analytic semigroups

Let us first define the main objects of our study.

Definition 9.1. For θ ∈ (0, π2 ] consider the sector

Σθ :=
{
z ∈ C \ {0} : | arg(z)| < θ

}
.

Suppose T : Σθ ∪ {0} → L (X) is a function with the following properties:

97
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(i) T : Σθ → L (X) is holomorphic.

(ii) For all z, w ∈ Σθ we have

T (z)T (w) = T (z + w), and T (0) = I.

(iii) For every θ′ ∈ (0, θ) the equality

lim
z→0

z∈Σ
θ′

T (z)f = f holds for all f ∈ X.

Then T is called an analytic semigroup of angle θ. Suppose moreover the following.

(iv) For all θ′ ∈ (0, θ) we have
sup
z∈Σθ′

‖T (z)‖ <∞.

Then T is called a bounded analytic semigroup of angle θ. The generator of the restriction
T : [0,∞)→ L (X) is called the generator of the analytic semigroup T .

Remark 9.2. Clearly, for an analytic semigroup T the mapping

T : (0,∞)→ L (X), t 7→ T (t) ∈ L (X)

is continuous in the operator norm, it is even differentiable. Among others, this continuity has
the following consequence: For λ sufficiently large the resolvent of the generator is given by the
improper integral

R(λ,A) =

∞∫

0

e−λtT (t)dt

convergent now in the operator norm, cf. Proposition 2.26.

Proposition 9.3. Let T be an analytic semigroup of angle θ ∈ (0, π2 ] with generator A. Then the
following assertions are true:

a) For every r > 0 and θ′ ∈ (0, θ) we have

sup
{
‖T (z)‖ : z ∈ Σθ′ , |z| ≤ r

}
<∞.

b) For all θ′ ∈ (0, θ) there is ω = ωθ′ > 0 and M = Mθ′ ≥ 1 such that

‖T (z)‖ ≤MeωRe z for all z ∈ Σθ′.

c) For α ∈ (−θ, θ) and t ≥ 0 define Tα(t) := T (eiαt). Then Tα is a strongly continuous semigroup
with generator eiαA.

Proof. a) and b) The proof is similar to that of Proposition 2.2 and exploits the uniform bounded-
ness principle.

c) That Tα is a strongly continuous semigroup is trivial from the definition. Let γ be the half-line
emanating from the origin with angle α to the positive semi-axis. By Proposition 2.26 we have for
µ sufficiently large that

R(µ,Aα) =

∞∫

0

exp(−µt)T (eiαt)dt = e−iα
∫

γ

exp(−µe−iαz)T (z)dz.
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By using Cauchy’s theorem we can transform the path of integration to the positive semi-axis γ̃
(work out the details), and we conclude

R(µ,Aα) = e−iα
∫

γ̃

exp(−µe−iαz)T (z)dz = e−iα
∞∫

0

exp(−µe−iαt)T (t)dt

= e−iαR(µe−iα, A) = R(µ, eiαA),

if Re(µe−iα) is sufficiently large. This proves Aα = eiαA.
�

Next we present some fundamental examples.

Example 9.4. For A ∈ L (X) and z ∈ C define

T (z) = ezA :=

∞∑

n=0

znAn

n!
.

Then T is an analytic semigroup. In Exercise 1 you are asked to prove this.

Example 9.5. The Dirichlet heat semigroup on L2(0, 1), see Lecture 1, has a bounded analytic
semigroup extension1 of angle π

2 .

More generally, we have the following.

Example 9.6. Let H be a Hilbert space and A a self-adjoint operator on H, i.e., A = A∗. Then
the spectral theorem tells us that there is an L2-space and a unitary operator S : H → L2 such
that

SAS−1 : L2 → L2, SAS−1 = Mm,

where Mm is a multiplication operator on L2 by a real-valued function m (with maximal domain).
If A is negative, i.e.,

〈Af, f〉 ≤ 0 for all f ∈ D(A),

then σ(A) ⊆ (−∞, 0] and m takes values in (−∞, 0]. It is easy to prove that

T (z) := S−1MezmS

defines a bounded analytic semigroup T : Σπ
2
∪{0} → L (H) generated by A, see Exercise 2, cf. also

Exercise 7.2. Of course, we may only assume that A is bounded above by ωI, then by replacing A
by A− ω the same arguments work, and we obtain that A− ω generates an analytic semigroup.

Example 9.7. The shift semigroup on Lp(R) is not analytic. Or, more generally, if T is a strongly
continuous group which is not continuous for the operator norm at t = 0, then T is not analytic.
Prove this statement in Exercise 3.

Proposition 9.8. The generator of a bounded analytic semigroup of angle θ has the following
properties. The sector Σπ

2
+ θ belongs to the resolvent set ρ(A) of A, and for all θ′ ∈ (0, θ) there is

Mθ′ ≥ 1 such that

‖R(λ,A)‖ ≤ Mθ′

|λ| for all λ ∈ Σπ
2
+ θ′.

1We also say that a semigroup is analytic if it has an analytic semigroup extension to a sector.
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Proof. Let θ′ ∈ (0, θ) and θ′′ ∈ (θ′, 12(
π
2 + θ′)) be fixed, and set

Mθ′′ := sup
z∈Σθ′′

‖T (z)‖.

For α ∈ [−θ′′, θ′′] and t ≥ 0 define Tα(t) := T (eiαt). By assumption Tα is a bounded semigroup,
and by Proposition 9.3 its generator is Aα := eiαA. By Proposition 2.26 we have for all Reµ > 0
that

‖R(µ,Aα)‖ ≤
Mθ′′

Reµ
.

For λ ∈ Σπ
2
+θ′ with arg λ ≥ 0 we have (arg λ ≤ 0 goes similarly)

‖R(λ,A)‖ = ‖R(e−iθ
′′
λ, e−iθ

′′
A)‖ ≤ Mθ′′

Re(e−iθ′′λ)
≤ Mθ′′

|λ| sin(θ′′ − θ′)
. �

In the next section we show the converse of this statement.

9.2 Sectorial operators

We make the following definition out of the properties listed in Proposition 9.8.

Definition 9.9. Let A be a linear operator on the Banach space X, and let δ ∈ (0, π2 ). Suppose
that the sector

Σπ
2
+δ :=

{
λ ∈ C \ {0} : | arg λ| < π

2 + δ
}

is contained in the resolvent set ρ(A), and that

sup
λ∈Σπ

2 +δ′

‖λR(λ,A)‖ <∞ for every δ′ ∈ (0, δ).

Then the operator A is called sectorial of angle δ.

Example 9.10. LetH be a Hilbert space and let A be a negative self-adjoint operator onH. By the
spectral theorem we have an L2-space and a unitary operator S : H → L2 such that SAS−1 = Mm

where m takes values in (−∞, 0]. For λ ∈ C with | arg λ| < θ, θ ∈ (π2 , π) we have

‖λR(λ,Mm)‖ =
∥∥∥

|λ|
|λ−m|

∥∥∥
∞

=
|λ|

|λ| sin(θ) =
1

sin(θ)
,

i.e., Mm (hence A) is sectorial of angle δ for all δ ∈ (0, π2 ), see also Exercise 4.

The aim of this section is to show that the densely defined sectorial operators are precisely the
generators of bounded analytic semigroups. One implication is shown in Proposition 9.8, while the
other one will be proved by developing a simple functional calculus2 for such operators, which—
similarly to the fractional powers in Lecture 7—is based on Cauchy’s integral formula.

eaz =
1

2πi

∮
eλz

λ− a
dλ

2For a thorough treatment see: M. Haase: The Functional Calculus for Sectorial Operators, vol. 169 of Operator

Theory: Advances and Applications, Birkhäuser Basel, 2006., but note first the difference between the definitions of

sectorial operators here and in the mentioned monograph.
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where we integrate along a curve that passes around a in the positive direction. Therefore, we want
to give meaning to expressions like ∫

γ

eλzR(λ,A)dλ,

where γ is a suitable curve. First, we specify these curves. For given η ∈ (0, δ) and r > 0 consider
the curves given by the following parametrisations:

γη,r,1(s) := se−i(
π
2
+η), s ∈ [r,∞) (9.1)

γη,r,2(s) := reis, |s| ≤ π
2 + η

γη,r,3(s) := sei(
π
2
+η), s ∈ (−∞,−r].

We call then

γη,r := −γη,r,1 + γη,r,2 + γη,r,3

an admissible curve. The next remark concerns estimates that show the convergence of the path

γ

δ

η

δ′

r
σ(A)

ρ(A) Σπ

2
+δ

Figure 9.1: An admissible curve γη,r.

integral in the operator norm.

Remark 9.11. 1. If A is a sectorial operator of angle δ, then for every δ′ ∈ (0, δ) we have

‖R(λ,A)‖ ≤ Mδ′

|λ|

for all λ ∈ Σπ
2
+δ′ \ {0} and some appropriate Mδ′ ≥ 1.
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2. For every z ∈ C with | arg z| < δ ≤ π
2 and λ ∈ C with | arg λ| = π

2 + η and η ∈ ( | arg z|+δ
2 , δ) we

have

| arg(λ) + arg(z)| ≤ π
2 + η + δ ≤ π − (δ − η) + δ ≤ 3π

2 − (δ − η)

| arg(λ) + arg(z)| ≥ π
2 + | arg z|+δ

2 − | arg z| = π
2 + δ−| arg z|

2 ≥ π
2 + (δ − η).and

Hence for such λ and z we have

|eλz| = eRe(λz) = e|λz| cos(arg(λ)+arg(z)) ≤ ecos(
π
2
+(δ−η))|λz| = e− sin(δ−η)|λz|.

Lemma 9.12. For a sectorial operator A of angle δ and for an admissible curve γη,r with η ∈
( | arg z|+δ

2 , δ) and r > 0 the integral ∫

γη,r

eλzR(λ,A)dλ

converges in operator norm, and its value is independent of r > 0 and η.

Proof. For the convergence of the integral only γη,r,1 and γη,r,3 need to be considered. By Remark
9.11 for λ ∈ C with | arg λ| = π

2 + η we can estimate the integrand

‖eλzR(λ,A)‖ ≤ e− sin(δ−η)|λz|Mη

|λ| , (9.2)

where the right-hand side converges exponentially fast to 0 for |λ| → ∞. This suffices for the
convergence of the integral.

The independence of the integral from r and η follows from Cauchy’s theorem if we close the angle
between two admissible curves by circle arcs around 0 of radius R and let R → ∞. The path
integrals on these circle arcs converge to 0 by (9.2). �

The arguments above allow us to make the following definition.

Definition 9.13. Let A be a sectorial operator of angle δ. For z ∈ Σδ and some admissible curve
γ = γη,r with η ∈ ( | arg z|+δ

2 , δ) we define

T (z) = ezA :=
1

2πi

∫

γ

eλzR(λ,A)dλ. (9.3)

Clearly, this has to be the right definition. Let us check it.

Proposition 9.14. Let A be a sectorial operator of angle δ. For T (z) from Definition 9.13 the
following are true:

a) ‖T (z)‖ is uniformly bounded for z ∈ Σδ′ if 0 < δ′ < δ.

b) The map z 7→ T (z) is holomorphic in Σδ.

c) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.
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Proof. a) Let δ′ ∈ (0, δ). Given z ∈ Σδ′ we may choose the path of integration γη,r with η ∈ ( δ
′+δ
2 , δ)

and r ∈ (0, 1
|z| ]. As in Lemma 9.12 we estimate the integrand: For λ ∈ C with | arg λ| = π

2 + η and

|λ| ≥ r we have

‖eλzR(λ,A)‖ ≤ e−|λz| sin(δ−η)
Mη

|λ| , (9.4)

and for |λ| = r and | arg λ| ≤ π
2 + η we have

‖eλzR(λ,A)‖ ≤ e|λz|
Mη

|λ| ≤ e|λ|
1
r
Mη

r
= e

Mη

r
. (9.5)

For the integral in (9.3) these yield (considering the three pieces of the integration path separately)

‖T (z)‖ =
∥∥∥

1

2πi

∫

γr,η

eλzR(λ,A)dλ
∥∥∥ ≤ Mη

π

∞∫

r

1

s
e−s|z| sin(δ−η)ds+ re

Mη

r

=
Mη

π

∞∫

|z|r

1

t
e−t sin(δ−η)dt+ eMη.

If specialise r = 1
|z| , then we obtain

‖T (z)‖ ≤ Mη

π

∞∫

1

1

t
e−t sin(δ−η)dt+ eMη for all z ∈ Σδ′ .

b) SupposeK ⊆ Σδ is a compact set, and let δ′ ∈ (0, δ) such thatK ⊆ Σδ′ and let 0 < r ≤ infz∈K
1
|z| .

The estimates in the proof of part a) show that the integral defining T (z) converges uniformly on
K. Since the integrand z 7→ eλzR(λ,A) ∈ L (X) is holomorphic, so is T (z).

c) Let z, w ∈ Σδ and let γ and γ̃ be two admissible curves as in part a) so that γ̃ lies to the right
of γ. We calculate the product

T (z)T (w) =
1

(2πi)2

∫

γ

∫

γ̃

eµweλzR(µ,A)R(λ,A)dµdλ

=
1

(2πi)2

∫

γ

∫

γ̃

eµweλz

λ− µ
(R(µ,A)−R(λ,A)) dµdλ

by the resolvent identity. Fubini’s theorem yields

T (z)T (w) =
1

2πi

∫

γ̃

eµwR(µ,A)
( 1

2πi

∫

γ

eλz

λ− µ
dλ

)
dµ− 1

2πi

∫

γ

eλzR(λ,A)
( 1

2πi

∫

γ̃

eµw

λ− µ
dµ

)
dλ.

Since γ̃ lies to the right of γ, we have

1

2πi

∫

γ̃

eµw

λ− µ
dλ = 0 and

1

2πi

∫

γ

eλz

λ− µ
dλ = eµz.
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Altogether we conclude

T (z)T (w) =
1

2πi

∫

γ̃

eµzeµwR(µ,A)dµ = T (z + w). �

Summarising, given a sectorial operator A, have seen how to construct an analytic semigroup. It
will be no surprise to identify its generator.

Proposition 9.15. Let A be a densely defined sectorial operator of angle δ. Then T given by

T (z) := ezA :=
1

2πi

∫

γ

eλzR(λ,A)dλ

as in Definition 9.13 is a bounded analytic semigroup of angle δ, whose generator is A.

Proof. We only have to prove property (iii) from Definition 9.1. Let us fix δ′ ∈ (0, δ), and notice
that

1

2πi

∫

γ

eλz

λ
dλ = 1

holds for all z ∈ Σδ′ and for an admissible curve γ = γη,r. For f ∈ D(A) we have R(λ,A)Af =
λR(λ,A)f − f , and hence

T (z)f − f =
1

2πi

∫

γ

eλz
(
R(λ,A)− 1

λ
f
)
fdλ =

1

2πi

∫

γ

eλz

λ
R(λ,A)Afdλ

for all z ∈ Σδ′ . For z → 0 (z ∈ Σδ′) we conclude

lim
z→0

z∈Σ
δ′

(
T (z)f − f

)
=

1

2πi

∫

γ

1

λ
R(λ,A)Afdλ,

where the passage to the limit is allowed by Lebesgue’s dominated convergence theorem. Indeed,
we can estimate the integrand by means of inequalities in (9.4) and (9.5):

∥∥∥
eλz

λ
R(λ,A)Af

∥∥∥ ≤ Mη

|λ|2
(
1 + e|z|

)
‖Af‖

for all λ that lies on the curve γ.

By Cauchy’s theorem we obtain

1

2πi

∫

γ

1

λ
R(λ,A)Afdλ = 0,

which can be seen if we close γ on the right by circle arcs around 0 of radius R and let R → ∞.
The integrals on these arcs converge to 0 since A is sectorial. Since we already know that T (z) is
uniformly bounded on Σδ′ , see Proposition 9.14, we conclude by Theorem 2.30 that

lim
z→0

z∈Σ
δ′

T (z)f = f for all f ∈ X.
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Therefore T is a bounded analytic semigroup.

Denote for the moment the generator of T by B. Since T is bounded, by Proposition 2.26 we have

R(2, B)f =

∞∫

0

e−2tT (t)fdt for all f ∈ X.

For a fixed s > 0 and an admissible curve γ = γη,1 we can write by Fubini’s theorem

s∫

0

e−2tT (t)fdt =

s∫

0

e−2t
1

2πi

∫

γ

eλtR(λ,A)fdλdt =
1

2πi

∫

γ

s∫

0

e(λ−2)tdtR(λ,A)fdλ

=
1

2πi

∫

γ

es(λ−2) − 1

λ− 2
R(λ,A)fdλ

=
1

2πi

∫

γ

es(λ−2)

λ− 2
R(λ,A)fdλ− 1

2πi

∫

γ

R(λ,A)f

λ− 2
dλ.

For s → ∞ the first expression converges to 0 since Re(λ − 2) ≤ −1 for all λ on the curve γ. For
the second term we have

− 1

2πi

∫

γ

R(λ,A)f

λ− 2
dλ = R(2, A)f for all f ∈ X.

These yield A = B. �

Let us summarise what we have proved so far:

Corollary 9.16. For a densely defined linear operator A on a Banach space X the following are
equivalent:

(i) A is sectorial of angle δ.

(ii) A generates a bounded holomorphic semigroup of angle δ.

9.3 Further characterisations

Analytic semigroups have some fundamental properties needed in calculations and estimates. In
this section we investigate the most important properties and develop some other characterisations
of generators of analytic semigroups.

Proposition 9.17. A generator A generates a bounded analytic semigroup if and only if ranT (t) ⊆
D(A) for all t > 0 and

sup
t>0

∥∥tAT (t)
∥∥ <∞.



106 Lecture 9: Analytic Semigroups

Proof. Suppose first that A generates a bounded analytic semigroup of angle θ and let θ′ ∈ (0, θ).
Then by Cauchy’s integral formula we have

T ′(t) =
1

2πi

∫

γ

T (z)

(z − t)2
dz,

where γ is a circle of radius r = t sin(θ′) around t > 0. From this we conclude

‖AT (t)‖ = ‖T ′(t)‖ ≤ 2πr

r2
sup
z∈θ′

‖T (z)‖ ≤ 2π

t sin(θ′)
sup
z∈Σ′

θ

‖T (z)‖ for all t > 0,

and that was to be proved.

Conversely suppose that A is the generator of a semigroup T , ranT (t) ⊆ D(A) for t > 0 and
M := supt>0{‖T (t)‖, ‖tAT (t)‖} < ∞. The basic idea is to define the analytic extension by the
Taylor series as

∞∑

n=0

(z − t)n

n!

dn

dtn
T (t)f.

The next step of the proof is now to verify that this definition does indeed make sense and yields
an analytic semigroup. By assumption AT (t) ∈ L (X) for t > 0, hence AnT (t) = AnTn(t/n) =
(AT (t/n))n ∈ L (X) and we can write

∥∥∥
AnT (t)

n!

∥∥∥ =
∥∥∥
(AT (t/n))n

n!

∥∥∥ ≤ nnMn

tnn!
≤

(Me

t

)n

. (9.6)

Writing up Taylor’s formula with remainder Rn in the integral form we have

T (s)f =
n∑

k=0

(s− t)k

k!

dk

dtk
T (t)f +Rn(t, s)f

Rn(t, s)f =
1

n!

s∫

t

(s− r)n
dn+1

dtn+1
T (r)fdr.and

By (9.6) we obtain that the series

T̃ (z)f :=

∞∑

n=0

(z − t)n

n!

dn

dtn
T (t)f

is absolutely and uniformly convergent in L (X) for all z ∈ C with |z− t| ≤ q · t
eM where q ∈ (0, 1),

and that Rn(t, s)→ 0 for all s > 0 with |s− t| ≤ q · t
eM . These yield that T̃ (t) = T (t) for all t > 0

and that T̃ is analytic on the sector Σθ with θ = arcsin 1
eM and is uniformly bounded on the sectors

Σθ′ with θ′ ∈ (0, θ). �

Proposition 9.18. A densely defined linear operator A generates a bounded analytic semigroup if
and only if

Σπ
2
=
{
λ ∈ C : Reλ > 0

}
⊆ ρ(A)

sup
Reλ>0

‖λR(λ,A)‖ <∞.and
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Proof. That a generator of a bounded analytic semigroup has the asserted properties follows from
Proposition 9.8. For the converse implication notice that the assumptions are almost as in the
definition of sectoriality, except we have here the sector Σπ

2
. To gain a larger sector one can argue

similarly to the proof of Proposition 7.5. �

Proposition 9.19. A linear operator A generates a bounded analytic semigroup if and only if
for some α ∈ (0, π2 ) both of the operators e−iαA and eiαA generate bounded strongly continuous
semigroups.

Proof. One implication is already proved in Proposition 9.3.c). For the converse suppose e−iαA and
eiαA generate bounded strongly continuous semigroups. By Proposition 2.26 we have for λ ∈ C

with Reλ > 0

‖R(λ,A)‖ = ‖R(eiαλ, eiαA)‖ ≤ M

Re(eiαλ)
=

M

Reλ · cos(α)− Imλ · sin(α) if Imλ ≤ 0,

‖R(λ,A)‖ = ‖R(e−iαλ, e−iαA)‖ ≤ M

Re(e−iαλ)
=

M

Reλ · cos(α) + Imλ · sin(α) if Imλ > 0.

So altogether we obtain

‖R(λ,A)‖ ≤ M

Reλ · cos(α) =
M

cos2(α) · |λ| ,

so by Proposition 9.18 the proof is complete. �

About generators of not necessarily bounded analytic semigroups we can say the following.

Proposition 9.20. For a densely defined linear operator A on the Banach space X the following
assertions are equivalent:

(i) The operator A generates an analytic semigroup (of some angle).

(ii) For some ω > 0 the operator A− ω generates a bounded analytic semigroup (of some angle).

(iii) There is r > 0 such that

{
λ ∈ C : Reλ > 0, |λ| > r

}
⊆ ρ(A)

sup
Reλ>0
|λ|>r

‖λR(λ,A)‖ <∞.and

The proof of this assertion is left as Exercise 5.

9.4 Intermediate spaces

In this section we study the intermediate spaces—introduced in Lecture 7 and 8—for analytic
semigroups. The first result is yet another characterisation of the Favard and Hölder spaces.

Proposition 9.21. Let T be an analytic semigroup of type (M,ω) with ω < 0 and with generator
A. For α ∈ (0, 1] one has

Fα =
{
f ∈ X : sup

t>0
‖t1−αAT (t)f

∥∥ <∞
}
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with equivalent norm

⌊⌉f⌊⌉Fα := sup
t>0

‖t1−αAT (t)f‖.

For α ∈ (0, 1) we have

Xα =
{
f ∈ X : lim

t→0
‖t1−αAT (t)f

∥∥ <∞
}
.

Proof. It is easy to see that ⌊⌉ · ⌊⌉Fα is a norm. For every f ∈ X and t > 0 we have

t1−αAT (t)f = t−αAT (t)

t∫

0

fds and t−αT (t)(T (t)f − f) = t−αT (t)A

t∫

0

T (s)fds,

t1−αAT (t)f = t−αT (t)
(
T (t)f − f

)
− t−αAT (t)

t∫

0

(T (s)f − f)ds.hence

If f ∈ Fα, then we obtain for t > 0 that

‖t1−αAT (t)f‖ ≤Mt−α‖T (t)f − f‖+ ‖t−αAT (t)‖
t∫

0

sα
1

sα
‖T (s)f − f‖ds (9.7)

≤M‖f‖Fα + ‖t−αAT (t)‖
t∫

0

sα
1

sα
‖T (s)f − f‖ds

≤M‖f‖Fα +
t

α+ 1
‖AT (t)‖ · ‖f‖Fα ≤M1‖f‖Fα .

Therefore, one inclusion in the first assertion is proved together with the estimate ⌊⌉f⌊⌉Fα ≤
M1‖f‖Fα . Suppose now that f ∈ X is such that ⌊⌉f⌊⌉Fα < ∞. Then we have for t > 0 that
the integral on the left-hand side below converges, and we also obtain the equality

t∫

0

AT (s)fds = A

t∫

0

T (s)fds.

From this can conclude

1

tα
‖T (t)f − f‖ = 1

tα

∥∥∥
t∫

0

AT (s)fds
∥∥∥ =

1

tα

t∫

0

sα−1s1−α‖AT (s)f‖ds (9.8)

≤ 1

α
⌊⌉f⌊⌉Fα .

This completes the proof of the statement concerning Fα.

For f ∈ Xα we obtain by using (9.7) that t1−αAT (t)f → 0 as t ց 0. Whereas (9.8) implies the
converse implication. �

In Lecture 8 we related the domain of fractional powers to the abstract Hölder and Fravard
spaces. As an immediate consequence we obtain the next fundamental result.
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Corollary 9.22. Let A generate a bounded analytic semigroup of type (M,ω) with ω < 0, and let
α ≥ 0. Then the following assertions are true:

a) For each t ≥ 0 the operator T (t) maps X into D
(
(−A)α

)
.

b) For each t > 0 the operator (−A)αT (t) is bounded, and

‖(−A)αT (t)‖ ≤Mαt
−α holds for all t > 0.

c) If α ∈ (0, 1] and f ∈ D
(
(−A)α

)
, then

‖t1−αAT (t)f‖ ≤Mα‖(−A)αf‖ for all t > 0.

d) If α ∈ (0, 1] and f ∈ D
(
(−A)α

)
, then

‖T (t)f − f‖ ≤ Kαt
α‖(−Aα)f‖ for all t > 0.

Proof. a) For each t > 0 the operator T (t) even maps into D(An) for all n ∈ N, see proof of
Proposition 9.17.

b) The statement is trivially true for α = 0, while for α = 1 it follows from Proposition 9.17. By
Remark 7.10 we have

‖(−A)αf‖ ≤ K‖f‖1−α‖Af‖α for all f ∈ D(A),

whence we can conclude by Proposition 9.17

‖(−A)αT (t)f‖ ≤ K‖T (t)f‖1−α‖AT (t)f‖α ≤ Mα

tα
‖f‖.

Suppose now α > 1. For α ∈ N the assertion follows again from Proposition 9.17: For t > 0 we have

∥∥AnT (t)
∥∥ =

∥∥(AT ( t
n
))n

∥∥ ≤
∥∥AT ( t

n
)
∥∥n ≤ nnMn

tn
.

Suppose α ≥ 1. Then we can write α = n+ α′ with n ∈ N and α′ ∈ (0, 1]. From the above we can
conclude

‖(−A)αT (t)‖ = ‖(−A)α′T ( t2)(−A)
nT ( t2)‖ ≤

2α
′
Mα′

tα′
‖(−A)nT ( t2)‖ ≤

2α
′
Mα′2

nMn

tn+α′
=

Mα

tα

for all t > 0.

c) By Theorem 8.20 we have the continuous embedding D
(
(−A)α

)
→֒ Fα. In view of Proposition

9.21 the asserted inequality is just a reformulation of this.

d) For α ∈ (0, 1) the statement is just the reformulation of the continuous embedding D
(
(−A)α

)
→֒

Xα, which we proved in Theorem 8.20. Suppose α = 1, and let f ∈ D(A). Then we have

‖T (t)f − f‖ =
∥∥∥A

t∫

0

T (s)fds
∥∥∥ ≤ Kt‖Af‖. �
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Before stating to Proposition 9.21 analogous characterisation of (X,D(A))α,p spaces, we need to
recall3 the following result.

Proposition 9.23 (Hardy’s inequality). Let f : (0,∞) → R be a positive Lebesgue measurable
function, let α > 0, and let p ∈ [1,∞). Then

∞∫

0

t−αp
( t∫

0

f(s)p
ds

s

)pdt

t
≤ 1

αp

∞∫

0

t−αpf(t)p
dt

t
.

Proposition 9.24. Let T be an analytic semigroup of type (M,ω) with ω < 0 and with generator
A. For α ∈ (0, 1] one has

(
X,D(A)

)
α,p

=
{
f ∈ X : t 7→ η(t) = ‖t1−αAT (t)f

∥∥ ∈ Lp
∗(0,∞)

}

with equivalent norm

⌊⌉f⌊⌉(X,D(A))α,p
:= ‖f‖+ ‖η‖Lp

∗(0,∞).

Proof. Suppose f ∈
(
X,D(A)

)
α,p

holds. By (9.7) it suffices to estimate

∞∫

0

‖t−αAT (t)‖p
( t∫

0

‖T (s)f − f‖ds
)pdt

t
.

By Hardy’s inequality (see Proposition 9.23) and by Proposition 9.17 we have that

∞∫

0

‖t−αAT (t)‖p
( t∫

0

‖T (s)f − f‖ds
)pdt

t
≤M

∞∫

0

t−(α+1)p
( t∫

0

s‖T (s)f − f‖ds
s

)pdt

t

≤ 1

(α+ 1)p

∞∫

0

s−(α+1)psp‖T (s)f − f‖pds
s

=
1

(α+ 1)p

∞∫

0

s−αp‖T (s)f − f‖pds
s
.

Therefore ⌊⌉f⌊⌉(X,D(A))α,p
≤M1‖f‖(X,D(A))α,p

.

Conversely, suppose that f ∈ X is such that η ∈ Lp
∗(0,∞). Then again by Hardy’s inequality we

obtain

‖f‖p(X,D(A))α,p
=

∞∫

0

1

tpα
‖T (t)f − f‖pdt

t
≤

∞∫

0

1

tpα

∥∥∥
t∫

0

AT (s)fds
∥∥∥
pdt

t
=

∞∫

0

1

tpα

∥∥∥
t∫

0

sAT (s)f
ds

s

∥∥∥
pdt

t

≤ 1

αp

∞∫

0

s−αpsp‖AT (s)f‖pds
s

=
1

αp
‖η‖p

Lp
∗(0,∞)

. �

3See, e.g., page 158 of D. J. H. Garling: Inequalities. A Journey into Linear Analysis, Cambridge University Press,

2007.
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Exercises

1. Work out the details of Example 9.4.

2. Show that T defined in Example 9.6 is a bounded analytic semigroup.

3. Prove the assertions in Example 9.7.

4. Let X,Y be Banach spaces. Show that if A is a sectorial operator on X and S : X → Y is
continuously invertible then STS−1T is a sectorial operator on Y .

5. Prove Proposition 9.20.

6. Suppose that A generates an analytic semigroup and that B ∈ L (X). Prove that A+B generates
an analytic semigroup.



Lecture 10

Operator Splitting

In many applications the combined effect of several physical (or chemical, etc.) phenomena is mod-
elled. In these cases one has to solve a partial differential equation where the local time derivative
of the modelled physical quantity equals the sum of several operators, describing how this quantity
behaves in space. The idea behind operator splitting procedures is that, instead of the sum, we
treat each spatial operator separately, i.e., we solve all the corresponding sub-problems. The solu-
tion of the original problem is then obtained from the solutions of the sub-problems. Since the sum
usually contains operators of different nature, each corresponding to one physical phenomenon, the
sub-problems may be easier to solve separately.

Consider the abstract Cauchy problem on the Banach space X of the form
{

d
dtu(t) = (A+B)u(t), t > 0

u(0) = u0
(10.1)

with densely defined, closed, and linear operators A and B. Throughout the lecture we suppose
that D := D(A) ∩D(B) is dense in X and u0 ∈ D.

As an example, we explain how the simplest operator splitting procedure works. The main idea
is to choose sub-problems which are easier to handle as the original problem. This can happen
if there are particularly well-suited (fast, accurate, reliable, etc.) numerical methods to solve the
sub-problems, or if the exact (analytical) solution of at least one of the sub-problems is known.
First, one solves the sub-problem corresponding to the operator A on the time interval [0, h] using
the original initial value u0. Then the second sub-problem, corresponding to the operator B, is
solved on the same time interval but using the solution of the previous step as initial value. In the
next step the sub-problems with A and B are solved on the next time interval [h, 2h], always taking
the previous solution as initial value. We repeat this procedure recursively. The corresponding
sub-problems can be formulated for t ∈ ((k − 1)h, kh] with k ∈ N and uspl,h(0) = u0 as follows:

{

d
dtuA(t) = AuA(t)

uA((k − 1)h) = uspl,h((k − 1)h)
and

{

d
dtuB(t) = BuB(t)

uB((k − 1)h) = uA(kh)

and we set uspl,h(kh) = uB(kh).

Operator splittings can be mathematically handled in the same way as finite difference schemes,
which were introduced in Definition 4.1, with the help of a strongly continuous function F : [0,∞)→
L (X). By applying operator splitting, one computes the numerical solution at time t > 0 (more
precisely, a sequence of numerical solutions) to problem (10.1) of the form

uspl,h(t) =
(

F ( t
n
)
)n

u0

with h = t
n
and n ∈ N. Our aim is to establish splitting procedures being convergent in the sense

u(t) = lim
n→∞

uspl,h(t) = lim
n→∞

(

F ( t
n
)
)n

u0

113
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for all (or at least for many) u0 ∈ D, for all t ≥ 0. As usual, we set nh = t.

There are several splitting procedures in the literature. We collect here the most important ones
which are often used in applications as well.

Definition 10.1. The split solution to problem (10.1) at time t > 0 is defined by

uspl,h(t) = (F (h))n u0

for all u0 ∈ D and n ∈ N with nh = t. For the different operator splitting procedures, the strongly
continuous function F : [0,∞)→ L (X) is formally defined for all h > 0 as

Sequential splitting: Fseq(h) = ehBehA,

Marchuk–Strang splitting: Fms(h) = e
h

2
AehBe

h

2
A,

Lie splitting: FLie(h) =
(

I − hB
)−1(

I − hA
)−1

,

Peaceman–Rachford splitting: Fpr(h) =
(

I − h
2A

)−1(
I + h

2B
)(

I − h
2B

)−1(
I + h

2A
)

.

Of course, due to the application of operator splitting, there appears a certain splitting error

in the split solution.

In this chapter we show the convergence of the operator splitting procedures defined above, and
we also derive some error bounds for their local error

Eu0

(

h, u(t)
)

= E
(

h, u(t)
)

:= ‖F (h)u(t)− u(t+ h)‖,

where the exact solution of problem (10.1) is u(t) = et(A+B)u0. Hence, the local error can be further
rewritten as

E
(

h, u(t)
)

=
∥

∥F (h)u(t)− e(t+h)(A+B)u0
∥

∥ =
∥

∥F (h)u(t)− eh(A+B)u(t)
∥

∥.

In order to obtain convergence and some error bounds, we have to investigate the difference F (h)−
eh(A+B). For the sequential splitting1 this means ehBehA − eh(A+B) which in general differs from
zero (unless A,B ∈ C).

For simplicity we start with A and B being matrices.

10.1 Matrix case

Consider the problem (10.1) with operators A,B ∈ L (Cd), which corresponds to a linear system
of ordinary differential equations.
The exponential function of the matrices A, B can be formulated as power series, and the local
error is then defined as

E
(

h, u(t)
)

=
∥

∥

(

F (h)− eh(A+B)
)

u(t)
∥

∥.

We start with the investigation of the sequential splitting.

Proposition 10.2. Consider the operators A,B ∈ L (Cd). If they commute, i.e. [A,B] := AB −
BA = 0, then the local error of the sequential splitting vanishes.

1Sometimes is called as Lie–Trotter product formula, see Theorem 10.6.
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The proof is left as Exercise 2.
In the next step we will prove the convergence of the sequential splitting for general, non-

commuting operators.

Theorem 10.3. The sequential splitting is first-order convergent for A,B ∈ L (Cd).

Proof. By the Lax equivalence theorem, Theorem 4.6, it is sufficient to show consistency and
stability from Definition 4.1, for t < t0. To prove the consistency, we first consider the local error

Eseq(t, h) = ‖F (h)u(h)− u(t+ h)‖ =
∥

∥ehBehAu(t)− eh(A+B)u(t)
∥

∥

≤
∥

∥ehBehA − eh(A+B)
∥

∥ · ‖u(t)‖.

The local error can be expressed by the power series of the corresponding exponential functions
(see also Exercise 1):

Eseq(t, h) ≤ ‖(I + hB + h2

2 B2 + . . . )(I + hA+ h2

2 A2 + . . . )

− (I + h(A+B) + h2

2 (A+B)2 + . . . )‖ · ‖u(t)‖

= h2

2 ‖(AB −BA) + . . . ‖ · ‖u(t)‖ ≤ h2

2 ‖[A,B]‖ · ‖u(t)‖+O(h3). (10.2)

From this estimate consistency follows, since 1
h
E
(

h, u(t)
)

→ 0 as h ց 0. We note that from the
considerations above, we also conclude that the sequential splitting is of first order.

To show stability, we have to ensure the existence of a constant M > 0 such that
∥

∥Fseq(
t
n
)n
∥

∥ ≤M

for all fixed t < t0 and for all n ∈ N. Since t < t0, the boundedness of A and B implies that
∥

∥Fseq(
t
n
)n
∥

∥ ≤
∥

∥Fseq(
t
n
)
∥

∥

n
=

∥

∥e
t

n
Be

t

n
A
∥

∥

n
≤

∥

∥e
t

n
B
∥

∥

n
·
∥

∥e
t

n
A
∥

∥

n

≤
(

e
t

n
‖B‖

)n
·
(

e
t

n
‖A‖

)n
= et‖B‖et‖A‖ ≤ et0‖B‖et0‖A‖ = et0(‖A‖+‖B‖) ≤M. �

One can investigate the convergence of the Marchuk–Strang splitting analogously.

Proposition 10.4. The Marchuk–Strang splitting is of second order for A,B ∈ L (Cd).

The proof is left as Exercise 3.
We see that in general the behaviour of the commutator of the operators A and B is of enormous

importance for these results and also for the investigation of higher order splitting formulae. Here
the Baker–Campbell–Hausdorff formula comes to help.2

Theorem 10.5 (Baker–Campbell–Hausdorff Formula). For A,B ∈ L (Cd) and h ∈ R we have

ehBehA = eh(A+B)+Φ(A,B)

Φ(A,B) = h2

2 [A,B] + h3

12 [A−B, [A,B]]− h4

24 [B, [A, [A,B]]] + . . .with

where [A,B] = AB−BA denotes the commutator of A and B (appearing in all terms of the infinite
sum above).

For a thorough investigation of operator splitting procedures in the context of matrices, we refer
to the monograph by Faragó and Havasi,3 or to the above cited monograph by Hairer, Lubich and
Wanner.
Note that all the above considerations only make sense if h‖A‖ and h‖B‖ are small, otherwise the
large constants will make the convergence very slow. This means that we need other approaches
for unbounded operators, or even for matrices coming from discretisation of unbounded operators.
One possible approach is presented in the following section.

2E. Hairer, Ch. Lubich, and G. Wanner, Geometric Numerical Integration, Springer-Verlag, 2008, Chapter III. 4.
3I. Faragó, Á. Havasi, Operator Splittings and their Applications, Mathematics Research Developments, Nova

Science Publishers, New York, 2009.
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10.2 Exponential splittings

In this section we suppose that the operators A and B are the generators of strongly continuous
semigroups on the Banach space X. For the sake of better understanding (since there will be more
operators and the corresponding semigroups), we will use the notation (etA)t≥0 for the semigroup
generated by the operator A, and similarly for the other operators. Therefore, the splittings schemes
have the same forms as in Definition 10.1. First we investigate the sequential and Marchuk–Strang
splittings.

Under the condition that the operator A+B with the domain D := D(A)∩D(B) is the generator
of a strongly continuous semigroup, the convergence of the sequential splitting was already shown
in Corollary 4.10. Since the proof is essentially the same if A+B is not a generator, but its closure,
we only state the theorem here. Note that the assertion follows from Chernoff’s Theorem, Theorem
??, applied to the operator Fseq defined above (see Exercise 4 as well).

Theorem 10.6 (Lie–Trotter Product Formula4). Suppose that the operators A and B are the
generators of strongly continuous semigroups. Suppose further that there exist constants M ≥ 1
and ω ∈ R such that

∥

∥

∥

(

e
t

n
Be

t

n
A
)n∥

∥

∥
≤Meωt (10.3)

holds for all t ≥ 0 and n ∈ N. Consider the sum A + B on D = D(A) ∩ D(B), and assume that
D and

(

λ0 − (A + B)
)

D are dense in X for some λ0 > ω. Then C = A+B generates a strongly
continuous semigroup given by the sequential splitting, i.e.,

etCu0 = lim
n→∞

(

e
t

n
Be

t

n
A
)n

u0

holds for all u0 ∈ X uniformly for t in compact intervals.

Although the theorem above ensures the convergence of the sequential splitting under rather
weak conditions, it does not tell us anything about the convergence rate. To obtain certain error
bounds, the sum A+B with domain D = D(A)∩D(B) needs to be a generator as well. This leads
to stronger conditions on the operators A and B.

We show the first-order convergence of the sequential splitting following the idea which was
presented by Jahnke and Lubich for the Marchuk–Strang splitting.5 To this end, we need some
assumptions.

Assumption 10.7. Suppose that A generates a strongly continuous semigroup on the Banach
space X, and let B ∈ L (X). Suppose further that there exist a subspace Y such that

D(A) →֒ Y →֒ X

with dense and continuous embeddings. We also assume that D(A) is invariant under the operator
B, and that Y is invariant under the semigroup (etA)t≥0.

Note that this means in particular that there are constants K1 and K2 such that

‖f‖Y ≤ K1‖f‖A holds for all f ∈ D(A), and

‖f‖ ≤ K2‖f‖Y holds for all f ∈ Y.

4H. F. Trotter,“On the product of semi-groups of operators,” Proc. Amer. Math. Soc. 10 (1959), 545–551.
5T. Jahnke and Ch. Lubich, “Error bounds for exponential operator splittings,” BIT 40 (2000), 735–744.
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We have already seen in the matrix case that the commutator of A and B plays an important role,
when seeking an error bound. It motivates us to define it properly also for A,B being generators,
and to bound it on an appropriate subspace. For B ∈ L (X) the commutator

[A,B]f = ABf −BAf

is only defined on D(A). However, in some cases we may be able to extend this estimate for all
f ∈ Y for the subspace Y satisfying Assumption 10.7.

Assumption 10.8. Suppose that A generates a strongly continuous semigroup on the Banach
space X, and that B ∈ L (X). Further suppose that there exists a constant c1 ≥ 0 such that

‖[A,B]f‖ ≤ c1‖f‖Y (10.4)

holds for all f ∈ D(A) with Y being the appropriate subspace such as in Assumption 10.7.

Note that in this case the operator [A,B] extends continuously to the entire space Y .

Example 10.9. Suppose that A generates a strongly continuous semigroup on the Banach space
X, and let B ∈ L (X). Suppose further that there exist constants α ∈ (0, 1) and c1 ≥ 0 such that

‖[A,B]f‖ ≤ c1‖(−A)αf‖

holds for all f ∈ D(A). Then the subspace Y = D
(

(−A)α
)

possesses all the properties listed in
Assumption 10.7, see Lecture 7.

Now we are able to state the first-order convergence of the sequential splitting.

Theorem 10.10. Consider operators A,B and a subspace Y satisfying Assumption 10.7. Under
Assumption 10.8 the sequential splitting is first-order convergent.

Proof. Let h ∈ (0, t0]. By applying Proposition 4.12, it is sufficient to show the stability and the
first-order consistency. Since A is a generator and B is bounded, by Exercise 5.5 the sum A + B

with domain D(A) generates a semigroup. After applying the renorming procedure (see Exercise
C.4) and shifting the generators in the appropriate way, we may assume that A, B, and A + B

generate contraction semigroups, that is, for all t ≥ 0 we have

∥

∥etA
∥

∥ ≤ 1,
∥

∥etB
∥

∥ ≤ 1, and
∥

∥et(A+B)
∥

∥ ≤ 1. (10.5)

In particular, for t < t0 this proves the stability of Fseq. Note that although the rescaling does not
effect the order of convergence, it may modify the constants appearing in the estimates and it may
have effect how small the time step h has to be chosen.

To show the first-order consistency (see Definition 4.11), we have to ensure the existence of a
constant M , depending on c1 and ‖B‖, such that for all f ∈ D(A) ⊂ Y we have

Eseq(h, f) =
∥

∥Fseq(h)f − eh(A+B)f
∥

∥ ≤Mh2‖f‖Y . (10.6)

Taylor’s Formula from Exercise C.2 implies

ehBg = g + hBg +

h
∫

0

(h− s)B2esBgds
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for all g ∈ X. In particular, for g = ehAf we have

ehBehAf = ehAf + hBehAf +

h
∫

0

(h− s)B2esBehAfds. (10.7)

On the other hand, note that the solution of the initial value problem d
dtv(t) = (A + B)v(t),

v(0) = v0, can be expressed by the variation-of-constants formula as

v(h) = ehAv0 +

h
∫

0

e(h−s)ABv(s)ds,

which implies

eh(A+B)f = ehAf +

h
∫

0

e(h−s)ABes(A+B)fds.

Using the variation-of-constants formula for the term v(s) = Bes(A+B)f once again, we obtain

eh(A+B)f = ehAf +

h
∫

0

e(h−s)ABesAfds+

h
∫

0

e(h−s)AB
(

s
∫

0

e(s−r)ABer(A+B)fdr
)

ds. (10.8)

Subtracting (10.7) from (10.8), the local error can be written as

Eseq(h, f) =
∥

∥ehBehAf − eh(A+B)f
∥

∥

≤
∥

∥

∥
hBehAf −

h
∫

0

e(h−s)ABesAfds
∥

∥

∥
+ ‖(R1 −R2)f‖ (10.9)

R1f =

h
∫

0

(h− s)B2esBehAfdswith

R2f =

h
∫

0

e(h−s)AB
(

s
∫

0

e(s−r)ABer(A+B)fdr
)

ds.and

For a continuously differentiable function η : R→ X, the fundamental theorem of calculus implies
that

η(s) = η(h) +

s
∫

h

η′(r)dr,

and therefore

hη(h)−

h
∫

0

η(s)ds = hη(h)−

h
∫

0

η(h)ds−

h
∫

0

(

s
∫

h

η′(r)dr
)

ds =

h
∫

0

(

h
∫

s

η′(r)dr
)

ds. (10.10)

We note that this corresponds to the error of the a first-order quadrature rule (the right rectangular
rule). In particular, for

η(s) = e(h−s)ABesAf,
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being continuously differentiable because D(A) is invariant under B, we have

hη(h)−

h
∫

0

η(s)ds = hBehAf −

h
∫

0

e(h−s)ABesAfds

being exactly the first term in (10.9) to be estimated. For this special choice of η we obtain

η′(s) = e(h−s)A(−A)BesAf + e(h−s)ABAesAf

= −e(h−s)A(AB −BA)esAf = −e(h−s)A[A,B]esAf,

‖η′(s)‖ ≤
∥

∥e(h−s)A
∥

∥ ·
∥

∥[A,B]esAf
∥

∥ ≤ c1‖e
sAf‖Y = c

∥

∥esA
∥

∥

Y
‖f

∥

∥

Y
,and

where we used condition (10.4) for esAf ∈ Y . Formula (10.10) implies the estimate for the first
term in (10.9):

∥

∥

∥
hBehAf −

h
∫

0

e(h−s)ABesAfds
∥

∥

∥
≤

h
∫

0

(

h
∫

s

∥

∥η′(r)
∥

∥ dr
)

ds (10.11)

≤

h
∫

0

(

h
∫

s

c
∥

∥esA
∥

∥

Y
‖f‖Y dr

)

ds ≤ K · h2eωh‖f‖Y ≤ K ′ · h2‖f‖Y ,

for some constant K ′ ≥ 0, where we used h ≤ t0 in the last step. For the second term in (10.9) we
have the rough estimate ‖(R1 −R2)f‖ ≤ ‖R1f‖+ ‖R2f‖ with

‖R1f‖ =
∥

∥

∥

h
∫

0

(h− s)B2esBehAfds
∥

∥

∥
≤

h
∫

0

(h− s)‖B2‖ ·
∥

∥esB
∥

∥ ·
∥

∥ehA
∥

∥ · ‖f‖ds

≤
h2

2
‖B‖2 · ‖f‖ (10.12)

‖R2f‖ =
∥

∥

∥

h
∫

0

e(h−s)AB
(

s
∫

0

e(s−r)ABer(A+B)fdr
)

ds
∥

∥

∥
and

≤

h
∫

0

∥

∥e(h−s)A
∥

∥ · ‖B‖
(

s
∫

0

∥

∥e(s−r)A
∥

∥ · ‖B‖ ·
∥

∥er(A+B)
∥

∥ · ‖f‖dr
)

ds

≤
h2

2
‖B‖2 · ‖f‖. (10.13)

Estimates (10.11), (10.12), and (10.13) imply the desired error bound for (10.9) with an appropriate
constant M depending on c1 and ‖B‖. �

If operator A generates an analytic semigroup of type (0, ω) with ω < 0, even stronger estimates
hold, requiring bounds only on the norm of the initial value u0. Recall that in this case there is a
constant M > 0 so that the estimates

∥

∥AetA
∥

∥ ≤
M

t
,

∥

∥(A+B)et(A+B)
∥

∥ ≤
M

t
, and hence

∥

∥Aet(A+B)
∥

∥ ≤
M

t
(10.14)

hold for all t > 0, see Corollary 9.22.
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Theorem 10.11. Suppose that A generates an analytic semigroup of type (1, ω) with ω < 0 on
the Banach space X, and B ∈ L (X). Suppose further that Assumptions 10.7 and 10.8 hold with
Y = D

(

(−A)α
)

for some α ∈ (0, 1), i.e.,

‖[A,B]f‖ ≤ c‖(−A)αf‖ holds for all f ∈ D(A).

Then the global error of the sequential splitting is bounded by

‖useq,h(nh)− u(nh)‖ ≤ hM0 log(n)‖u0‖,

for all u0 ∈ X and n > 1, n ∈ N, h ≥ 0, nh ∈ [0, t0]. In particular, the sequential splitting converges
in the operator norm like logn

n
.

Proof. As before, we assume that all occurring semigroups are contraction semigroups. Applying
the telescopic identity, the global error can be written with the help of the local error as

‖useq,h(nh)− u(nh)‖ =
∥

∥Fseq(h)
nu0 − enh(A+B)u0

∥

∥

=
∥

∥

∥

n−1
∑

j=0

Fseq(h)
n−j−1

(

Fseq(h)− eh(A+B)
)

ejh(A+B)u0

∥

∥

∥

≤

n−1
∑

j=0

‖Fseq(h)‖
n−j−1 ·

∥

∥

(

Fseq(h)− eh(A+B)
)

ejh(A+B)u0
∥

∥

≤ ‖Fseq(h)‖
n−1

∥

∥

(

Fseq(h)− eh(A+B)
)

u0
∥

∥

+
n−1
∑

j=1

‖Fseq(h)‖
n−j−1

∥

∥

(

Fseq(h)− eh(A+B)
)

A−1
∥

∥ ·
∥

∥Aejh(A+B)u0
∥

∥

for all u0 ∈ D(A). Since ‖Fseq(h)‖ ≤ 1, we obtain

‖useq,h(nh)− u(nh)‖ ≤
∥

∥

(

Fseq(h)− eh(A+B)
)

u0
∥

∥

+
n−1
∑

j=1

∥

∥

(

Fseq(h)− eh(A+B)
)

A−1
∥

∥ ·
∥

∥Aejh(A+B)u0
∥

∥. (10.15)

Since A+B generates an analytic semigroup, we have

∥

∥Aejh(A+B)
∥

∥ ≤
M

jh

for all j = 1, . . . , n. For g ∈ X we have A−1g ∈ D(A) →֒ D((−A)α), and hence

∥

∥

(

Fseq(h)− eh(A+B)
)

A−1g
∥

∥ ≤ h2C‖A−1g‖(−A)α ≤ h2C ′‖g‖.

Hence, for the second term in (10.15) we obtain

n−1
∑

j=1

∥

∥

(

Fseq(h)− eh(A+B)
)

A−1
∥

∥ ·
∥

∥Aejh(A+B)u0
∥

∥ ≤
n−1
∑

j=1

h2C ′
M

jh
≤ hC ′′ log(n).
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Consider now the case j = 0, that is, the first term in (10.15). To this end, we have to estimate
the operator norm of the local error. By (10.9), we have

Eseq(h, f) ≤
∥

∥

∥
hBehAu0 −

h
∫

0

e(h−s)ABesAu0ds
∥

∥

∥
+ ‖(R1 −R2)u0‖ .

Note that by (10.12) and (10.13) the inequality

‖(R1 −R2)‖ ≤ ‖R1‖+ ‖R2‖ ≤ h2‖B‖2.

holds. We conclude by means of (10.11) that

∥

∥

∥
hBehAu0 −

h
∫

0

e(h−s)ABesAu0ds
∥

∥

∥
≤

h
∫

0

(

h
∫

s

∥

∥

∥
e(h−r)A[A,B]erAu0

∥

∥

∥
dr

)

ds

≤

h
∫

0

(

h
∫

s

∥

∥

∥
e(h−r)A[A,B](−A)−α(−A)αerAu0

∥

∥

∥
dr

)

ds

≤

h
∫

0

(

h
∫

s

∥

∥

∥
e(h−r)A[A,B](−A)−α

∥

∥

∥
·
∥

∥(−A)αerAu0
∥

∥ dr
)

ds,

where by Assumption 10.8 we have [A,B](−A)−α ∈ L (X). By using Corollary 9.22, we obtain
that

∥

∥

∥
hBehAu0 −

h
∫

0

e(h−s)ABesAu0ds
∥

∥

∥
≤

∥

∥[A,B](−A)−α
∥

∥

h
∫

0

h
∫

s

∥

∥(−A)αerAu0
∥

∥ drds

≤ K

h
∫

0

h
∫

s

1

rα
drds‖u0‖ ≤ K ′h2−α‖u0‖.

Putting the pieces together we arrive at

‖useq,h(nh)− u(nh)‖ ≤ K ′h2−α‖u0‖+ hC ′′ log(n)‖u0‖ ≤M0h log(n)‖u0‖. �

The following two results of Jahnke and Lubich about the Marchuk–Strang splitting can be proved
by a slightly more detailed analysis, we postpone the proofs to the project phase.

Theorem 10.12. Suppose that A generates a semigroup of type (1, ω) with ω < 0 on the Banach
space X, and B ∈ L (X). Suppose further that Assumptions 10.7 and 10.8 hold with Y = D((−A)α)
for some α ∈ (0, 1), i.e.,

‖[A,B]f‖ ≤ c‖(−A)αf‖ holds for all f ∈ D(A). (10.16)

Then the Marchuk–Strang splitting is first-order convergent on D((−A)α). If in addition there exist
constants c2 ≥ 0 and 1 ≤ β ≤ 2 such that

‖[A, [A,B]]g‖ ≤ c2
∥

∥(−A)βg
∥

∥ (10.17)

holds for all g ∈ D(A2), then the Marchuk–Strang splitting is convergent of second order on
D((−A)β).
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Theorem 10.13. Suppose that A generates an analytic semigroup on the Banach space X, and
B ∈ L (X). Suppose further that B leaves D(A) invariant and that conditions (10.17) and (10.16)
hold for all f, g ∈ D(A2) with c1, c2 ≥ 0, α ≤ 1, and β = 1. Then the global error of the Marchuk–
Strang splitting is bounded by

‖ums,h(nh)− u(nh)‖ ≤ h2M0 log(n)‖u0‖

for all u0 ∈ X.

10.3 Example

Consider the m-dimensional Schrödinger equation on Ω = (−π, π)m:

{

∂tw(t, x) = i∆w(t, x)− iV (x)w(t, x), x ∈ Ω, t > 0

w(0, x) = w0(x), x ∈ Ω
(10.18)

with periodic boundary conditions, some given initial function w0, and a C4 potential V : Rm → C

being 2π-periodic in every coordinate direction, and transform the equation to an abstract Cauchy
problem in L2(Ω).

Let
C∞per(Ω) :=

{

f ∈ C∞(Rm) : f is 2π-periodic in each coordinate direction
}

,

and for f ∈ C∞per(Ω) we define

‖f‖2H1(Ω) := ‖f‖
2
L2(Ω) + ‖∂1f‖

2
L2(Ω) + · · ·+ ‖∂mf‖2L2(Ω)

‖f‖2H2(Ω) := ‖f‖
2
L2(Ω) + ‖∂1f‖

2
L2(Ω) + · · ·+ ‖∂mf‖2L2(Ω) +

m
∑

i,j=1

‖∂i∂jf‖
2
L2(Ω).

The completion of
{

f |Ω : f ∈ C∞per(Ω)
}

with respect to the norms ‖ · ‖H1(Ω) and ‖ · ‖H2(Ω) is denoted by H1
per(Ω) and H2

per(Ω), respectively.
Both are Banach spaces for the respective norms.

Now we split the operator C according to the different physical phenomena:

A = i∆ and B = −MiV

with the corresponding domains

D(A) = H2
per(Ω)

D(B) = L2(Ω).and

Of course, since V is a bounded function, the multiplication operator MiV is bounded on L2. By
using the Lumer–Phillips theorem, Theorem 6.3, one can show that i∆ generates a contraction
semigroup T on L2(Ω) (and, since −i∆ does this, too, the semigroup operators are invertible, in
fact they are unitary). By assumption B leaves D(A) invariant.
In order to prove the first-order convergence of sequential splitting and the second-order conver-

gence of Marchuk–Strang splitting, we have to verify the assumptions of Theorems 10.10 and 10.12,
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respectively. It remains to bound the norm of the commutators [A,B] and [A, [A,B]] on appropriate
subspaces. To get an idea how to choose the subspaces, we formally compute the commutators:

[A,B]f = ABf −BAf = ∆(V f)− V (∆f) = (∆V )f + 2(∇V )⊤ · (∇f)

and

[A, [A,B]]g = A
(

[A,B]g
)

− [A,B]
(

Ag
)

= i
(

∆(∆V )
)

g + 4i
(

∇(∆V )
)⊤
· (∇g) + 4i(∆V )(∆g).

They contain first- and second-order derivatives of the functions f and g, and their norms can be
estimated as follows:

‖[A,B]f‖2 ≤ ‖∆V ‖∞ · ‖f‖2 + ‖2(∇V )‖∞ · ‖∇f‖2 ≤ K(‖f‖2 + ‖∇f‖2) ≤ K‖f‖H1

‖[A, [A,B]]g‖2 ≤ ‖i
(

∆(∆V )
)

‖∞ · ‖g‖2 + ‖4i
(

∇(∆V )
)

‖∞ · ‖∇g‖2 + ‖4i(∆V )‖∞ · ‖∆g‖2and

≤ K ′(‖g‖2 + ‖∇g‖2 + ‖∆g‖2) ≤ K ′‖g‖H2

for some constants K,K ′ ≥ 0. By using again multiplicators as in Section 1.1 one can compute the
fractional powers of −i∆ (see also Exercise 7.2), and obtain that with the choice Y = H1

per(Ω) and

α = 1
2 and β = 1, the assumptions in Theorems 10.10 and 10.12 are fulfilled. Thus we conclude

that the sequential splitting is of first order, and the Marchuk–Strang splitting is of second order
for this problem.

One can show even more (see Exercise 7): Theorems 10.10 and 10.12 apply also to the semi-
discretisation of the problem. By applying a certain operator splitting procedure, the numerical
solution of problem (10.18) needs the approximation of the semigroups generated by the operators
A and B. The multiplication is a pointwise calculation at every grid point. The semigroup generated
by operator A = i∆ can be approximated by applying some spectral method, see Appendix A. Using
the approximation results presented in Lecture 3, we can imagine how such a combined method
works. For more details, we refer to the project phase.

Now we illustrate the results above by presenting some figures showing the behaviour of the global
error of the Marchuk–Strang splitting as a function of the time step h. We suppose m = 1. In the
first case the smooth potential V (x) = 1− cosx was used with random initial data in H1

per(−π, π),
indicated by red circles, and with random initial data in H2

per(−π, π), indicated by blue stars. In
the second case we used the non-smooth potential V (x) = x + π. One can see that in the case of
the smooth potential the convergence is of higher order for the initial data being in H2

per(−π, π)
than lying only in H1

per(−π, π). Thus, the numerical experiments are in line with the theoretical
results. We note that the numerical experiments suggest that the non-smoothness of the potential
does not allow a higher order convergence in general.

Remark 10.14. The commutator conditions stay the same for the corresponding parabolic problem

∂tw(t, x) = ∆w(t, x)− V (x)w(t, x),

such as the heat equation with special source term, the linearised reaction-diffucion equation, or
the imaginary-time Schrödinger equation. Thus, the considerations above apply to them as well.

Exercises

1. Compute the constant in the O(h3) term in the formula (10.2).
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Figure 10.1: Global error of Marchuk–Strang splitting as a function of the time step h.

2. Let X be a Banach space and let A,B ∈ L (X). Prove that the following assertions are equi-
valent:

(i) [A,B] = 0.

(ii) For all t ≥ 0 we have [etA, etB] = 0.

Show that under these equivalent conditions one has etAetB = et(A+B).

3. Prove Proposition 10.4.

4. Prove Theorem 10.6.

5. Let A and B be the generators of strongly continuous semigroups. Show that if there exist
constants M ≥ 1 and ω ∈ R such that

∥

∥

∥

(

e
t

n
Be

t

n
A
)n∥

∥

∥
≤Meωt (10.19)

holds for all t ≥ 0 and n ∈ N, then there exist constants M1,M2 ≥ 1 and ω1, ω2 ∈ R such that

∥

∥

∥

(

e
t

n
Ae

t

n
B
)n∥

∥

∥
≤M1e

ω1t

∥

∥

∥

(

e
t

2n
Ae

t

n
Be

t

2n
A
)n∥

∥

∥
≤M2e

ω2tand

holds as well for all t ≥ 0 and n ∈ N.

6. Work out the details of the conditions appearing in (10.5).

7. Study the space discretisation of the Schrödinger equation (10.18) which you can find as an
example in the paper of Jahnke and Lubich. Implement the method together with the sequential
and Marchuk–Strang splittings, and solve the equation numerically.



Lecture 11

Operator Splitting with Discretisations

We continue the study of operator splitting procedures and present two more topics concerning
these.

In Lecture 10 we investigated the convergence of the splitting procedures in the case when the
sub-problems are solved exactly. In concrete problems, however, the exact solutions are usually not
known. Therefore the use of certain approximation schemes is needed to solve the sub-problems.
When a partial differential equation is to be solved by applying operator splitting together with
approximation schemes, one usually follows the next steps:

1. The spatial differential operator is split into sub-operators of simpler form.

2. Each sub-operator is approximated by an appropriate space discretisation method (called semi-
discretisation). Then we obtain systems of ordinary differential equations corresponding to the
sub-operators.

3. Each solution of the semi-discretised system is obtained by using a time discretisation method.

In this lecture we investigate the cases where the solutions of the sub-problems are approximated
by using only a time discretisation method or only a space discretisation method. More general
cases, where all the steps 1, 2, and 3 are considered, will be investigated in the project phase of
this seminar.

As in Lecture 10, we consider the abstract Cauchy problem on the Banach space X of the form
{

d
dtu(t) = (A+B)u(t), t > 0

u(0) = u0
(11.1)

with densely defined, closed linear operators A and B. Throughout the lecture we suppose that the
closure C of A+ B with domain D(A) ∩D(B) is a generator, and also that the initial value u0 is
taken from D(A) ∩D(B).

Although we started our study of splitting procedures by giving the operators A and B explicitly
in the abstract Cauchy problem (11.1), in real-life applications the sum operator C is given. The
natural question arises how to split the operator C into the sub-operators A and B (cf. step 1
above). In practice, there are several ways to do this:

a) First we discretise the operator C in space, and split the matrix appearing in the semi-discretised
problem (according to some of its structural properties).

b) The operator C describes the combined effect of several different phenomena and is already
written as a sum of the corresponding sub-operators.

c) We split the operator according to the space directions (dimension splitting).1

1Sometimes also called as coordinate splitting.
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Procedure a) leads to the matrix case which was already presented in Section 10.1, and b) was
investigated in Section 10.2. First, we develop some abstract results that are applicable for the
dimension splitting. In contrast to the results presented in Section 10.2 (when operator B was
bounded), in this case we will have two unbounded operators.

11.1 Resolvent splittings

We turn our attention to the resolvent splittings which have already been introduced in Definition
10.1:

Lie splitting: FLie(h) =
(
I − hB

)−1(
I − hA

)−1
,

Peaceman–Rachford splitting: FPR(h) =
(
I − h

2B
)−1(

I + h
2A

)(
I − h

2A
)−1(

I + h
2B

)
.

We note that for closed and linear operators A,B , there appear the corresponding resolvents in
FLie(h) and FPR(h). We only have to assume that 1

h
and 2

h
belong to the resolvent sets of both

A and B for the Lie and the Peaceman–Rachford splittings, respectively. We are interested in,
however, the convergence of the splitting procedures. Since h has to be small then, we may suppose
without loss of generality that 1

h
(and therefore 2

h
) is large enough.

Observe that the terms in Lie and Peaceman–Rachford splittings correspond to the explicit and
implicit Euler methods with time steps h or h

2 . Thus, the resolvent splittings can be considered as
the application of operator splitting together with special time discretisation methods.

We prove next the first-order convergence of the Lie splitting following the idea presented by
Hansen and Ostermann.2

Theorem 11.1. Let A and B be linear operators, and suppose that there is a λ0 > 0 such that
λ ∈ ρ(A)∩ρ(B) for all λ ≥ λ0 (i.e., the Lie splitting is well-defined), and that there exist constants
M ≥ 1 and ω ∈ R such that ∥∥(FLie(h)

)k∥∥ ≤Mekωh (11.2)

holds for all k ∈ N and h ∈ [0, 1
λ0
] (i.e., the Lie splitting is stable). Suppose further that the

closure C of A + B (with A + B having the natural domain D(A) ∩ D(B)) generates a strongly
continuous semigroup on the Banach space X of type (M,ω), and that D(C2) ⊆ D(AB) ∩ D(A)
and AB(λ0 − C)−2 ∈ L (X) hold. Then the Lie splitting is first-order convergent on D(C2). That
is to say, for all t0 ≥ 0 we have

‖uLie,h(nh)− u(nh)‖ ≤ hK
(
‖u0‖+ ‖Cu0‖+ ‖C2u0‖

)

for all u0 ∈ D(C2) and nh ∈ [0, t0], n ∈ N, h ∈ [0, h0], where the constant K may depend on t0,
but not on n and h.

Proof. For better readability we denote the semigroup operators by etC . By using the definition
of the split solution, uLie,h(nh) = FLie(h)

nu0, and the telescopic identity, the error term can be
rewritten as

uLie,h(nh)− u(nh) = FLie(h)
nu0 − enhCu0 =

n−1∑

j=0

FLie(h)
n−j−1

(
FLie(h)− ehC

)
ejhCu0. (11.3)

2E. Hansen and A. Ostermann, “Dimension splitting for evolution equations,” Numer. Math. 108 (2008), 557–570.
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Next we estimate the local error, i.e., the term FLie(h) − ehC in the expression above. To do that
we need to introduce some auxiliary functions, which will also come handy in later lectures.

For all h > 0 and j ∈ N we define the bounded linear operators ϕj(hC) by

ϕj(hC)f :=
1

hj

h∫

0

τ j−1

(j − 1)!
e(h−τ)Cfdτ, (11.4)

for all f ∈ X and ϕ0(hC) = ehC . These operators are uniformly bounded for h ∈ (0, t0]. Indeed,
this is trivial for ϕ0(jC), whereas for j ≥ 1 we have

‖ϕj(hC)f‖ ≤ 1

hj

h∫

0

τ j−1

(j − 1)!

∥∥e(h−τ)Cf
∥∥dτ ≤ 1

hj(j − 1)!
‖f‖

h∫

0

rj−1Meω(h−r)dr

≤ 1

hj(j − 1)!
MCe

max{0,ω}h‖f‖
h∫

0

rj−1dr ≤ 1

j!
Memax{0,ω}t0‖f‖ = const. · ‖f‖.

Moreover, the operators ϕj(hC) satisfy the recurrence relation

ϕj(hC)f = 1
j!f + hCϕj+1(hC)f (11.5)

for all j = 0, 1, 2, ... and f ∈ X, see Exercise 1. They also leave D(C) and D(C2) invariant. In the
rest of the proof, we shall use only the following two consequences of (11.5):

(
I − ϕ0(hC)

)
f = −hCϕ1(hC)f and

(
ϕ1(hC)− ϕ0(hC)

)
f = hC

(
ϕ2(hC)− ϕ1(hC)

)
f.

For f ∈ D(C2) we shall derive a form for the local error FLie(h)f − ehCf that allows for the
appropriate estimates. So we take f ∈ D(C2) ⊂ D(A)∩D(B). For the sake of brevity we introduce
the following abbreviations for the resolvents:

RA = R( 1
h
, A) and RB = R( 1

h
, B),

then we have

FLie(h) =
1
h2RBRA.

By using the identity I = λR(λ,A)− AR(λ,A) for all λ ∈ ρ(A), i.e. I = 1
h
RA − ARA in our case,

we express now the local error, i.e., the middle term in the telescopic sum (11.3) in the following
form:

(
FLie(h)− ehC

)
f =

(
FLie(h)− ϕ0(hC)

)
f

= FLie(h)f −
(
1
h
RB −BRB

)(
1
h
RA −ARA

)
ϕ0(hC)f

= FLie(h)f −
(

1
h2RBRA − 1

h
BRBRA − 1

h
RBARA +BRBARA

)
ϕ0(hC)f

= FLie(h)
(
I − ϕ0(hC)

)
f +

(
1
h
BRBRA + 1

h
RBARA −BRBARA

)
ϕ0(hC)f.

Since f ∈ D(C2) ⊆ D(A), we can write

(
FLie(h)− ehC

)
f

= FLie(h)
(
I − ϕ0(hC)

)
f +

(
hBFLie(h) + hFLie(h)A− h2BFLie(h)A

)
ϕ0(hC)f.

(11.6)
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Observe that for every f ∈ D(C2) ⊆ D(A) we have the following relation:
(
hBFLie(h)− h2BFLie(h)A

)
f = hBFLie(h)(I − hA)f

= hB(I − hB)−1(I − hA)−1(I − hA)f = hB(I − hB)−1f

= BRBf.

For f ∈ D(C2) ⊆ D(B) we can rewrite this as:
(
hBFLie(h)− h2BFLie(h)A

)
f = BRBf

= RBBf = RB(
1
h
RA −ARA)Bf = 1

h
RBRABf −RBARABf

= 1
h
RBRABf −RBRAABf = hFLie(h)Bf − h2FLie(h)ABf.

By inserting this last expression into (11.6), we obtain
(
FLie(h)− ehC

)
f = FLie(h)

(
I − ϕ0(hC)

)
f + hFLie(h)(A+B)ϕ0(hC)f − h2FLie(h)ABϕ0(hC)f.

By using the identity
(
I − ϕ0(hC)

)
f = −hCϕ1(hC)f we obtain

(
FLie(h)− ehC

)
f = −FLie(h)hCϕ1(hC)f + hFLie(h)Cϕ0(hC)f − h2FLie(h)ABϕ0(hC)f

= FLie(h)hC
(
ϕ0(hC)− ϕ1(hC)

)
f − h2FLie(h)ABϕ0(hC)f.

On the other hand, we have
(
ϕ0(hC)− ϕ1(hC)

)
f = hC

(
ϕ1(hC)− ϕ2(hC)

)
f , and therefore

(
FLie(h)− ehC

)
f = FLie(h)h

2C2
(
ϕ1(hC)− ϕ2(hC)

)
f − h2FLie(h)ABϕ0(hC)f

for all f ∈ D(C2).

We now return to the error term. By using the equality above for f = ejhCu0, and that

ϕ0(hC)f = ehCf = (λ0 − C)−2ehC(λ0 − C)2f

holds for all f ∈ D(C2), we obtain the following expression for the error term in (11.3):

FLie(h)
nu0 − enhCu0

= h2
n−1∑

j=0

FLie(h)
n−j

((
ϕ1(hC)− ϕ2(hC)

)
C2 −AB(λ0 − C)−2ehC(λ0 − C)2

)
ejhCu0

= h2
n−1∑

j=0

FLie(h)
n−j

((
ϕ1(hC)− ϕ2(hC)

)
ejhCC2 −AB(λ0 − C)−2e(j+1)hC(λ0 − C)2

)
u0

for all u0 ∈ D(C2). Since the terms ϕ1(hC), ϕ2(hC), and ehC are uniformly bounded for h ∈ (0, t0]
and since by assumption the operator AB(λ0 − C)−2 is bounded, we obtain the desired estimate:

∥∥FLie(h)
nu0 − enhCu0

∥∥ ≤ h2
n−1∑

j=0

‖FLie(h)
n−j‖

(
(‖ϕ1(hC)‖+ ‖ϕ2(hC)‖) ·

∥∥ehC
∥∥j · ‖C2u0‖

+‖AB(λ0 − C)−2‖ ·
∥∥ehC

∥∥j+1 · ‖(λ2
0 − 2λ0C + C2)u0‖

)

≤ h2nMemax{0,ω}t
(
const. ·Memax{0,ω}t · ‖C2u0‖

+const. ·Memax{0,ω}t
(
‖u0‖+ ‖Cu0‖+ ‖C2u0‖

))

≤ h2nK̃
(
‖u0‖+ ‖Cu0‖+ ‖C2u0‖

)
= hK

(
‖u0‖+ ‖Cu0‖+ ‖C2u0‖

)

with a positive constant K depending on t0. This completes the proof. �
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Remark 11.2. The stability condition (11.2) in Theorem 11.1 is satisfied if

∥∥(I − hA)−1
∥∥ ≤ 1 and

∥∥(I − hB)−1
∥∥ ≤ 1

hold for all h > 0. In this case, by the Lumer–Phillips theorem, Theorem 6.3 both A and B generate
contraction semigroups on X. As a consequence of the convergence result above the operator C
generates a contraction semigroup, too.

Following the idea of the proof above, the second-order convergence of the Peaceman–Rachford
splitting can also be shown (see the already mentioned paper of Hansen and Ostermann).

Theorem 11.3. Let A and B be linear operators, and suppose that there is a λ0 > 0 such that
λ ∈ ρ(A) ∩ ρ(B) for all λ ≥ λ0 (i.e., the Peaceman–Rachford splitting is well-defined on D(B)),
and that there exist constants M ≥ 1 and ω ∈ R such that

∥∥(FPR(h)
)k
(I − h

2B)−1
∥∥ ≤Mekωh (11.7)

holds for all k ∈ N and h ∈ [0, 1
λ0
] (i.e., the Peaceman–Rachford splitting is stable). Suppose further

that the closure C of A + B (with A + B having the natural domain D(A) ∩ D(B)) generates a
strongly continuous semigroup on the Banach space X, and that D(C2) ⊆ D(AB) ∩ D(A) and
AB(λ0 − C)−2 ∈ L (X) hold. Then the Peaceman–Rachford splitting is second-order convergent on
D(C3). That is, for all t0 ≥ 0 we have

‖uPR,h(t)− u(t)‖ ≤ h2K

3∑

j=0

‖Cju0‖

for all u0 ∈ D(C3) and nh ∈ [0, t0], n ∈ N, h ∈ [0, 1
λ0
], where the constant K depends on t0, but

not on n and t.

Remark 11.4. The stability condition in Theorem 11.3 is satisfied for example if A and B generate
contraction semigroups, and X = H is a Hilbert space. Indeed, in this case we have

∥∥(I − hA)−1
∥∥ ≤ 1 and

∥∥(I − hB)−1
∥∥ ≤ 1 for all h > 0,

and one can prove that also

∥∥(I + h
2A)(I − h

2A)
−1

∥∥ ≤ 1 and
∥∥(I + h

2B)(I − h
2B)−1

∥∥ ≤ 1

hold for all h > 0, see Exercise 4.

As an illustration we give an example of operators A,B,C that satisfy the conditions of Theorem
11.1, hence, for which the Lie splitting is first-order convergent. More details and examples are left
to the project phase.

Example 11.5 (Dimension splitting). Consider the heat equation in two dimensions on Ω =
(0, 1)× (0, 1) with homogeneous Dirichlet boundary condition:





∂tw(t, x, y) = ∂x
(
a(x, y)∂xw(t, x, y)

)
+ ∂y

(
b(x, y)∂yw(t, x, y)

)
, (x, y) ∈ Ω, t > 0

w(0, x, y) = w0(x, y), (x, y) ∈ Ω

w(t, x, y) = 0, (x, y) ∈ ∂Ω, t > 0

(11.8)
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with some given initial function w0 and functions a, b ∈ C2(Ω) being positive on Ω. Problem (11.8)
can be formulated as an abstract Cauchy problem on the Banach space X = L2(Ω):

{
d
dtu(t) = Cu(t), t > 0

u(0) = u0

where the operator equals Cf = ∂x(a∂xf) + ∂y(b∂yf) for all f ∈ D(C) = H2(Ω) ∩ H1
0(Ω) and

generates an analytic semigroup onX. First of all, we note that by the Sobolev embedding theorem3

H2(Ω) is continuously embedded in C(Ω) and H4(Ω) is continuously embedded in C2(Ω). These
imply that the boundary conditions can be verified pointwise.

Now we split the operator according to the space directions, i.e., C = A+B with

Af = ∂x(a∂xf) and Bf = ∂y(b∂yf)

for all f ∈ D(C). In this special case the domains can be chosen as:4

D(A) =
{
f ∈ X : ∂xxf, ∂xf ∈ X, and f(0, y) = f(1, y) = 0 for almost every y ∈ (0, 1)

}

D(B) =
{
f ∈ X : ∂yyf, ∂yf ∈ X, and f(x, 0) = f(x, 1) = 0 for almost every x ∈ (0, 1)

}
.and

Then operators A,B with the corresponding domains generate analytic semigroups as well.

We have to verify now the assumptions of Theorem 11.1. The operators A,B and A+B generate
analytic contraction semigroups on X. To prove the domain condition, we have to show that for all
f ∈ D(C2) we have Bf ∈ D(A). For f ∈ D(C2) ⊆ H4(Ω) we have Bf ∈ H2(Ω) and f = Cf = 0 on
the boundary ∂Ω of Ω. Then ∂x(Bf), ∂xx(Bf) ∈ X. Since f = 0 on the boundary, its first and second
weak tangential derivatives equal zero on ∂Ω. Then from the continuity of Bf it follows that on the
horizontal lines of ∂Ω we have Bf = ∂y(b∂yf) = Cf − ∂x(a∂xf) = (∂xa)(∂xf)+ a∂xxf = 0− 0 = 0,
and on the vertical lines Bf = ∂y(b∂yf) = (∂yb)(∂yf) + b∂yyf = 0. This yields X ∋ Bf = 0 on ∂Ω,
therefore, Bf ∈ D(A).

The space Y := D(C2) equipped with the H4-norm becomes a Banach space, see Exercise 2. The
boundedness of operator AB(I − C)−2 follows now from the estimate

∥∥AB(I − C)−2
∥∥ ≤ ‖AB‖L (Y,X) ·

∥∥(I − C)−2
∥∥

L (X,Y )
. (11.9)

Indeed, for f ∈ Y = D(C2) we have

‖ABf‖ =
∥∥∂x

(
a∂x

(
∂y(b∂yf)

))
f
∥∥ ≤ const. · ‖f‖Y .

On the other hand for f ∈ Y = D(C2) we have

‖(I − C)2f‖ ≤ ‖(I − 2C + C2)f‖ ≤ ‖f‖+ 2‖Cf‖+ ‖C2f‖ ≤ const. · (‖f‖+ ‖Cf‖+ ‖C2f‖)
≤ const. · ‖f‖Y .

Thus, we have (I −C)2 ∈ L (Y,X) and (I −C)2 is closed. By Proposition 2.10 (I −C)−2 is closed,
too, and by the closed graph theorem it is bounded, i.e., (I − C)−2 ∈ L (X,Y ). Then estimate
(11.9) yields the desired boundedness.

3See, e.g., Theorem 4.12 in R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier, 2003.
4A. Ostermann, K. Schratz, “Stability of exponential operator splitting methods for non-contractive semigroups,”

preprint.
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11.2 Operator splitting with space discretisation

In this section we consider operator splittings applied together with a space discretisation method
(steps 1 and 2). That is, we assume that the semigroups generated by the sub-operators A,B are
approximated by some approximate semigroups.

Consider the abstract Cauchy problem (11.1) on the Banach spaceX for the sum of the generators
A and B. As we did in Assumption 3.2, we define approximate spaces and projection-like operators
between the approximate spaces and the original space X.

Assumption 11.6. Let Xm, X be Banach spaces and assume that there are bounded linear
operators Pm : X → Xm, Jm : Xm → X with the following properties:

a) There is a constant K > 0 with ‖Pm‖, ‖Jm‖ ≤ K for all m ∈ N,

b) PmJm = Im, the identity operator on Xm, and

c) JmPmf → f as m→∞ for all f ∈ X.

As already illustrated in Examples 3.3 and 3.4, the operators Pm together with the spaces Xm

usually refer to a kind of space discretisation (cf. Appendix A), the spaces Xm are usually finite
dimensional spaces, and the operators Jm refer to the interpolation method how we associate specific
elements of the function space to the elements of the approximating spaces.

First we split the operator C = A + B appearing in the original problem (11.1) into the sub-
operators A and B. In order to obtain the semi-discretised systems, the sub-operators A and B
have to be approximated by operators Am and Bm for m ∈ N fixed. Suppose that the operators Am

and Bm generate the strongly continuous semigroups Tm and Sm on the space Xm, respectively.
For the analysis of the convergence, we need to recall the following from Lecture 3.

Assumption 11.7. Suppose that for m ∈ N the semigroups Tm and Sm and their generators Am,
Bm satisfy the following conditions:

a) there exist constants M ≥ 1 and ω ∈ R such that Tm and Sm are all of type (M,ω), and for all
h > 0, k,m ∈ N we have ∥∥(Sm(h)Tm(h)

)k∥∥ ≤Mekωh. (11.10)

b) We have

lim
m→∞

JmAmPmf = Af for all f ∈ D(A)

lim
m→∞

JmBmPmf = Bf for all f ∈ D(B).and

The semigroups Tm, Sm, m ∈ N, are called approximate semigroups, and their generators
Am, Bm, m ∈ N, are called approximate generators if they possess the above properties.

Remark 11.8. From the assumption above and from the first Trotter–Kato approximation theo-
rem, Theorem 3.14, it follows that

lim
m→∞

JmTm(h)Pmf = T (h)f

lim
m→∞

JmSm(h)Pmf = S(h)fand

for all f ∈ X and locally uniformly in h, where T and S are the semigroups generated by A and
B, respectively.
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From now on we consider the exponential splittings, that is, the sequential and Marchuk–Strang
splittings. We remark that, analogously to the case of exact solutions (i.e., splitting without ap-
proximation), the stability condition (11.10) implies the stability of the reversed order and the
Marchuk–Strang splittings (cf. Exercise 10.5). This means that the sequential and the Marchuk–
Strang splittings fulfill their stability condition (with space discretisation) if the stability condition
(11.10) holds. Therefore, it suffices to control only this condition in both cases.

Definition 11.9. For the case of spatial approximation, we define the split solutions of (11.1) as

uspl,n,m(t) = Jm
(
Fspl,m(h)

)n
Pmu0, (t = nh)

for m,n ∈ N fixed and for u0 ∈ X. The operators Fseq,m, describing the splitting procedures
together with the space discretisation method, have the form (cf. Definition 10.1):

Sequential splitting: Fseq,m(h) = Sm(h)Tm(h),

Marchuk–Strang splitting: Fms,m(h) = Tm(h/2)Sm(h)Tm(h/2).

Definition 11.10. The numerical method for solving problem (11.1) described above is convergent
at a fixed time level t > 0 if for all ε > 0 there exists N ∈ N such that for all n,m ≥ N we have

‖uspl,n,m(t)− u(t)‖ ≤ ε.

This is the usual well-known notion of the convergence of a sequence with two indices and we will
use the notation

lim
n,m→∞

uspl,n,m(t) = u(t)

to express this.

In order to prove the convergence of operator splitting in this case, we state a modified version
of Chernoff’s theorem, Theorem 5.12, which is applicable for approximate semigroups as well.

Theorem 11.11 (Modified Chernoff Theorem). Consider a sequence of strongly continuous func-
tions Fm : [0,∞)→ L (Xm), m ∈ N, satisfying

Fm(0) = Im (11.11)

for all m ∈ N, and suppose that there exists constants M ≥ 1, ω ∈ R such that

∥∥(Fm(t)
)k∥∥ ≤Mekωt (11.12)

holds for all t ≥ 0 and m, k ∈ N. Suppose further that the limit

lim
m→∞

JmFm(h)Pmf − JmPmf

h

exists uniformly in h ∈ (0, t0], and that

Gf := lim
hց0

lim
m→∞

JmFm(h)Pmf − JmPmf

h
(11.13)

exists for all f ∈ Y ⊂ X, where Y and (λ0 −G)Y are dense subspaces in X for λ0 > 0. Then the
closure C = G of G generates a bounded strongly continuous semigroup U , which is given by

U(t)f = lim
n,m→∞

Jm
(
Fm(h)

)n
Pmf (11.14)

for all f ∈ X uniformly for t in compact intervals (t = nh).
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Proof. For h > 0 we define

Gh,m :=
Fm(h)− Im

h
∈ L (Xm)

for all fixed h ∈ (0, t0] and m ∈ N. Observe that for all f ∈ Y we have

lim
hց0

lim
m→∞

JmGh,mPmf = Gf.

Then every semigroup (etGh,m)t≥0 satisfies

∥∥etGh,m
∥∥ ≤ e−

t
h

∥∥e t
h
Fm(h)

∥∥ ≤ e−
t
h

∞∑

k=0

tk

hkk!

∥∥(Fm(h)
)k∥∥ ≤Meω

′t (11.15)

for some ω′ ∈ R and for every fixed h and m. This shows that the assumptions of the first Trotter–
Kato approximation theorem, Theorem 3.14, are fulfilled. Hence we can take the limit in m →∞
(which is uniform in h ∈ (0, t0]), and then take limit as h → 0 obtaining that the closure G of G
generates a strongly continuous semigroup U given by

lim
hց0

lim
m→∞

∥∥U(t)f − JmetGh,mPmf
∥∥ = 0 (11.16)

for all f ∈ X and uniformly for t in compact intervals. On the other hand, we have for t = nh by
Lemma 5.7 that

∥∥JmetGh,mPmf − Jm
(
Fm(h)

)n
Pmf

∥∥ =
∥∥∥Jmen(Fm(h)−Im)Pmf − Jm

(
Fm(h)

)n
Pmf

∥∥∥

≤
√
nM‖JmFm(h)Pmf − JmPmf‖ =

√
n

h
M

∥∥∥∥
JmFm(h)Pmf − JmPmf

h

∥∥∥∥ .
(11.17)

Using that h = t
n
for some t ∈ [0, t0] and taking the limit, we obtain

lim
hց0

lim
m→∞

∥∥JmetGh,mPmf − Jm
(
Fm(h)

)n
Pmf

∥∥ = lim
hց0

lim
m→∞

tM√
n

∥∥∥∥
JmFm(h)Pmf − JmPmf

h

∥∥∥∥ = 0

(11.18)
for all f ∈ Y , and uniformly for t in compact intervals. The combination of (11.16) and (11.18)
yields

lim
hց0

lim
m→∞

∥∥U(t)f − Jm
(
Fm(h)

)n
Pmf

∥∥

≤ lim
hց0

lim
m→∞

∥∥U(t)f − JmetGh,mPmf
∥∥+ lim

hց0
lim

m→∞

∥∥JmetGh,mPmf − Jm
(
Fm(h)

)n
Pmf

∥∥ = 0

(t = nh) for all f ∈ Y , and uniformly for t in compact intervals. By Theorem 2.30, the statement
follows for all f ∈ X. �

In the rest of this lecture, we consider the convergence of the sequential splitting applied together
with a space discretisation method.

Lemma 11.12. Let Jm, Pm, Tm be operators introduced in Assumptions 11.6 and 11.7. Then

lim
m→∞

JmTm(h)Pmf − JmPmf

h
= 1

h

(
T (h)f − f

)

holds for all f ∈ D(A) uniformly in h ∈ (0, t0], and

lim
hց0

1
h

(
T (h)f − f

)
= Af.
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Proof. Let us investigate the following difference for all f ∈ D(A):

∥∥∥∥
JmTm(h)Pmf − JmPmf

h
− T (h)f − f

h

∥∥∥∥ =
1

h

∥∥∥∥

h∫

0

JmAmTm(s)Pmfds−
h∫

0

AT (s)fds

∥∥∥∥

≤ sup
s∈[0,t0]

‖JmAmTm(s)Pmf −AT (s)f‖ = sup
s∈[0,t0]

‖JmTm(s)AmPmf − T (s)Af‖

≤ sup
s∈[0,t0]

∥∥JmTm(s)Pm(JmAmPmf −Af) +
(
JmTm(s)Pm − T (s)

)
Af

∥∥

≤ sup
s∈[0,t0]

‖Jm‖ · ‖Tm(s)‖ · ‖Pm‖ · ‖JmAmPmf −Af‖+ sup
s∈[0,t0]

∥∥(JmTm(s)Pm − T (s)
)
Af

∥∥.

By Assumption 11.7, the term ‖JmAmPmf−Af‖ tends to 0 as m tends to infinity. Since g := Af is
a fixed element in the Banach space X, ‖JmTm(s)Pmg−T (s)g‖ tends to 0 uniformly in h as m→∞
because of Remark 11.8. Operators Jm and Pm were assumed to be bounded. The semigroups Tm

are of type (M,ω), independently of m. Therefore,

sup
s∈[0,t0]

‖Tm(s)‖ ≤ sup
s∈[0,t0]

Meωs ≤Memax{0,ω}t0 = const. <∞.

Hence, the difference above tends to 0 uniformly in h. The second limit as hց 0 can be obtained
by using the definition of the generator:

lim
hց0

T (h)f − f

h
= Af for all f ∈ D(A).

Thus, the statement is proved. �

The same result is true for the semigroup S generated by the operator B, that is,

lim
hց0

lim
m→∞

JmSm(h)Pmf − JmPmf

h
= Bf (11.19)

holds for all f ∈ D(B), where the limit as m→∞ is locally uniform in h.

Theorem 11.13. The sequential splitting is convergent at time level t > 0 if the stability condition
(11.10) holds for the approximate semigroups, and the approximate generators satisfy Assumption
11.7.

Proof. According to the modified Chernoff theorem, Theorem 11.11, the sequential splitting is
convergent if the stability (11.12) and the consistency (11.13) hold for the operator

Fm(h) = Sm(h)Tm(h). (11.20)

The stability condition (11.12) is fulfilled, since we assumed that (11.10) holds. In order to prove
the consistency criterion (11.13), we investigate the following limit:

lim
hց0

lim
m→∞

JmSm(h)Tm(h)Pmf − JmPmf

h

= lim
hց0

lim
m→∞

JmSm(h)Pm
JmTm(h)Pmf − JmPmf

h

+ lim
hց0

lim
m→∞

JmSm(h)Pmf − JmPmf

h
.
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Remark 11.8 implies

lim
m→∞

JmSm(h)Pmf = S(h)f for all f ∈ X and uniformly for h ∈ [0, t0]

lim
hց0

S(h)f = f for all f ∈ X.and

Notice further that the set
{
1
h
(JmTm(h)Pmf − JmPmf) : h ∈ (0, t0]

}
is relatively compact for all

f ∈ D(A), and that on compact sets the strong and the uniform convergence is equivalent due to
Theorem 2.30. Then Lemma 11.12 and (11.19) imply that

lim
hց0

lim
m→∞

JmFm(h)Pmf − JmPmf

h
= (A+B)f

holds for all f ∈ D(A)∩D(B) (see also the proof of Corollary 4.10). This completes the proof. �

We state now the convergence of the Marchuk–Strang splitting, and leave the proof as Exercise 5.

Theorem 11.14. The Marchuk–Strang splitting is convergent at time level t > 0 if the stability
condition (11.10) holds for the approximate semigroups, and the approximate generators satisfy
Assumption 11.7.

Exercises

1. Prove the recurrence relation (11.5).

2. Let C be the operator from Example 11.5. Prove that the H4-norm makes D(C2) a Banach
space.

3. Consider the operators A, B and C from Example 11.5 with a = b = 1. Show that they generate
analytic contraction semigroups.

4. Suppose A generates a contraction semigroup on the Hilbert space H. Prove that the Cayley

transform

G = (I +A)(I −A)−1

of A is a contraction.

5. Prove Theorem 11.14.



Lecture 12

Rational Approximations

In the previous lectures we have seen some examples for time discretisation methods, e.g., the
explicit and implicit Euler methods, the Crank–Nicolson scheme, and the Radau II A method. We
now turn to study numerical approximation schemes F : [0,∞) → L (X) (see Lecture 4) that are
defined by means of a rational function r:

F (h) = r(hA).

Such were the previously mentioned time discretisation methods. In general, we first need to give
meaning to the expression r(hA), and—in view of the Lax equivalence theorem, Theorem 4.6—
to study consistency and stability of these schemes. We start with the scalar case and make the
following definition. Let r : C → C be a rational function, i.e., r = P

Q
with P,Q polynomials and

Q 6= 0, and even if it is not stated we shall usually suppose that P and Q have no common zeros.

Definition 12.1. We call a rational function r a rational approximation of the exponential function
of order p, rational approximation of order p for short, if there are constants C, δ > 0 such
that

|r(z)− ez| ≤ C|z|p+1 for all z ∈ C with |z| ≤ δ.

12.1 The scalar case

Recall the test equation, already seen in Section 1.1 and Appendix B, with the unknown function
u : [0,∞)→ C:

{

d
dtu(t) = λu(t), t > 0

u(0) = u0,
(12.1)

where the parameter λ ∈ C and the initial value u0 ∈ C are given. Of course, the exact solution of
problem (12.1) equals u(t) = etλu0.

1. Consistency

That r is a rational approximation of order p means by definition that F (h) := r(hλ) is a finite
difference scheme (method) consistent of order p on X = R with the Cauchy problem (12.1),
cf. Definition 4.11. By considering the power series expansion around z = 0 one sees immediately
that p-order consistency in this case is equivalent to the conditions

r(0) = 1, r′(0) = 1, . . . , r(p)(0) = exp(p)(0).

This yields the next example.

137
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Example 12.2. Consider

r(z) := 1 + z +
z2

2!
+ ... · · ·+

zs

s!
.

Trivially, r is a rational approximation of order p = s. All explicit s-stage Runge–Kutta

methods of order p = s possess this stability function, see also Example 12.3 below.

If we apply the time discretisation method F (h) = r(hλ) to obtain the numerical solution uh,n
after n steps with time step h we are led to the recursion

uh,n = r(hλ)uh,n−1, n ∈ N.

Next we show that Runge–Kutta methods are of this form.

Example 12.3 (Runge–Kutta methods). Recall the s-stage Runge–Kutta method from Ap-
pendix B given by the recursion (B.13), (B.14). For the special right-hand side of problem (12.1)
we then have:

uh,n = uh,n−1 + hλ

s
∑

i=1

biki (12.2)

ki = uh,n−1 + hλ

s
∑

j=1

aijkjwith (12.3)

with certain coefficients aij , bi for i, j = 1, ..., s. We introduce the following vectors in R
s:

k = (k1, ..., ks)
⊤, 1 = (1, ..., 1)⊤, b = (b1, ..., bs)

⊤,

and the matrix A = (aij)i,j=1,...,s ∈ R
s×s. Then formulae (12.2) and (12.3) can be written as

uh,n = uh,n−1 + zb⊤k

k = (1− zA)−11uh,n−1and (12.4)

with z = hλ ∈ C. This implies for all n ∈ N that

uh,n = uh,n−1 + zb⊤(I − zA)−11uh,n−1 =
(

1 + zb⊤(I − zA)−11
)

uh,n−1, (12.5)

that is, we obtain uh,n = r(z)uh,n−1 with r(z) = 1 + zb⊤(I − zA)−11 which is a rational function
of z ∈ C. To work out the details of the computations above is left as Exercise 1.

Example 12.4. All the time discretisation methods introduced previously are Runge–Kutta me-
thods. Therefore, the corresponding rational function can be obtained by the derivation in Example
12.3.

explicit Euler method: r(z) = 1 + z

implicit Euler method: r(z) =
1

1− z

Crank–Nicolson scheme: r(z) =
1 + z

2

1− z
2

Radau II A method: r(z) =
1 + 2

5z +
1
10

z2

2

1− 3
5z +

3
10

z2

2 −
1
10

z3

6

.
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Now let us return to general rational functions

r(z) =
P (z)

Q(z)
,

with k = deg(P ) and l = deg(Q), where we suppose that P and Q have no common zeros. If
k, l ∈ N0 are fixed, the maximal order of approximation to the exponential function is p = k + l,
see Exercise 5. Such rational approximations r are called rational Padé approximations. One
can collect the corresponding functions r in the Padé tableau, see Table 12.1 for examples.

l\k 0 1 2

0
1

1

1 + z

1

1 + z + z2

2!

1

1
1

1− z

1 + 1
2z

1− 1
2z

1 + 2
3z +

2
3
z2

2!

1− 1
3z

2
1

1− z + z2

2!

1 + 1
3z

1− 1
3z +

1
3
z2

2!

1 + 1
2z +

1
6
z2

2!

1− 1
2z +

1
6
z2

2!

3
1

1− z + z2

2! −
z3

3!

1 + 1
4z

1− 1
4z +

1
2
z2

2! −
1
4
z3

3!

1 + 2
5z +

1
10

z2

2!

1− 3
5z +

3
10

z2

2! −
1
10

z3

3!

Table 12.1: Padé tableau.

2. Stability issues

As discussed in Lecture 4, stability is fundamental if one longs for convergence of the method for
all initial values. More precisely, since uh,n =

(

r(hλ)
)n
u0 is expected to be the approximation of

the exact solution u(t) = etλu0 at time t = nh, the recursion uh,n = r(hλ)uh,n−1 needs to be stable.
This motivates the next definition. The set

S = S(r) =
{

z ∈ C : |r(z)| ≤ 1
}

is called the stability region of the corresponding rational approximation. Also note that, if one
starts, say with some Runge–Kutta method as in Example 12.3, and derives a formula for the
recursion, the appearing rational function r determines the stability of the method. Hence the
rational function is also called stability function.

Example 12.5. Consider the following time discretisation methods, their stability functions, and
stability regions.

1. For the explicit Euler method we have r1(z) = 1 + z, which implies

S(r1) = {z ∈ C : |1 + z| ≤ 1}

the closed disc of radius 1, centred at the point −1.

2. The implicit Euler method has stability function r2(z) =
1

1−z , hence,

S(r2) = {z ∈ C : |1− z| ≥ 1},

which is the exterior of the circle with radius 1 and centre 1.
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3. The stability function of the Crank–Nicolson scheme is r3(z) =
1+ z

2

1− z
2

, therefore,

S(r3) = {z ∈ C : Re z ≤ 0},

i.e., the left half-plane.

The respective stability regions are shown in Figure 12.1.

S(r1)

1

S(r2)

1

S(r3)

Figure 12.1: Stability regions: explicit Euler, implicit Euler, Crank–Nicolson methods.

From the examples above one can see that the stability of the recursion is not obvious. There
is a restrictive condition on z = hλ. To achieve a stable recursion uh,n = r(z)uh,n−1, n ∈ N, the
complex number z = hλ has to lie in the stability region S of the method. Since λ ∈ C is a given
parameter in problem (12.6), this yields a condition on the step size h. Thus, if Reλ ≤ 0, the explicit
Euler method is not unconditionally stable in contrast to the the implicit Euler or Crank–Nicolson
schemes (cf. Section B.1).

The rational approximations with stability region containing the entire left half-plane are called
A-stable1. If the stability region contains a sector

Σα = {z ∈ C : | arg(−z)| ≤ α} = −Σα,

for some α ∈ [0, π2 ], we speak about A(α)-stability. (For α = 0 we set Σ0 = (−∞, 0) and Σ0 =
(0,∞).) Notice that A-stability is the same as A(π2 )-stability. For example, the implicit Euler or
Crank–Nicolson schemes are A-stable.

α

Σα
α

Σα

Figure 12.2: The sector Σα and its reflection.

1The terminology is due to G. Dahlquist. According to Hairer, Nørsett and Wanner he said: ‘I didn’t like all these
“strong”, “perfect”, “absolute”, “generalized”, “super”, “hyper”, “complete” and so on in mathematical definitions, I
wanted something neutral; and having been impressed by David Young’s “property A”, I chose the term “A-stable”.’
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Without proof we state an important stability property of Padé approximations first conjectured
by Ehle2, and then proved by Wanner, Hairer, and Nørsett.3

Theorem 12.6. A rational Padé approximation r = P
Q

is A-stable if and only if

deg(Q)− 2 ≤ deg(P ) ≤ deg(Q).

That is, only those Padé approximations are A-stable whose stability functions appear in the
main diagonal or in the first or the second lower sub-diagonal of the Padé tableau.

Remark 12.7. Let r = P
Q

be an A-stable rational Padé approximation. If r is diagonal, i.e.,
deg(P ) = deg(Q), then r(∞) = 1, otherwise r(∞) = 0.

3. Convergence

The first motivating result shows that A(α)-stable rational approximations converge in the scalar
case. However, this result will be fundamental later, when we pass to rational approximation of
analytic semigroups.

Proposition 12.8. Let α ∈ (0, π2 ], and let r be an A(α)-stable rational approximation of order
p ∈ N. Then for all θ ∈ (0, α) and ε0 > 0 there exist constants C, c ≥ 0 such that

|r(z)n − enz| ≤ Cn|z|p+1e−nc|z| holds for all z ∈ Σθ with |z| ≤ h0, and for all n ∈ N.

In particular, we have for all λ ∈ Σα a constant K > 0 such that

|r(hλ)n − etλ| ≤ Kn|h|p+1e−nhc = Ke−tc
tp

np
(t = nh)

for all h ≥ 0 and n ∈ N, i.e., the method is convergent of order p.

Proof. First of all, let us fix C ′ ≥ 0 so that

|r(z)− ez| ≤ C ′|z|p+1 for all z ∈ Σα with |z| ≤ h0.

This is possible by the assumption about the approximation order. Note that

|ez| = eRe z ≤ e−|z| cos(θ) holds for all z ∈ Σθ.

We next claim that for some c′ > 0 the inequality

|r(z)| ≤ e−c
′|z| holds for all z ∈ Σθ with |z| ≤ h0.

We argue by contradiction and assume the contrary, i.e., that for all n ∈ N there is zn ∈ Σθ with
|zn| ≤ h0 such that

|r(zn)| > e−
|zn|
n .

By passing to a subsequence we may assume that (zn) ⊆ Σθ ∩ B(0, h0) is convergent to a limit
z ∈ Σθ ∩ B(0, h0). Then we obtain |r(z)| ≥ 1 and the A(α)-stability yields |r(z)| = 1. By the

2B. L. Ehle, “A-stable methods and Padé approximations to the exponential,” SIAM J. Math. Anal. 4 (1973),
671–680.

3G. Wanner, E. Hairer and S. P. Nørsett, “Order stars and stability theorems,” BIT Num. Math. 18 (1978),
475–489.
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maximum principle for the modulus of holomorphic functions (applied to r on − Σα) we obtain
that z = 0. Thus we conclude

e−
|zn|
n ≤ |r(zn)| ≤ |r(zn)− ezn |+ |ezn | ≤ C ′|zn|

p+1 + e−|zn| cos(θ).

Therefore
1
|zn|

(

e|zn|(cos(θ)−
1

n
) − 1

)

≤ C ′|zn|
pe|zn| cos(θ) → 0

as n→∞. This yields, however, a contradiction.

We obtain therefore the existence of a c′ > 0 asserted above, and we set c := min{c′, cos(θ)}. By
the standard telescopic identity we conclude

∣

∣r(z)n − enz
∣

∣ ≤
∣

∣r(z)− ez
∣

∣

n−1
∑

j=0

∣

∣r(z)
∣

∣

j∣
∣e(n−j−1)z

∣

∣ ≤
∣

∣r(z)− ez
∣

∣

n−1
∑

j=0

e−cj|z|e−c(n−j−1)|z|

≤ C ′|z|p+1e−c(n−1)|z| ≤ C ′ec|z|p+1e−nc|z| = C|z|p+1e−nc|z|

for all z ∈ Σθ with |z| ≤ h0. �

12.2 Rational functions of operators

Let A be a linear operator on a Banach space X with nonempty resolvent set. Given a rational
function r = P

Q
we would like to define r(A). First of all, we recall the case when r = P is a

polynomial. Suppose P (z) = zk. In this case, as we have already seen, we set D(A0) = X and
A0 = I, and for k ∈ N we define

D(Ak) :=
{

f ∈ D(Ak−1) : Ak−1f ∈ D(A)
}

,

Akf = AAk−1f for f ∈ D(Ak)

by recursion. ThenAk is a closed operator for every k ∈ N0, cf. Exercise 4.1. For a general polynomial
P 6= 0

P (z) = a0 + a1z + a2z + . . .+ akz
k

with ak 6= 0 we set D(P (A)) := D(Ak) and

P (A) := a0I + a1A+ a2A
2 + . . .+ akA

k,

which is again a closed operator, see Exercise 3.

Of course, we can write

P (z) = ak(z − z1)
m1(z − z2)

m2 · · · (z − zn)
mn

where zj ∈ C are pairwise different. Thus we have the identity

P (A) = ak(A− z1)
m1(A− z2)

m2 · · · (A− zn)
mn .

If P 6= 0 and the zeros of P all lie in ρ(A) then (A−zj) are in particular all injective, and we obtain

P (A)−1 =
1

ak
(A− z1)

−m1 · · · (A− zn)
−mn =

(−1)k

ak
R(z1, A)

m1 · · ·R(zn, A)
mn ∈ L (X).
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It is easy to see that ran(P (A)−1) = D(Adeg(P )).

Next we define

RA =
{

r = P
Q
: P,Q are polynomials with Q having all zeros in ρ(A)

}

and for r ∈ RA, r 6= 0 we set

r(A) := P (A)Q(A)−1,

with

D(r(A)) =
{

f ∈ X : Q(A)−1f ∈ D(P (A))
}

.

Then r(A) is a closed operator by Exercise 7.1, and we have

D(r(A)) =

{

D
(

Adeg(P )−deg(Q)
)

if deg(P ) ≥ deg(Q)

X otherwise.

Note that r(A) is well-defined, i.e., if r = P1

Q1
= P2

Q2
with Q1, Q2 having zeros in ρ(A) then

P1(A)Q1(A)
−1 = P2(A)Q2(A)

−1.

Finally, let us recall the partial fraction decomposition of a rational function. If r is a rational
function with poles zi of order νi ∈ N, then there is a unique polynomial P0 and coefficients cij ∈ C

such that

r(z) = P0(z) +
ν

∑

i=1

νi
∑

j=1

cij

(z − zi)j
.

This provides yet another evaluation of r(A) for r ∈ RA:

r(A) = P0(A) +

ν
∑

i=1

νi
∑

j=1

(−1)jcijR(zi, A)
j .

We can now at last define r(hA).

Definition 12.9. A finite difference scheme F such that F (h) = r(hA) holds for h ∈ [0, h0] with
some h0 > 0 is called a rational approximation scheme.

We now have a simple functional calculus for r ∈ RA. For the study of its various algebraic
and analytic properties we refer to the Appendix A.6 of the monograph4 by M. Haase. However
to obtain the convergence of the rational approximation method obtained from r ∈ RA further
structural properties of r and A are needed. This will be the subject of forthcoming lectures. In
the present one we shall give some illustration of results that can be expected, in a situation that
is quite near to the scalar case.

4M. Haase: The Functional Calculus for Sectorial Operators, vol. 169 of Operator Theory: Advances and Appli-
cations, Birkhäuser Basel, 2006.
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12.3 Multiplication operators

In this section we consider multiplication operators and start by briefly recalling some results
from Exercises 1.4, 7.2 and Examples 7.2, 9.6. Let (mn) ⊆ C be a sequence, and consider the
multiplication operator A = Mm with maximal domain

D(Mm) :=
{

(xk) ∈ ℓ2 : (mkxk) ∈ ℓ2
}

.

The norm of Mm is
‖Mm‖ = sup

k∈N
|mk|,

provided the latter expression is finite. Our standing assumption will be that

{mn : n ∈ N
}

⊆ Σδ

holds for some δ ∈ [0, π2 ). Or in other words:

Assumption 12.10. Let A = Mm be a multiplication operator with spectrum

σ(Mm) = {mn : n ∈ N
}

⊆ Σδ

for some δ ∈ [0, π2 ).

Under this condition A = Mm generates an analytic contraction semigroup T given by

T (t) = etA = Metm .

For β ≥ 0 the fractional power (−A)β of −A = −Mm is given by

(−A)β = M(−m)β with maximal domain D(M(−m)β ) =
{

(xn) ∈ ℓ2 : ((−mk)
βxk) ∈ ℓ2

}

.

Consider now the abstract Cauchy problem
{

d
dtu(t) = Au(t), t > 0

u(0) = u0
(12.6)

on the Banach space X = ℓ2 with u0 ∈ D(A). We use some rational approximation schemes to
obtain the numerical solution uh,n at time t, i.e., after n steps with time step h = t

n
.

The first illustrating result states the stability of some suitable schemes and explains why A-stability
may be relevant in the general situation of rational approximation schemes.

Proposition 12.11 (Stability theorem). Suppose A = Mm is as above, and let r be an A(δ)-
stable rational approximation. Then the estimate

∥

∥

(

r(hA)
)n
‖ ≤ 1

holds for all h > 0 and n ∈ N.

Proof. Note that for z ∈ Σδ and h ≥ 0 we have zh ∈ Σδ. Then by the preparatory remarks we have

∥

∥

(

r(hA)
)n∥

∥ ≤ sup
k∈N

∥

∥

(

r(hmk)
)n
f
∥

∥ ≤ sup
z∈ Σδ

|r(z)| ≤ 1. �

�
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We can extend the convergence result from the scalar case as follows. Our inspiration is the paper
by M.-N. Le Roux5.

Theorem 12.12 (Convergence theorem I.). Suppose A = Mm is as above. Let r be the stability
function of an A(α)-stable rational approximation of order p with |r(∞)| < 1 and α ∈ (δ, π2 ]. Then
there is a constant K > 0 such that

∥

∥r(hA)n − etA
∥

∥ ≤ K
hp

tp
=

K

np
(t = nh)

holds for all n ∈ N, t ≥ 0, i.e., one has the convergence of the rational approximation method in
the operator norm.

Proof. We have to estimate

∥

∥r(hA)n − etA
∥

∥ = sup
k∈N

∣

∣r(hmk)
n − etmk

∣

∣ = sup
k∈N

∣

∣r(hmk)
n − enhmk

∣

∣.

Since |r(∞)| < 1 we can choose h0 > 0 so large that

sup
{

z ∈ Σδ : |z| ≥ h0
}

=: r0 < 1.

Suppose first |hmk| ≤ h0. Then by Proposition 12.8 we obtain that

∣

∣r(hmk)
n − etmk

∣

∣ ≤ Cn|hmk|
p+1e−nhc|mk| =

C

np
|tmk|

p+1e−tc|mk| ≤
C ′

np

for some constants C ′, c > 0. On the other hand, if |hmk| > h0, then

|r(hmk)| ≤ r0 < 1.

Therefore with some appropriate constant C ′′ > 0 we have

|r(hmk)|
n ≤ rn0 ≤

C ′′

np
.

We also have

|enhmk | = enhRemk ≤ e−nh cos(α)|mk| = e−nh0 cos(α) ≤
C ′′′

np
.

Hence in case |hmk| ≥ h0 we obtain

|r(hmk)
n − etmk

∣

∣ ≤
C ′′′ + C ′′

np
.

This and the estimate in the first case finish the proof. �

The drawback of this result is that it tells nothing about the diagonal Padé approximations,
e.g., about the Crank–Nicolson scheme. For “smooth” initial data u0, however, we can recover
convergence without the assumption |r(∞)| < 1, hence the next result applies also to the missing
case of diagonal Padé approximations.

5M.-N. Le Roux, “Semidiscretization in time for parabolic problems,” Math. Comp. 147 (1979), 919–931.
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Theorem 12.13 (Convergence theorem II.). Suppose A = Mm is as above. Let r be the stability
function of an A(α)-stable rational approximation of order p with α ∈ (δ, π2 ]. Then for all β ∈ (0, p]
there is a constant K > 0 such that

‖uh,n − u(t)‖ = ‖r(hA)nu0 − etAu0‖ ≤ Khβ‖(−A)βu0‖ (t = nh)

holds for all n ∈ N, t ≥ 0 and u0 ∈ D
(

(−A)β
)

.

Proof. We first estimate the term

sup
k∈N

mk 6=0

∣

∣r(hmk)
n(−mk)

−β − etmk(−mk)
−β

∣

∣.

As before we choose h0 > 0 with

sup
{

z ∈ Σδ : |z| ≥ h0
}

=: r0 < 1.

If 0 < |hmk| ≤ h0, we obtain by Proposition 12.8 that

|r(hmk)
n(−mk)

−β − etmk(−mk)
−β

∣

∣ ≤ Cnhβ |hmk|
p+1−βe−nhc|mk|

=
Chβ

np−β
|tmk|

p+1e−tc|mk| ≤
C ′hβ

np−β
=

C ′hp

tp−β
.

On the other hand, suppose |hmk| > h0. Then by the A(α)-stability we obtain

∣

∣r(hmk)(−mk)
−β − etmk(−mk)

−β
∣

∣ ≤
2

|mk|β
≤

2hβ

h
β
0

.

Therefore, for all k ∈ N with mk 6= 0 we obtain

sup
k∈N

mk 6=0

∣

∣r(hmk)
n(−mk)

−β − etmk(−mk)
−β

∣

∣ ≤ C ′′hβ .

We now can write

‖r(hA)nu0 − etAu0‖
2
2 =

∑

k∈N

mk 6=0

∣

∣r(hmk)
nu0(k)− etmku0(k)

∣

∣

2

≤ sup
k∈N

mk 6=0

∣

∣r(hmk)
n − etmku0(k)

∣

∣

2
· ‖(−A)βu0‖

2
2 ≤ C ′′

2
h2β · ‖(−A)βu0‖

2
2.

The assertion is proved. �

Remark 12.14. 1. Of course, it was only for the sake of convenience that we stated the result
above on X = ℓ2 for suitable multiplication operators A = Mm. Essentially the same proofs
work for the general setting: Let (Ω,A , µ) be a σ-finite measure space (Ω a nonempty set, A

a σ-algebra, µ a measure), and consider the Banach space X = L2(Ω,A , µ) = L2(Ω). Suppose
m : Ω→ C is a measurable function such that the essential range of m is contained in the sector
Σα for some α ∈ [0, π2 ). Here the essential range is defined by

essran(m) :=
{

z ∈ C : m−1(B(z, ε)) has positive µ-measure for all ε > 0
}

.
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The spectrum of Mm is precisely essran(m), hence Σπ−α ⊆ ρ(A). The multiplication operator
A = Mm with maximal domain

D(Mm) :=
{

f ∈ L2(Ω) : mf ∈ L2(Ω)
}

generates an analytic semigroup T given by

T (t) = Metm .

For β ≥ 0 the fractional power (−A)β of −A = M−m is given by

(−A)β = M(−m)β with maximal domain D(M(−m)β ) =
{

f ∈ L2(Ω) : (−m)βf ∈ L2(Ω)
}

.

Now the analogues of the results from above can be stated and proved with just a bit more work.

2. By part 1. and the spectral theorem for self-adjoint operators, we see that the results in this
section remain valid for non-positive self-adjoint operators A on arbitrary Hilbert spaces.

Exercises

1. Consider an s-stage Runge–Kutta method applied for the problem (12.6) and defined by formulea
(12.2) and (12.3)

a) Derive the formulae (12.2), (12.3).

b) Derive the recursion (12.5).

c) Show that the stability function

r(z) =
(

1 + zb⊤(I − zA)−11
)

from formula (12.5) is a rational function. That is, r(z) = P (z)
Q(z) with

P (z) = det(I − zA+ z1b⊤) and Q(z) = det(I − zA).

d) Show that if the Runge–Kutta method is of order p, its stability function has the form

r(z) = 1 + z +
z2

2!
+ ....+

zp

p!
+O(zp+1).

2. Prove directly that the Crank–Nicolson approximation is A-stable, cf. Example 12.5.

3. Work out the details of Section 12.2.

4. Prove the existence of a partial fraction decomposition for a rational function. Hint: use complex
analysis.

5. Let r(z) = P (z)
Q(z) with k = deg(P ) and l = deg(Q), where we suppose that P and Q have

no common zeros. Show that if k, l ∈ N0 are fixed, the maximal order of approximation to the
exponential function is p = k + l.

6. Convince yourself about the details of Remark 12.14.



Lecture 13

Rational Approximation and Analytic Semigroups

As we have seen in the previous lecture, rational approximations behave in a nice way for selfadjoint
generators. This is due to the fact that

1. we have a well-established stability and convergence theory in the scalar case, and

2. since selfadjoint operators can be considered multiplication operators, we were able to extend
the scalar estimates in a uniform way depending only on geometric conditions on the spectrum.

Notice that though we could define rational functions of operators using various formulae in Section
12.2, we could not make direct use of these formulae but needed a more refined and intimate relation
between the function of an operator and the original scalar function itself. Such a relation is usually
called a functional calculus.

Recall from Lecture 9 the notion of sectorial operators: Let A be a linear operator on the Banach
space X, and let δ ∈ (0, π2 ). Suppose that the sector

Σπ
2
+δ :=

{

λ ∈ C \ {0} : | arg λ| < π
2 + δ

}

is contained in the resolvent set ρ(A), and that

sup
λ∈Σπ

2 +δ′

‖λR(λ,A)‖ <∞ for every δ′ ∈ (0, δ).

Then the operator A is called sectorial of angle δ. For a sectorial operator A we defined

T (z) = ezA :=
1

2πi

∫

γ

eλzR(λ,A)dλ, (z ∈ Σδ) (13.1)

with a suitable curve γ. This definition yields a strongly continuous, analytic semigroup in case A
is densely defined. We also saw that densely defined sectorial operators are precisely the generators
of analytic semigroups.

This lecture is devoted to the study of rational approximation schemes for this class of semigroups.
To prove convergence of such schemes (in the spirit of Lecture 12, Section 12.3) we first need to
develop a functional calculus, which is a bit more general than the one above for the exponential
function.

13.1 The basic functional calculus

Let A be a sectorial operator of angle δ ∈ (0, π2 ) and let θ ∈ (π2 − δ, π2 ). We consider the sector

Σθ :=
{

z ∈ C \ {0} : | arg(−z)| < θ
}

= −Σθ = C \ Σπ−θ,

149
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and define

H∞0 ( Σθ) :=
{

F : Σθ → C : F is holomorphic

and there are ε > 0 and C ≥ 0 with |F (z)| ≤ C|z|ε

(1+|z|)2ε
for all z ∈ Σθ

}

.

We would like to plug the operator A into functions F ∈ H∞0 ( Σθ), and as we saw a couple of times
before, the operator F (A) will be defined by means of line integrals. First we specify the integration
paths. For δ′ ∈ (π2 − θ, δ) consider the curves given by the following parametrisations

γ1δ′(s) := sei(
π
2
+δ′) and γ2δ′(s) := se−i(

π
2
+δ′) for s ∈ [0,∞).

Then we consider the curve γδ′ := −γ
2
δ′ + γ1δ′ . By an admissible curve we shall mean a curve of

this type, see Figure 13.1. These ingredients are fixed for remaining of this lecture.

Definition 13.1. Let A be a sectorial operator of angle δ > 0, and let θ ∈ (π2 − delta, π2 ]. For
F ∈ H∞0 ( Σθ) we set

F (A) := ΦA(F ) :=
1

2πi

∫

γ

F (λ)R(λ,A)dλ

where γ = γδ′ with δ′ ∈ (π2 − θ, δ) is an admissible curve.

γ

δ′

θ′

δ

σ(A) θ

Σθ Σπ

2
+δ

Figure 13.1: An admissible curve γδ′ .

Some remarks are in order.

Remarks 13.2. 1. The integral is absolutely convergent because of the assumed decay of F ∈
H∞0 ( Σθ) near 0 and ∞ and because of the sectoriality of A. Hence F (A) ∈ L (X).

2. It is easy to see that the value of the integral defining F (A) is independent of the particular
choice of δ′ (use Cauchy’s theorem, cf. e.g. Lemma 9.12).

3. The set H∞0 ( Σθ) is an algebra with the pointwise operations.
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Proposition 13.3. The following assertions are true:

a) The mapping

ΦA : H∞0 ( Σθ)→ L (X)

is linear and multiplicative (i.e., an algebra homomorphism).

b) For F ∈ H∞0 ( Σθ) if a closed operator B commutes with the resolvent of A, then it commutes
with F (A).

c) For all F ∈ H∞0 ( Σθ), µ ∈ C\ Σθ = Σπ−θ and for G(z) := (µ−z)−1F (z) we have that G ∈ H∞0 ( Σθ)
and

G(A) = R(µ,A)F (A).

Proof. a) Linearity follows immediately from the definition. Multiplicativity can be proved based
on the resolvent identity, and similarly as in Lecture 7 for the power law of fractional powers, or in
Lecture 9 for the semigroup property.

b) The proof is left as an exercise.

c) Let µ ∈ C \ Σθ and let γ be an admissible curve. Then

R(µ,A)F (A) =
1

2πi

∫

γ

F (λ)R(µ,A)R(λ,A)dλ =
1

2πi

∫

γ

F (λ)(µ− λ)−1(R(λ,A)−R(µ,A))dλ

=
1

2πi

∫

γ

F (λ)(µ− λ)−1R(λ,A)dλ−
1

2πi

∫

γ

F (λ)(µ− λ)−1R(µ,A)dλ = G(A) + 0,

where the second term is 0 by Cauchy’s theorem. �

The missing details of the proof above are left as Exercise 1.

The above functional calculus does not include the function F (z) = 1
1−z corresponding to the

implicit Euler scheme or the exponential function exp. To be able to cover these functions we set

E( Σθ) := H
∞
0 ( Σθ) + lin

{

1
}

+ lin
{

(1− z)−1
}

.

Lemma 13.4. a) The sum defining the linear space E( Σθ) is a direct sum.

b) The linear space E( Σθ) is an algebra.

c) If F ∈ E( Σθ) then the function G, defined by G(z) := F (1z ), is an element of E( Σθ), too.

Proof. a) Let F ∈ E( Σθ). Then the limits

c := lim
z→0

z∈ Σθ

F (z) and d := lim
z→∞

z∈ Σθ

F (z)

exist, and we have

F (z) =
(

F (z)− d1+ (d− c)
1

1− z

)

+ d1− (d− c)
1

1− z
= G(z) + d1− (d− c)

1

1− z
,

where G ∈ H∞0 ( Σθ). This yields the assertion.
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b) We only have to prove that for F ∈ H∞0 ( Σθ) and G(z) = 1
1−z one has FG, G2 ∈ E( Σθ). This

statement about FG is trivial, since even FG ∈ H∞0 ( Σθ) is true by definition. As for G2 we have

G2(z) =
1

(1− z)2
=

1

1− z
+

z

(1− z)2
,

where the second function belongs to H∞0 ( Σθ). So G2 ∈ E( Σθ).

c) We leave the proof as exercise. �

Part a) of the lemma above implies that we can extend the functional calculus to E( Σθ) as follows:
For F ∈ E( Σθ) we introduce the abbreviations

F (0) := lim
z→0

z∈ Σθ

F (z) and F (∞) := lim
z→∞

z∈ Σθ

F (z).

Then

F (z) = G(z) +
F (0)− F (∞)

1− z
+ F (∞)1

with G ∈ H∞0 ( Σθ). Then we set

F (A) := ΦA(F ) := ΦA(G) + (F (0)− F (∞))R(1, A) + F (∞)I.

Before proving algebraic properties of this extended mapping, i.e., that it is a functional calculus,
we show that this new definition is at least consistent with the one developed in Lecture 9 for the
exponential function.

Proposition 13.5. a) Let F : Σθ → C be a holomorphic function that extends holomorphically to
0 and that, for some C ≥ 0 and ε > 0, satisfies

|F (z)| ≤
C

1 + |z|ε
for all z ∈ Σθ.

Then F ∈ E( Σθ) and we have

ΦA(F ) =
1

2πi

∫

γ

F (λ)R(λ,A)dλ,

where γ = γδ′,a is a suitable curve as depicted in Figure 13.2 (see Eq. 9.1) lying in the domain
where F is holomorphic.

b) For µ ∈ C \ Σθ and F (z) = (µ− z)k, k ∈ N we have

ΦA(F ) = R(µ,A)k.

Proof. a) We can write

F (z) = F (z)−
F (0)

1− z
+

F (0)

1− z
= G(z) +

F (0)

1− z

with G ∈ H∞0 ( Σθ). Indeed, since G(0) = 0 and G is holomorphic at 0 we have |G(z)| ≤ C|z| near
0. Besides that the estimate near ∞ remains valid, so we see F ∈ E( Σθ).
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γ

δ′

δ

σ(A)
a

θ

Σθ

Figure 13.2: The curve γδ′,a.

Next notice that the convergence of the integral above is only an issue at ∞ and is assured by the
decay of F . First consider the term

1

2πi

∫

δ′,a

G(λ)R(λ,A)dλ.

Since G ∈ H∞0 ( Σθ) we can let a → 0 and the value of the integral remains unchanged. So we can
conclude

1

2πi

∫

γ

G(λ)R(λ,A)dλ = lim
b→0

1

2πi

∫

γδ′,b

G(λ)R(λ,A)dλ = ΦA(G).

We now prove

R(µ,A)k =
1

2πi

∫

γ

1

(µ− λ)k
R(λ,A)dλ.

This identity will finish the proofs of both part a) and part b). Consider the curve γ̃ = −γη,a+|µ|.
By Cauchy’s theorem

∫

γ̃

R(λ,A)

(µ− λ)k
dλ = 0,

as can be seen by the usual trick of closing the curve γ̃ by increasing circle arcs on the right.
Therefore we obtain

1

2πi

∫

γ

R(λ,A)

(µ− λ)k
dλ =

1

2πi

∫

γ

R(λ,A)

(µ− λ)k
dλ+

1

2πi

∫

γ̃

R(λ,A)

(1− λ)k
dλ

=
1

2πi

∫

γ+γ̃

R(λ,A)

(µ− λ)k
dλ = −(−1)k

dk−1

dzk−1
R(µ,A) = −(−1)k(−1)k−1R(µ,A)k

= R(µ,A)k
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by Cauchy’s formula for the derivative. �

Proposition 13.6. The following assertions are true:

a) The mapping
ΦA : E( Σθ)→ L (X)

is a unital algebra homomorphism.

b) If a closed operator B commutes with the resolvent of A, then it also commutes with F (A).

c) For F (z) = z(1− z)−1 we have

F (A) = AR(1, A) = R(1, A)− I.

Proof. a) Linearity is immediate just as well the fact that ΦA preserves the unit. We only have to
prove multiplicativity on products F ·G, F (1− z)−1, (1− z)−1(1− z)−1. The first case is contained
in Proposition 13.3.a), while the second one is in Proposition 13.3.c). It remains to show that for
G(z) = (1− z)−2 one has

G(A) = R(1, A)2.

This is proved in Proposition 13.5.

b) The statement follows directly from the definition and from Proposition 13.3.b).

c) The proof is left as exercise. �

We close this section by the following useful formula, whose proof we nevertheless leave as Exercise
2.

Proposition 13.7. Let F : Σθ → C be a holomorphic function that is holomorphic at 0 and at ∞.
Then F ∈ E( Σθ) and we have

ΦA(F ) = F (∞) +
1

2πi

∫

γ

F (λ)R(λ,A)dλ,

where γ the positively oriented boundary of B(0, b) \ ( Σπ
2
−δ′ ∪ B(0, a)) for b > 0 sufficiently large

and a > 0 sufficiently small.

13.2 Examples

Exponential function

If A is a sectorial operator of angle δ > 0, then so is hA for every h ≥ 0: Indeed, we have that

‖R(λ, hA)‖ = 1
h

∥

∥R
(

λ
h , A

)∥

∥ ≤
M

|λ|
.

For every θ ∈ (π2 − δ, π2 ) we have exp ∈ E( Σθ), hence we can evaluate

ΦhA(exp) = ehA.

By Proposition 13.5 this is just the same as the exponential function of hA from Lecture 9, i.e., we
have

ehA =
1

2πi

∫

γ

ehλR(λ,A)dλ,

where γ is a curve as in Proposition 13.5, see Figure 13.2.
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Rational functions

Suppose r is an A(α)-stable rational function. Then r belongs to E( Σθ) for every θ ∈ (0, α]. If A
is sectorial operator of angle δ ∈ (π2 − α, π2 ), then so is hA for h ≥ 0, and we can evaluate ΦA(r)
by the functional calculus and ask whether this would be the same as r(hA) defined in Lecture 12,
Section 12.2. That these indeed coincide can be proved based on the partial fraction decomposition
and Proposition 13.5. In particular we have

r(A) = r(∞) +
1

2πi

∫

γ

(r(λ)− r(∞))R(λ,A)dλ, (13.2)

where γ is a curve as in Proposition 13.5, see Figure 13.2.

Fractional powers

For β > 0 and k ∈ N with k ≥ β consider the function

Fβ,k(z) :=
(−z)β

(1− z)k
.

Then Fβ,k ∈ H
∞
0 ( Σθ), so we can define

(−A)β := (I −A)kFβ,k(A)

with the natural domain

D((−A)β) =
{

f ∈ X : Fβ,k(A)f ∈ D(Ak)
}

.

The next result shows, among others, that the preceding definition is meaningful.

Proposition 13.8. a) The definition of (−A)β does not depend on the choice of k ∈ N.

b) For h ≥ 0 we have (−hA)β = hβ(−A)β.

c) For η ∈ N we have that (−A)β is the usual βth power of −A.

d) If 0 ∈ ρ(A), then this new definition coincides with the one in Lecture 7, i.e., for β > 0 we have

(I −A)kFβ,k(A) =
( 1

2πi

∫

γ

(−λ)−βR(λ,A)dλ
)−1

,

where γ is admissible curve as in Lecture 7.

The proof of this proposition is left as Exercise 5.

13.3 Convergence of rational approximation schemes

Based on the functional calculus ΦA developed we study rational approximation schemes for analytic
semigroups. We first investigate convergence results, analogous to the ones in Lecture 12.
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Theorem 13.9 (Convergence theorem I.). Let A be a sectorial operator of angle δ > 0 and let
r be an A(α)-stable rational approximation of the exponential function of order p with |r(∞)| < 1
and α ∈ (π2 − δ, π2 ]. Then there is a constant K > 0 such that

∥

∥r(hA)n − etA
∥

∥ ≤ K
hp

tp
=

K

np
(t = nh)

holds for all n ∈ N, t ≥ 0, i.e., one has the convergence of the rational approximation scheme in
the operator norm.

Proof. Fix δ′ ∈ (π2 − α, δ), the admissible curve γ = γδ′ , and let θ′ = π
2 − δ′. We set

Fn(z) := r(z)n − enz,

which is of course a function belonging to E( Σα). We have to estimate ‖Fn(hA)‖. Since Fn(0) = 0,
we have

Fn(z) = Fn(z) + Fn(∞)
z

1− z
− Fn(∞)

z

1− z
= Gn(z)− Fn(∞)

z

1− z
,

with Gn(z) ∈ H
∞
0 ( Σα). Thus

Fn(hA) = Gn(hA)− Fn(∞)AR(1, A).

Since Fn(∞) = r(∞)n and since |r(∞)| < 1 we obtain

‖Fn(∞)AR(1, A)‖ ≤
K ′

np
for all n ∈ N. (13.3)

We turn to estimating Gn(hA). Since Gn ∈ H
∞
0 ( Σα), we have

Gn(hA) =
1

2πi

∫

γ

Gn(λ)R(λ, hA)dλ.

We shall split the path of integration into two parts: γ1 is the part of γ that lies outside of B(0, h0),
while γ1 is the part inside of this ball. Since |r(∞)| < 1 we can choose h0 > 1 so large that

sup
{

|r(z)| : z ∈ Σθ′ and |z| ≥ h0
}

=: r0 < 1.

For some constant C > 0 we have

|r(z)− r(∞)| ≤
C

|z|
for all z ∈ Σθ′ with |z| ≥ h0.

This and the telescopic formula yield the estimate

|r(z)n − r(∞)n| ≤ |r(z)− r(∞)|
n−1
∑

j=0

|r(z)|n−1−j |r(∞)|j ≤
Cnrn−10

|z|
,

from which we obtain

|Fn(z)− Fn(∞)| = |enz|+ |r(z)n − r(∞)n| ≤ e−n cos(α)|z| +
Cnrn−10

|z|
.
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On the other hand we can write
∥

∥

∥

1

2πi

∫

γ2

Gn(λ)R(λ,A)dλ
∥

∥

∥
=

∥

∥

∥

1

2πi

∫

γ2

(

Fn(λ)− Fn(∞)
)

R(λ,A) +
Fn(∞)

1− λ
R(λ,A)dλ

∥

∥

∥

≤
M

π

∞
∫

h0

(

e−n cos(α)s +
Cnrn−10

s
+
|Fn(∞)|

s

)

s−1ds

≤
M

π
C ′

1

np
+

M

π
C ′nrn−10 +

M

π
C ′rn0 ≤

K ′′

np
for all n ∈ N. (13.4)

We next estimate the integral on γ1. Recall from Proposition 12.8 that there are constants C, c > 0
so that

|r(z)n − enz| ≤ Cn|z|p+1e−nc|z|

holds for all z ∈ Σθ′ with |z| ≤ h0, and for all n ∈ N. Whence we conclude

|Gn(z)| ≤ Cn|z|p+1e−nc|z| + C ′|z| · |Fn(∞)|.

This in turn yields

∥

∥

∥

1

2πi

∫

γ1

Gn(λ)R(λ,A)dλ
∥

∥

∥
≤ 2CMn

h0
∫

0

spe−nscds+ 2C ′h0|Fn(∞)|

≤
2CMn

cp+1np+1

∞
∫

0

tpe−tds+ 2C ′h0|Fn(∞)|

=
p!2CM

cp+1np
+ 2C ′h0|r(∞)|n ≤

K ′′′

np
for all n ∈ N. (13.5)

By putting everything, i.e., the estimates in (13.3), (13.4) and (13.5), together we conclude the
proof. �

An analogue of the next result we already saw in Lecture 12: Convergence for smooth initial data.

Theorem 13.10 (Convergence theorem II.). Let A be a sectorial operator of angle δ > 0 and
let r be an A(α)-stable rational approximation of the exponential function of order p with |r(∞)| < 1
and α ∈ (π2 − δ, π2 ]. For all β ∈ (0, p] there is a constant K ≥ 0 such that

‖r(hA)nf − enhAf‖ ≤ Khβ‖(−A)βf‖

holds for all f ∈ D((−A)β), h > 0 and n ∈ N.

Proof. We set

Fn(z) := (−z)−β
(

r(z)n − enz
)

.

Since Fn ∈ H
∞
0 ( Σα), we have

Fn(hA) =
1

2πi

∫

γ

Fn(λ)R(λ, hA)dλ
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for some admissible curve γ. Recall from Proposition 12.8 that we have

|r(z)n − enz| ≤ Cn|z|p+1e−nc|z|

for all z ∈ Σα with |z| ≤ 1, and for all n ∈ N. By this and by splitting γ into two parts γ1 and γ2,
inside and outside of the ball B(0, 1), we can estimate ‖Fn(hA)‖ as follows:

‖Fn(hA)‖ ≤
1

2π

∫

γ

|Fn(λ)| · ‖R(λ, hA)‖ · |dλ|

=
1

2π

∫

γ1

|Fn(λ)| ·
1
h‖R(λh , A)‖ · |dλ|+

1

2π

∫

γ2

|Fn(λ)| ·
1
h‖R(λh , A)‖ · |dλ|

≤
CM

2π

∫

γ1

|λ|p+1−βne−cn|λ|
|dλ|

|λ|
+

2M

2π

∫

γ2

|λ|−β
|dλ|

|λ|

≤
2CM

2π

1
∫

0

sp−βne−cnsds+
4M

2π

∞
∫

1

s−(β+1)ds

≤
2CM

2π

∞
∫

0

sp−βne−cnsds+
4M

2π

∞
∫

1

s−(β+1)ds

≤
2CM

2π

∞
∫

0

sp−βe−csds+
4M

2π

∞
∫

1

s−(β+1)ds = K.

Let k ∈ N be fixed with k > β, and consider the function

Gn(z) :=
(

r(z)n − enz
)

(1− z)−k = Fn(z)(−z)
β(1− z)−k.

Then we have

Gn(hA) = (r(hA)n − enhA)R(1, hA)k = Fn(hA)(−hA)βR(1, hA)k.

by Proposition 13.3.c). So for f ∈ D((−A)β) we can conclude

‖(r(hA)nf − enhA)f‖ ≤ ‖Fn(hA)(−hA)
βf‖ ≤ Khβ‖(−A)βf‖. �

13.4 Stability of rational approximation schemes

Finally, let us investigate the stability of of rational approximations. The question is delicate, and
we restrict our treatment here to a special case1 first.

Theorem 13.11. Suppose that A generates an analytic semigroup, i.e., it satisfies the resolvent
condition

‖R(λ,A)‖ ≤
M

|λ|
over the sector | arg λ| ≤ π

2 + δ.

1Ch. Lubich, O. Nevanlinna, “On resolvent conditions and stability estimates,” BIT 31 (1991), 293-313.
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Let π − δ < α ≤ π
2 , and let the rational approximation r be A(α)-stable, i.e., suppose that

|r(z)| ≤ 1 holds for | arg z − π| ≤ α,

and satisfies |r(∞)| < 1. Then there is K ≥ 1 so that for h > 0 and n ≥ 1 we have
∥

∥r(hA)n
∥

∥ ≤ K.

Proof. The proof is a delicate analysis of the curve integral representation of r(hA)n. To do that, for
n ∈ N consider the curve which is the union of γ1 : | arg z| =

π
2+δ, |z| ≥ 1/n, and γ0 : | arg z| ≤

π
2+δ,

|z| = 1/n see Figure 13.3. By the identity in (13.2) we have the representation

r(hA)n − r(∞)n =
1

2πi

∫

γ

(r(λ)n − r(∞)n)R(λ, hA)dλ. (13.6)

γ

δ

σ(A) 1

n

α

Σα

Figure 13.3: The curve γ.

To estimate the right-hand side, we split the integration path into four parts and use the following
inequalities. Note first that since r is an approximation of the exponential function, we always have
ρ > 0 such that there is C, c > 0 with

|r(z)| ≤ |1 + Cz| ≤ e−c|z|

for |z| < ρ and Re z < 0. From now on we suppose n ≥ 1
ρ . Further, by the condition |r(∞)| < 1,

there is c2 > 0 and 0 < r0 < 1 such that for all Re z < −c2 with | arg z−π| ≤ α we have |r(z)| ≤ r0.
Note the following:

a) If |z| = 1/n, then
|r(z)n| ≤ (1 + C|z|)n ≤ eC .

b) If −ρ sin(δ) ≤ Re z ≤ − 1
n sin(δ), then

|r(z)| ≤ e−c|z|.
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c) If −c2 ≤ Re z ≤ −ρ sin(δ), then

|r(z)| ≤ 1.

d) If Re z < −c2, then

|r(z)| ≤ r0,

|r(z)n − r(∞)n| = |r(z)− r(∞)| · |r(z)n−1 + r(z)n−2r(∞) + . . .+ r(∞)n−1| ≤
Cnrn−10

|z|
.and

The contribution of this last term to the path integral (13.6) is

∫

γ
Reλ≤−c2

|r(λ)n − r(∞)n| · ‖R(λ,A)‖ · |dλ| ≤ 2

∞
∫

c2/ sin(δ)

Cnrn−10

s
·
M

s
ds =

2CMnrn−10

c2
sin(δ),

which is uniformly bounded in n ∈ N.

The integrals over the parts defined in a) and c) are clearly bounded. We only have to check the
boundedness on part b). But this follows from

∫

γ

−ρ sin(δ)≤Re z≤− 1
n sin(δ)

M
e−Cn|z|

|z|
|dz| ≤ 2M

∞
∫

1

e−Cs

s
ds ≤ K ′

and
∫

γ

−ρ sin(δ)≤Re z≤− 1
n sin(δ)

|r(∞)|n
M

|z|
|dz| ≤ 2M |r(∞)|n

nρ
∫

1

1

s
ds = |r(∞)|n2M log(nρ) ≤ K ′′.

This completes the proof. �

One can extend2 the previous result and get rid of the condition |r(∞)| < 1. For the sake of
completeness we state the result but omit the proof.

Theorem 13.12. Suppose that A generates an analytic semigroup, i.e., it satisfies the resolvent
condition

‖R(λ,A)‖ ≤
K

|λ|
over the sector | arg λ| ≤ π

2 + δ.

Let π − δ < α ≤ π
2 , and let the rational approximation r be A(α)-stable, i.e., suppose that

|r(z)| ≤ 1 holds for | arg z − π| ≤ α.

Then there is M ≥ 1 so that for h > 0 and n ≥ 1 we have

∥

∥r(hA)n
∥

∥ ≤M.

2M. Crouzeix , S. Larsson , S. Piskarev , V. Thomée, “The stability of rational approximations of analytic semi-
groups,” BIT 33 (1993), 74–84.
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Exercises

1. Work out the details of the proof of Proposition 13.3.

2. Prove Proposition 13.7.

3. Prove Proposition 13.6.b) and c).

4. Prove Lemma 13.4.c).

5. Prove Proposition 13.8.



Lecture 14

Outlook

In this last lecture we present some further important topics which could have been part of our
lectures. Unfortunately, we did not have the time to include them but it will be possible to study
these topics among other important subjects in the project phase of the seminar.

14.1 Rational approximations revisited

We saw in Lectures 12 and 13 how functional calculi can help investigate stability and convergence
of rational approximation schemes. The Dunford–Riesz calculus from Lecture 13 works for sectorial
operators, i.e., for analytic semigroups, and suitable holomorphic functions. We briefly indicate
now how to obtain convergence and stability results for general strongly continuous semigroups by
means of a functional calculus.

Let A generate a semigroup on the Banach space X. Of course, by rescaling we may suppose that
A generates a bounded semigroup T . In this case all operators hA for h ≥ 0 do so. We would like
to define F (hA) for a suitably large class of holomorphic functions that contain at least A-stable
rational approximations.

The basic idea is to represent a holomorphic function F as the Laplace transform of a bounded
Borel measure µ on [0,∞), i.e.,

F (z) =

∞∫

0

ezsdµ(s) (Re z ≤ 0).

Then we can define

F (A) =

∞∫

0

T (s)dµ(s),

where the integral has to be understood pointwise and in the Bochner sense. Let us consider two
simple examples. First, let µ = δt the point-mass at some t ≥ 0. Then, of course, we have for the
Laplace transform that F (z) = etz, and hence F (A) = T (t). Second, let µ be the measure which
is absolutely continuous with respect to the Lebesgue measure on [0,∞) with Radon–Nikodym
derivative s 7→ e−λs (λ ∈ C with Reλ > 0). Then we have

∞∫

0

ezsdµ(s) =

∞∫

0

ezse−λsds = (λ− z)−1.

For F (A) we obtain

F (A) =

∞∫

0

T (s)dµ(s) =

∞∫

0

T (s)e−λsds = R(λ,A) = (λ−A)−1,

163
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by the familiar formula from Proposition 2.26. These examples at least indicate that we may be
on the right track. One can prove that in general F (A) is a bounded linear operator and the
mapping F 7→ F (A) ∈ L (X) is an algebra homomorphism (the Laplace transforms of bounded
Borel measures form an algebra with pointwise operations). This functional calculus is called the
Hille–Phillips calculus.

The idea to use the Hille–Phillips calculus for the study of rational approximations is due to Hersh
and Kato.1 They also formulated a conjecture that was subsequently(!) answered in the affirmative
by Brenner and Thomée:2

Theorem 14.1 (Brenner–Thomée, Stability theorem). Let r be an A-stable rational approxi-
mation of the exponential function (at least of order 1). Then there exist constants K ≥ 0, ω′ ≥ 0
such that for every strongly continuous semigroup T of type (M,ω) with ω ≥ 0 and with generator
A one has

‖r(hA)n‖ ≤ KM
√
neωω

′t (t = nh).

With some extra technicalities one may further refine this result. We remark, however, that in
its generality the stability result of Brenner and Thomée, i.e., the O(n1/2) term, is sharp. As for
convergence the next one is a basic result; see also Corollary 4.15.

Theorem 14.2 (Brenner–Thomée, Convergence theorem). Let r be an A-stable rational
approximation of the exponential function of order p. Then there exist constants K ≥ 0, ω′ ≥ 0
such that for every strongly continuous semigroup T of type (M,ω) with ω ≥ 0 and with generator
A one has for each f ∈ D(Ap+1) that

‖r(hA)nf − etAf‖ ≤ KMthpeωω
′t‖Ap+1f‖ (t = nh).

The proof of these beautiful results, as have been said, rely on the Hille–Phillips calculus or on
some variants of it, and on delicate estimates from harmonic analysis. Expect more in the project
phase of this seminar!

14.2 Non-autonomous problems

In many applications it is quite natural to consider differential equations with time dependent
coefficients, i.e., a non-autonomous evolution equation of the form

{
d
dtu(t) = A(t)u(t), t ≥ s ∈ R

u(s) = f ∈ X,
(14.1)

where X is a Banach space and A(t) is a family of (usually unbounded) linear operators on X.
As in the autonomous case, the operator family solving a non-autonomous Cauchy problem enjoys
certain algebraic properties.
A family U = (U(t, s))t≥s of linear, bounded operators on a Banach space X is called an (expo-
nentially bounded) evolution family if

(i) U(t, r)U(r, s) = U(t, s), U(t, t) = I hold for all s ≤ r ≤ t ∈ R,

1R. Hersh, T. Kato, “High-accuracy stable difference schemes for well-posed initial-value problems,” SIAM Journal
on Numerical Analysis 16 (1979), no. 4, 670–682.

2P. Brenner, V. Thomée, “On rational approximation of semigroups,” SIAM Journal on Numerical Analysis 16

(1979), no. 4, 683–694.
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(ii) the mapping (t, s) 7→ U(t, s) is strongly continuous,

(iii) ‖U(t, s)‖ ≤Meω(t−s) for some M ≥ 1, ω ∈ R and all s ≤ t ∈ R.

In general, and in contrast to the behaviour of semigroups, the algebraic properties of an evo-
lution family do not imply any differentiability on a dense subspace. So we have to add some
differentiability assumptions in order to solve a non-autonomous Cauchy problem by an evolution
family.

Definition 14.3. An evolution family U = (U(t, s))t≥s is called the evolution family solving

(14.1) if for every s ∈ R the regularity subspace

Ys :=
{
g ∈ X : [s,∞) ∋ t 7→ U(t, s)g solves (14.1)

}

is dense in X.

The well-posedness of (14.1) can be characterised by the existence of a solving evolution family.3

Hence, application of a suitable numerical method means the approximation of the evolution family
U .
To motivate the following, let us consider the scalar case X = R. Then assuming that the function

t 7→ A(t) ∈ R is smooth enough, the evolution family can be written explicitly as

U(t, s) = e
∫ t

s
A(r)dr. (14.2)

It is well-known that this formula holds in general only if the operators A(t) commute, hence, we
cannot use it in this form. We may make, however, the following heuristic arguments. Suppose that
A(r) generates a semigroup for all r ≥ s and that the function r 7→ A(r) is smooth in some sense.
Then choosing a small stepsize h > 0, the function [s, s + h] ∋ r 7→ A(r) may be assumed to be
constant, for example A(r) ≈ A(s) or A(r) ≈ A(s+ h

2 ). Hence, we arrive at the approximations

U(s+ h, s) ≈ ehA(s) or U(s+ h, s) ≈ ehA(s+h
2
),

respectively. These correspond to the left Riemann sum or the midpoint rule approximation of the
integral in (14.2), leading to the simplest possible approximation schemes of a series of methods.
Their basic idea is to express the solution u(t) in the form

u(t) = exp(Ω(t))f,

where Ω(t) is an infinite sum yielded by the formal iteration4

Ω(t) =

t∫

0

A(τ) dτ − 1

2

t∫

0

[ τ∫

0

A(σ) dσ,A(τ)
]
dτ

+
1

4

t∫

0

[ τ∫

0

[ σ∫

0

A(µ) dµ,A(σ)
]
dσ,A(τ)

]
dτ (14.3)

+
1

12

t∫

0

[ τ∫

0

A(σ) dσ,
[ τ∫

0

A(µ) dµ,A(τ)
]]
dτ + · · ·

3See the survey by R. Schnaubelt, “Semigroups for nonautonomous Cauchy problems”, in K. -J. Engel, R. Nagel,
One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 2000.

4W. Magnus, “On the exponential solution of differential equations for a linear operator”, Comm. Pure and Appl.
Math. 7 (1954), 639-673.
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(with s = 0), where [U, V ] = UV −V U denotes the commutator of the operators U and V . Methods
based on this formal expression are calledMagnus methods and can be described in the following
way: We cut off the infinite series somewhere and approximate the remaining integrals by suitable
quadrature rules. Although this method is extensively studied in the finite dimensional case, in
Banach spaces only a few papers can be found treating special cases.5

We give an idea on a possible approach to prove these formulae. It is possible to transform a
non-autonomous Cauchy problem to an autonomous one in a bigger, more complicated space (i.e.,
introducing an additional differential equation on the time evolution) in the following way. To every
evolution family we can associate semigroups onX-valued function spaces. These semigroups, which
determine the behaviour of the evolution family completely, are called evolution semigroups.
Consider the Banach space

BUC(R, X) =
{
F : R→ X : F is bounded and uniformly continuous

}
,

normed by
‖F‖ := sup

t∈R
‖F (t)‖, F ∈ BUC(R, X),

or any closed subspace of it that is invariant under the right translation semigroup R defined by

(R(t)F )(s) := F (s− t) for F ∈ BUC(R, X) and s ∈ R, t ≥ 0.

In the following X will denote such a closed subspace. We shall typically take X = C0(R, X), the
space of continuous functions vanishing at infinity.
It is easy to check that the following definition yields a strongly continuous semigroup.

Definition 14.4. For an evolution family U = (U(t, s))t≥s we define the corresponding evolution
semigroup T on the space X by

(T (t)F )(s) := U(s, s− t)F (s− t)

for F ∈ X , s ∈ R and t ≥ 0. We denote its infinitesimal generator by G .

With the above notation, the evolution semigroup operators can be written as

T (t)F = U(·, · − t)R(t)F.

We can recover the evolution family from the evolution semigroup by choosing a function F ∈ X

with F (s) = f . Then we obtain

U(t, s)x = (R(s− t)T (t− s)F )(s) (14.4)

for every s ∈ R and t ≥ s.
The generator of the right translation semigroup is essentially the differentiation − d

ds with domain

D(− d
ds) := X1 :=

{
F ∈ C1(R, X) : F, F ′ ∈ X

}
.

For a family A(t) of unbounded operators on X we consider the corresponding multiplication
operator A(·) on the space X with domain

D(A(·)) :=
{
F ∈ X : F (s) ∈ D(A(s)) ∀ s ∈ R, and [s 7→ A(s)F (s)] ∈ X

}
,

5M. Hochbruck, Ch. Lubich, “On Magnus integrators for time-dependent Schrödinger equations”, SIAM Journal
on Numerical Analysis 41 (2003), 945–963.
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and defined by

(A(·)F )(s) := A(s)F (s) for all s ∈ R.

The main power of evolution semigroups is that one can transform existing semigroup theoretic
results to the non-autonomous case and prove the convergence of various approximation schemes.
As an illustration, we present a simple convergence result.6 You will see more on this in the project
phase.

Theorem 14.5. Suppose that problem (14.1) is well-posed, D(A(t)) := D ⊂ X and that A(t)
generates a strongly continuous semigroup for each t ∈ R. If the function t 7→ A(t)f is uniformly
continuous for all F ∈ D, then

U(t, s)f = lim
n→∞

n−1∏

p=0

e
t−s
n

A(s+
p(t−s)

n
)f.

Here and later on, for bounded linear operators Lk ∈ L (X),

n−1∏

k=0

Lk := Ln−1Ln−2 · · ·L0

denotes the “time-ordered product”.

Proof. We only give the idea here. In the space BUC(R, X) consider the function

F (h) = R(h)ehA(·).

Then, for suitable F ∈ BUC(R, X), we get

lim
hց0

F (h)F − F
h

= lim
hց0

(
R(h)

ehA(·)F − F
h

+
R(h)F − F

h

)
= A(·)F − F ′.

Further, it is easy to check by induction that

(
R
(
t
n

)
e

t
n
A(·)
)n
F (·) =

1∏

p=n

(
e

t
n
A(·− pt

n
)
)
R(t)F (·).

Hence, applying Theorem 4.6, we get that the evolution semigroup can be represented as

T (t)F = lim
n→∞

1∏

p=n

(
e

t
n
A(·− pt

n
)
)
F (· − t).

The proof can be finished now by applying (14.4). �

6A. Bátkai, P. Csomós, B. Farkas, G. Nickel, “Operator splitting for nonautonomous evolution equations”, J.
Funct. Anal. 260 (2011), 2163–2190.
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14.3 Geometric properties of semilinear problems

The geometric theory of evolution equations is concerned with qualitative properties of particular
solutions (e.g., equilibria, periodic orbits, bifurcations) and their stability properties. In this section
we investigate whether numerical methods are able to capture the geometric properties of the exact
flow. For simplicity, we restrict our attention to the implicit Euler method. Similar results, however,
also hold for a large class of implicit Runge–Kutta methods (among others).
As an example, we consider the semilinear problem

{
d
dtu(t) = Au(t) + F (u(t))

u(0) = u0
(14.5)

on a Hilbert space X, together with its implicit Euler discretisation

un+1 = un + hAun+1 + hF (un+1) (14.6)

for n ∈ N, nh = t. We make the following standard assumptions.

Assumption 14.6. a) The operator A is the generator of a bounded analytic semigroup on X,
i.e., a densely defined closed linear operator on X whose resolvent is bounded by

‖(λ−A)−1‖ ≤M |λ|−1 for λ ∈ Σπ
2
+δ with some δ < π/2.

In addition, we assume that A itself is invertible with ‖A−1‖ ≤M . For a suitable α ∈ [0, 1) let
V = D((−A)α) be the domain of (−A)α equipped with the norm

‖v‖α = ‖(−A)αv‖.

b) The nonlinearity F : V → X is assumed to be locally Lipschitz bounded, i.e., for every R > 0,
there exists L = L(R) <∞ such that

‖F (v2)− F (v1)‖ ≤ L‖v2 − v1‖α for ‖vi‖α ≤ R (i = 1, 2).

Reaction-diffusion equations and the incompressible Navier–Stokes equations can be cast in this
abstract framework.

Equilibria

The simplest geometric object of (14.5) is an equilibrium point, i.e., a point u∗ satisfying

Au∗ + F (u∗) = 0.

It is obvious that u∗ is also an equilibrium point of the numerical scheme (14.6). We first linearise
F at u∗ to obtain

F (u) = Bu+G(u)

with

B =
d

du
F (u∗) and

d

du
G(u∗) = 0.

From a perturbation argument analogous to Theorem 6.14 we know that the operator Ã = A+B
generates an analytic semigroup of type (M,−ν), that is,

‖etÃ‖ ≤Me−νt. (14.7)
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We assume that the equilibrium point u∗ is asymptotically stable, i.e. ν > 0, and that there exist
positive constants R and M such that for any solution of (14.5) with initial value ‖u(0)− u∗‖ ≤ R
it holds that

‖u(t)− u∗‖ ≤Me−νt, t ≥ 0.

Our aim is to show that u∗ is an asymptotically stable fixed point of the map (14.6). For this, we
subtract

u∗ = u∗ + hÃu∗ + hG(u∗)

from the numerical method
un+1 = un + hÃun+1 + hG(un+1)

to get the recursion

un+1 − u∗ = (I − hÃ)−1(un − u∗) + h(I − hÃ)−1(G(un+1)−G(u∗)).

Solving this recursion, we get

un − u∗ = (I − hÃ)−n(u0 − u∗) + h
n∑

j=1

(I − hÃ)−n−1+j(G(uj)−G(u∗)). (14.8)

Our estimate below requires the following stability bounds for the sectorial operator A. For any
µ < ν there exists a maximal step size h0 such that the following bounds hold for h ∈ (0, h0] and
all j ∈ N

∥∥(I − hÃ)−j
∥∥ ≤Me−µjh

∥∥A−α(I − hÃ)−j
∥∥ ≤M

e−µjh

(jh)α
.

Let εn = ‖un − u∗‖. Taking norms in (14.8) and inserting these bounds, we obtain

εn ≤Me−νnhε0 + h
n∑

j=1

Me−ν(n+1−j)h

((n+ 1− j)h)α ε
2
j .

Solving the Gronwall type inequality, we get the following theorem.

Theorem 14.7. Let u∗ be an asymptotically stable equilibrium point of (14.5) with ν given by
(14.7), and let µ < ν. Under the above assumptions there exist positive constants h0, R, and M
such that the following holds: For h ∈ (0, h0] and ‖u0 − u∗‖ ≤ R, the implicit Euler discretisation
(14.6) fulfills the bound

‖un − u∗‖ ≤Me−µnh for all n ∈ N0.

Periodic orbits

Our next aim is to study the approximation of an asymptotically stable periodic orbit of (14.5)
by an invariant closed curve of (14.6). Here, we follow closely an article by Lubich and Ostermann
who studied this question for implicit Runge–Kutta methods.7 Let

S
(
t, u(τ)

)
= u(t+ τ) for all t ≥ 0

7Ch. Lubich, A. Ostermann, “Runge-Kutta time discretization of reaction-diffusion and Navier–Stokes equations:
Nonsmooth-data error estimates and applications to long-time behaviour,” Applied Numerical Math. 22 (1996),
279–292.
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denote the nonlinear semigroup on V of (14.5) and let

Sh(un) = un+1 for all n ∈ N

its numerical discretisation, defined by (14.6). We assume that problem (14.5) has an asymptotically
stable periodic orbit Γ = {u∗(t) : 0 ≤ t ≤ tp} with period tp, i.e.,

S
(
tp, u∗(t)

)
= u∗(t) for all t ≥ 0

and the Fréchet derivative of S along the periodic orbit has λ = 1 as a simple eigenvalue while the
remaining part of the spectrum is bounded in modulus by a number less than 1. Then the following
theorem holds.

Theorem 14.8. Consider problem (14.5) under the above assumptions. Then, for sufficiently small
time step h, the implicit Euler discretisation (14.6) has an invariant closed curve Γh in V , i.e.,
Sh(Γh) = Γh, which is uniformly asymptotically stable.
If the periodic solution lies in L1([0, tp], V ) over a period, then the Hausdorff distance with respect

to the norm of V between Γh and Γ is bounded by

distH(Γh,Γ) ≤ Ch. (14.9)

For more details and for the proof we refer to the project phase of the seminar.

14.4 Exponential integrators

Exponential integrators are numerical methods applied to solve semilinear evolution equations of
the form {

d
dtu(t) = Au(t) +G(t, u(t))

u(0) = u0.
(14.10)

Instead of discretising the differential equation directly, exponential integrators approximate the
mild solution given by the variation-of-constants formula

u(t) = etAu0 +

t∫

0

e(t−τ)AG(τ, u(τ)) dτ.

The simplest numerical method is obtained by replacing the nonlinearity G under the integral by
its known value at t = 0. For the approximation u1 of u(h) this yields

u1 = ehAu0 +

h∫

0

e(h−τ)AG(0, u0) dτ = ehAu0 + hϕ1(hA)G(0, u0)

with function ϕ1 already defined in (11.4). This numerical scheme is called exponential Euler

method. When integrating the equation from tn to tn+1 = tn + hn the method has the form

un+1 = ehnAun + hnϕ1(hnA)G(tn, un) = un + hnϕ1(hnA)(Aun +G(tn, un)).

Here, hn > 0 is the time step and un+1 is the numerical approximation to the exact solution
at time tn+1. The second representation is preferable from a numerical point of view since its
implementation requires only one evaluation of a matrix function.
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In a similar way, by introducing stages and/or using more sophisticated interpolation methods,
exponential Runge–Kutta and exponential multistep methods can be derived. We will come back
to these numerical schemes in the project part of the seminar. Here, we will only illustrate how this
approach is used for linear problems. We closely follow the presentation given in the recent survey
article by Hochbruck and Ostermann.8

Consider the linear inhomogeneous evolution equation

{
d
dtu(t) = Au(t) + F (t)

u(0) = u0
(14.11)

where A generates a strongly continuous semigroup and the inhomogeneity F is sufficiently smooth.
The solution of (14.11) at time

tn+1 = tn + hn, t0 = 0, n ∈ N0

is given by the variation-of-constants formula

u(tn+1) = ehnAu(tn) +

hn∫

0

e(hn−τ)AF (tn + τ) dτ. (14.12)

In order to obtain a numerical scheme, we approximate the function F by an interpolation poly-
nomial with prescribed nodes c1, . . . , cs. The resulting integrals can be computed analytically. This
yields the exponential quadrature rule

un+1 = ehnAun + hn

s∑

i=1

bi(hnA)F (tn + cihn), (14.13)

where the weights bi are linear combinations of the entire functions ϕj , j ∈ N defined in (11.4).

Example 14.9. For s = 1, the interpolation polynomial is the constant polynomial F (tn + c1hn)
and we get the numerical scheme

un+1 = un + hnϕ1(hnA)(Aun + F (tn + c1hn)).

The choice c1 = 0 yields the exponential Euler quadrature rule, while c1 =
1
2 corresponds to the

exponential midpoint rule.

Example 14.10. For s = 2, the interpolation polynomial has the form

p(tn + τ) = F (tn + c1hn) +
F (tn + c2hn)− F (tn + c1hn)

(c2 − c1)hn
(τ − c1hn),

and we obtain the weights

b1(z) =
c2

c2 − c1
ϕ1(z)−

1

c2 − c1
ϕ2(z)

b2(z) = −
c1

c2 − c1
ϕ1(z) +

1

c2 − c1
ϕ2(z).

The choice c1 = 0 and c2 = 1 yields the exponential trapezoidal rule.

8M. Hochbruck, A. Ostermann, “Exponential integrators,” Acta Numerica 19 (2010), 209–286.
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A more general class of quadrature methods is obtained by only requiring that the weights bi(hnA)
are uniformly bounded in hn ≥ 0. In order to analyse these schemes, we expand the right-hand side
of equation (14.12) into a Taylor series with remainder in integral form

u(tn+1) = ehnAu(tn) +

hn∫

0

e(hn−τ)AF (tn + τ)dτ

= ehnAu(tn) + hn

p∑

k=1

ϕk(hnA)h
k−1
n F (k−1)(tn)

+

hn∫

0

e(hn−τ)A

τ∫

0

(τ − ξ)p−1
(p− 1)!

F (p)(tn + ξ)dξdτ.

This is compared to the Taylor series of the numerical solution (14.13):

un+1 = ehnAun + hn

s∑

i=1

bi(hnA)F (tn + cihn)

= ehnAun + hn

s∑

i=1

bi(hnA)

p−1∑

k=0

hknc
k
i

k!
F (k)(tn)

+ hn

s∑

i=1

bi(hnA)

cihn∫

0

(cihn − τ)p−1
(p− 1)!

F (p)(tn + τ)dτ.

Obviously the error en = un − u(tn) satisfies

en+1 = ehnA en − δn+1 (14.14)

δn+1 =

p∑

j=1

hjnψj(hnA)f
(j−1)(tn) + δ

(p)
n+1,with

ψj(hnA) = ϕj(hnA)−
s∑

i=1

bi(hnA)
cj−1i

(j − 1)!
where

δ
(p)
n+1 =

hn∫

0

e(hn−τ)A

τ∫

0

(τ − ξ)p−1
(p− 1)!

F (p)(tn + ξ)dξdτand

− hn
s∑

i=1

bi(hnA)

cihn∫

0

(cihn − τ)p−1
(p− 1)!

F (p)(tn + τ)dτ.

We are now ready to state our convergence result.

Theorem 14.11. Let A generate a strongly continuous semigroup and let F (p) ∈ L1(0, t0). For
the numerical solution of problem (14.11) consider the exponential quadrature rule (14.13) with
uniformly bounded weights bi(hnA) for hn ≥ 0. If the method satisfies the order conditions

ψj(hnA) = 0 for all j = 1, . . . , p, (14.15)
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then it is convergent of order p. More precisely, the error bound

‖un − u(tn)‖ ≤ C

n−1∑

j=0

hpj

tj+1∫

tj

‖F (p)(τ)‖ dτ

holds uniformly on tn ∈ [0, t0], with a constant C that depends on t0 but is independent of the
chosen time step sequence hj.

Proof. Solution of the error recursion (14.14) yields the estimate

‖en‖ ≤
n−1∑

j=0

‖e(tn−tj)A‖ · ‖δ(p)j ‖.

The desired bound follows from the stability bound and the assumption on the weights. �

The End ... of Phase 1



Appendix A

Basic Space Discretisation Methods

Partial differential equations (PDEs) appear in all fields in which mathematical models are applied
to describe the time evolution of certain space-dependent quantities. Since these PDEs might be of
complicated form, it is often difficult or even impossible to solve them analytically. Therefore, one
has to apply numerical schemes to obtain an approximation to the exact solution. In the present
Appendix we deal with space discretisation methods, i.e., with numerical procedures approximating
the spatial differential operator appearing in the PDE.

Let us consider the following linear PDE in a general form with the differential operator L, and
the unknown function w : [0�∞)× Ω → R for t ∈ [0�∞) and x ∈ Ω ⊆ R

d:

∂α
t w(t� x) = Lw(t� x)� t > 0� x ∈ Ω

w(0� x) = w0(x)� x ∈ Ω�
(A.1)

subject to appropriate boundary conditions. Here Ω denotes an open set, and α ∈ N is the order of
the time derivative. We are merely interested in the cases α = 1, when ∂tw appears on the left-hand
side of equation (A.1), or α = 2 with ∂ttw. We note that for α = 0, the case f(x) = Lw(x) with a
given function f : Ω → R is also possible.

Example A.1. a) Heat equation

∂tw(t� x) = ∂xxw(t� x)

in one dimension with α = 1, x ∈ (0� π), and Lw(t� x) := ∂xxw(t� x). Together with the boundary
condition w(t� 0) = w(t� π) = 0, this problem was already investigated in Section 1.1.

b) Transport equation

∂tw(t� x) = ∂xw(t� x)

in one dimension with α = 1, x ∈ (0� 1), and Lw(t� x) := ∂xw(t� x). Together with the boundary
condition w(t� 1) = 0, this problem was already investigated in Section 1.2.

c) Wave equation

∂ttw(t� x) = ∂xxw(t� x)

in one dimension with α = 2, x ∈ (0� 1), and Lw(t� x) := ∂xxw(t� x) with w(t� 0) = ∂tw(t� 0) = 0.
We will come back to this example later on during the lectures.

The main idea behind the simplest discretisation type1 of PDEs is the following. First we discretise
the operator L on the right-hand side with respect to the space variable x. By this we obtain an
ordinary differential equation which is then solved by using time discretisation methods.

In what follows we discuss two ways of approximating the operator L and briefly introduce the
two main classes of space discretisation methods: finite differences and Galerkin methods.

1
It is called the method of lines.
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A.1 Finite difference methods

Here we discuss finite difference methods in the one-dimensional case for the heat and transport
equation, that is, for d = 1 and Ω = (a� b). In order to discretise problems like (A.1) in 1D, we
divide the interval (a� b) into N pieces of sub-intervals with length Δx = b−a

N
. Then the points

xj = a + jΔx, j = 0� ...� N , are called grid points.

Now, we would like to approximate the exact solution at time level t ≥ 0 and at the points xj ,
i.e., w(t� xj) = w(t� a+jΔx) by the values wj(t) for j = 0� ...� N . To this end we use Taylor’s formula
with respect to the second variable:

w(t� xj+1) = w(t� xj + Δx)

= w(t� xj) + Δx · ∂xw(t� xj) + 1
2(Δx)2 · ∂xxw(t� xj) + · · · �

w(t� xj−1) = w(t� xj − Δx)or

= w(t� xj)− Δx · ∂xw(t� xj) + 1
2(Δx)2 · ∂xxw(t� xj) + · · · .

The first- and second-order partial derivatives of w with respect to the space variable x, appearing
in the expression of Lw, can now be written as:

∂xw(t� xj) =
w(t� xj+1)− w(t� xj)

Δx
+�

�
(Δx)2

�
� or

∂xw(t� xj) =
w(t� xj)− w(t� xj−1)

Δx
+�

�
(Δx)2

�
� and

∂xxw(t� xj) =
w(t� xj+1)− 2w(t� xj) + w(t� xj−1)

(Δx)2
+�

�
(Δx)3

�
�

where
�
����Δx)p)

�Δx)p

�
� ≤ const. for small values of Δx. Neglecting the higher-order terms motivates us to

define the following approximation formulae to the spatial derivatives:

∂xw(t� xj) ≈
wj+1(t)− wj(t)

Δx
� (A.2)

∂xw(t� xj) ≈
wj(t)− wj−1(t)

Δx
�or

∂xxw(t� xj) ≈
wj+1(t)− 2wj(t) + wj−1(t)

(Δx)2
and

for j = 1� ...� N−1. In general, one can derive the approximating formula for any derivative by using
the Taylor series expansion of the function w(t� xj), and taking into account that xj = xj±k ± kΔx

for any k with xj±k ∈ [a� b].

Example A.2. For Example A.1.a), the spatially discretised2 problem takes the form:

d
dt
wj(t) =

wj+1(t)− 2wj(t) + wj−1(t)

(Δx)2
� for j = 1� ...� N − 1.

The cases j = 0 and j = N are given by the boundary condition w(0� t) = 0 as w0(t) = wN (t) = 0
for all t ≥ 0. The ordinary differential equations above can be formulated as a system of ordinary

2
It is sometimes called semidiscretisation.
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differential equations d
dt
W (t) = MW (t) with the matrix

M =
1

(Δx)2
·

�










−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 1 −2 1
0 0 · · · 0 1 −2












∈ R
�N−1)×�N−1) (A.3)

and the vector W (t) =
�
w1(t)� ...� wN−1(t)

�
∈ R

N−1. We note that matrix M is of special form, it
is a tridiagonal matrix, i.e., M = 1

�Δx)2
tridiag(1�−2� 1) that has non-zero elements only in its main

diagonal and sub-diagonals. Linear systems of this type are much easier to treat numerically.

Example A.3. Example A.1.b) can be spatially discretised as follows:

d
dt
wj(t) =

wj+1(t)− wj(t)

Δx
� for j = 1� ...� N

with w0(t) = 0 for all t ≥ 0. Introducing the vector W (t) =
�
w1(t)� ...� wN (t)

�
∈ R

N and the
matrix M = 1

Δx
tridiag(−1� 1� 0) ∈ R

N×N , we have the system of ordinary differential equations
d
dt
W (t) = MW (t).

A.2 Galerkin methods

In contrast to finite difference methods, which approximate the exact solution at certain grid points,
Galerkin methods use a linear combination of some basis functions. This time let us formulate the
problem on the abstract Hilbert space H which is equipped with the inner product �·� ·�. Then for
some operator A : D(A) ⊆ H → H and a given f ∈ H we consider the following problem:

f = Au in H. (A.4)

For instance, let Au = u�� on H = L2(0� π), see Section 1.1. Taking finite dimensional subspaces
Hm ⊂ H, dimHm = m, with a corresponding basis {ϕm

1 � ...� ϕm
m} ⊂ Hm, each element um ∈ Hm

can be written as the linear combination of the basis functions, i.e.,

um =
m�

k=1

ckϕ
m
k

with coefficients ck ∈ �, k = 1� ...�m. The main idea behind the Galerkin methods is that the exact
solution u ∈ H is approximated by a sequence (um) ⊂ Hm for m → ∞. For notational simplicity
we shall drop the superscript from ϕm

j and write ϕj only.

Take the inner product of both sides of problem (A.4) with ϕj for j = 1� ...�m:

�f� ϕj� = �Au�ϕj�� j = 1� ...�m.

We define the Galerkin methods by replacing u by um =
�m

k=1 ckϕk in the equation above. Using
the linearity of A, we obtain

�f� ϕj� =

�

A

m�

k=1

ckϕk� ϕj

�

=
m�

k=1

ck

�
Aϕk� ϕj

�
� j = 1� ...�m.
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The definitions of the vectors

Φ :=

�




�f� ϕ1�
...

�f� ϕm�




 and C :=

�




c1
...
cm






and the matrix

Am =

�






�
Aϕ1� ϕ1

�
. . .

�
Aϕm� ϕ1

�
�
Aϕ1� ϕ2

�
. . .

�
Aϕm� ϕ2

�

...
...�

Aϕ1� ϕm

�
. . .

�
Aϕm� ϕm

�








enable us to formulate the problem as a system of linear equations

AmC = Φ.

The idea and “procedure” of the Galerkin methods is the following.

1. Choose a subspace Hm ⊂ D(A) ⊂ H with dimHm = m, and a basis {ϕ1� ...� ϕm} ⊂ Hm.

2. Solve the system AmC = Φ. Its solution is C =
�
c1� ...� cm

�
.

3. The approximation um to u is then constructed as um =
�m

k=1 ckϕk.

Under appropriate assumptions one can prove that um → u as m→∞ in the H-norm.

We remark that in some special cases the Galerkin method can be formulated as a variational
problem called Ritz method, see Exercise 2.

The question arises how to choose the basis functions ϕj , j = 1� ...�m. There are two basic
possibilities: (i) eigenfunctions of A, (ii) functions being zero outside a small interval where they
piecewise coincide with low order polynomials. The corresponding methods are called spectral

method and finite element method, respectively.

Example A.4. Consider the one-dimensional Poisson equation on L2(0� π) with a given function
f and homogeneous boundary condition:

d2

dx2w(x) = f(x)� x ∈ (0� π)

w(0) = w(π) = 0.
(A.5)

Here we have A = d2

dx2 and D(A) = H2(0� π)∩H1
0(0� π). In order to solve this equation by using the

Galerkin method, we choose a finite dimensional subspace Hm ⊂ D(A) and the appropriate basis
functions ϕj , j = 1� ...�m. As before, we define the approximation wm ∈ Hm as:

wm(x) :=
m�

k=1

ckϕk(x)

with coefficients ck, k = 1� ...�m, to be determined from the system
m�

k=1

ck�Aϕk� ϕj� = �f� ϕj�

m�

k=1

ck

π�

0

(Aϕk)(x)ϕj(x)dx =

π�

0

f(x)ϕj(x)dx

m�

k=1

ck

π�

0

d2

dx2ϕk(x)ϕj(x)dx =

π�

0

f(x)ϕj(x)dx.
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Integrating the left-hand side by parts, we obtain

m�

k=1

ck

�

 d
dx

ϕk(x)ϕj(x)
�
�
�
x=π

x=0
−

π�

0

d
dx

ϕk(x) d
dx

ϕj(x)



 �

and hence,
m�

k=1

−ck

π�

0

d
dx

ϕk(x) d
dx

ϕj(x)dx =

π�

0

f(x)ϕj(x)dx for j = 1� ...m� (A.6)

where we used the “boundary condition” of the basis functions (they vanish at 0 and at π).

In what follows we determine the approximate solution wm(x) of problem (A.5) by applying
two different sets of basis functions which correspond to spectral and finite element methods,
respectively.

a) Spectral method (cf. Example 3.3): Since A = d2

dx2 with D(A) = H2(0� π) ∩ H1
0(0� 1), we can

choose the finite dimensional subspace as lin{sin(jx) : j = 1� ...�m} (cf. Exercise 1.1). Then
equation (A.6) results in

m�

k=1

−ck

π�

0

d
dx

sin(kx) d
dx

sin(jx)dx =

m�

k=1

−ck

π�

0

k cos(kx)j cos(jx)dx

=
m�

k=1

−ckjk

π�

0

cos(kx) cos(jx)dx =

π�

0

f(x) sin(jx)dx.

Due to the orthogonality of basis functions, the Kronecker delta δjk appears on the left-hand
side:

m�

k=1

−ckjkδjk

π

2
=

π�

0

f(x) sin(jx)dx�

which leads to the values

cj = −
2

j2π

π�

0

f(x) sin(jx)dx for all j = 1� ...�m.

The approximation wm(x) to w(x) is then

wm(x) = −
2

π

m�

k=1

1

k2
sin(kx)

π�

0

f(s) sin(ks)ds.

In this case, the matrix Am has entries (Am)jk = −jk π
2 δjk only in its main diagonal which

contains then the square numbers 1� ...�m2 multiplied by −π
2 .

b) Finite element method : Another possible choice for basis functions are the functions

ϕj(x) :=






0� for x < (j − 1)Δx
x

Δx
− (j − 1)� for (j − 1)Δx ≤ x < jΔx

(j + 1)−
x

Δx
� for jΔx ≤ x < (j + 1)Δx

0� for (j + 1)Δx ≤ x�
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which are sometimes called “hat functions”, see Example 3.4. Here Δx = π
m

for some m ∈ N.
Their first derivative exists piecewise and can be calculated easily:

d
dx

ϕj(x) :=






0� for x < (j − 1)Δx

1

Δx
� for (j − 1)Δx < x < jΔx

−
1

Δx
� for jΔx < x < (j + 1)Δx

0� for (j + 1)Δx < x.

Equation (A.6) yields

m�

k=1

−ck

π�

0

d
dx

ϕk(x) d
dx

ϕj(x)dx = Δx

�

−cj−1
−1

(Δx)2
− cj

2

(Δx)2
− cj+1

−1

(Δx)2

�

=
1

Δx
(cj−1 − 2cj + cj+1) =

π�

0

f(x)ϕj(x)dx for j = 1� ...�m�

with the basis functions ϕj defined above. The matrix Am has now the tridiagonal form Am =
1

Δx
tridiag(1�−2� 1).

Note that the basis functions ϕj , j = 1� ...�m, do not belong to H2(0� π), hence the matrix Am

has to be defined by using (A.6), i.e., the weak formulation is necessary here.

Exercises

1. Consider the heat equation in two dimensions for (x� y) ∈ Ω = (0� π)× (0� π) and t ≥ 0:

∂tw(t� x� y) = ∂xxw(t� x� y) + ∂yyw(t� x� y)

with the boundary condition
w(t� x� y) = 0 on ∂Ω�

where ∂Ω denotes the boundary of Ω. Derive the form of the corresponding matrix obtained when
applying finite differences to discretise the operator L = ∂xx + ∂yy (cf. matrix M in (A.3)).

2. Let H be a real Hilbert space with inner product �·� ·�, and A : D(A) ⊂ H → H be a linear
densely defined operator possessing the following properties:

a) A is symmetric on D(A), that is, �Au� v� = �u�Av� for all u� v ∈ D(A), and

b) A is strongly elliptic, that is, there exists a constant c > 0 such that �Au� u� ≥ c�u�2 for all
u ∈ D(A).

For all v ∈ D(A) and a given element f ∈ H define the functional F : D(A) → R by

F (v) := �Av� v� − 2�f� v�.

Show that if Au = f for u ∈ D(A) then the functional F is minimal, i.e. F (u) < F (v) for all
v ∈ D(A), v �= u.

3. Derive the form of matrix Am in Examples A.4.a) and b).



Appendix B

Basic Time Discretisation Methods

A standard numerical approach for solving partial differential equations is the method of lines.
There the problem is first discretised with respect to the space variable(s), leading to a system
of ordinary differential equations. These ODEs are then solved using time discretisation methods.
Basic space discretisations have already been introduced in Appendix A. Here we collect some
facts about time discretisations. Our basic reference is the textbook Solving ordinary differential

equations I: Nonstiff problems, by E. Hairer, S.P. Nørsett, and G. Wanner.1

Throughout the lectures t will denote the time variable. Let f : [t0, tmax] × R
m → R

m be a
continuous function, y0 ∈ R

m. We consider the following initial value problem on the time interval
[t0, tmax]: {

y′(t) = f
(
t, y(t)

)

y(t0) = y0,
(B.1)

where y : [t0, tmax]→ R
m is the unknown function to be determined.

In order to solve problem (B.1) numerically, we divide the time interval [t0, tmax] into N pieces:

t0 < t1 < t2 < · · · < tN = tmax

with variable time steps hn = tn+1− tn, n = 0, ..., N − 1. Such a sub-divison of the time interval
is often called a time grid. In the case of an equidistant grid with h0 = h1 = · · · = hN−1 =: h, the
lenght h = tmax−t0

N
is usually referred to as constant time step. The numerical scheme consists

in approximating the exact solution y(tn) at time levels tn for n = 0, ..., N . This approximation is
called a numerical solution to problem (B.1) and is denoted by yn. We note that for an equidistant
time grid, the time levels are computed as tn = t0 + nh (especially, tn = nh with t0 = 0).

B.1 Euler’s method

The simplest time discretisation method was introduced by L. Euler2 in 1768. His idea was to replace
the derivative y′ by an approximation to the tangent, i.e., quotient by the difference quotient. Since
we have

f(t, y) = y′ = lim
h→0

y(t+ h)− y(t)

h

by the initial value problem (B.1), we obtain Euler’s method as

f(tn, yn) =
yn+1 − yn

tn+1 − tn
,

1E. Hairer, S.P. Nørsett, G. Wanner, Solving ordinary differential equations I: Nonstiff problems. Springer Verlag,
2008.

2L. Euler, Institutionum Calculi Integralis. Volumen Primum, Opera Omnia XI, 1768.
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usually written as
yn+1 = yn + hnf(tn, yn). (B.2)

In order to demonstrate a drawback of Euler’s method for problems we have in mind, and to
motivate a modification, let us consider the problem (1.1)(1.2) appearing in Lecture 1:

{

y′(t) = −k2y(t),

y(t0) = y0,
(B.3)

for n ∈ N with t0 = 0 and y0 = 1. Note that the exact solution y(t) = e−k
2t is positive for all t and

bounded by 1. After the first step with equidistant step size h, application of Euler’s method (B.2)
yields

y1 = y0 + h(−k2y0) = (1− hk2)y0 = 1− hk2.

Note that the choice h > 1

k2
leads to y1 < 0. The second step yields

y2 = y1 + h(−k2y1) = (1− hk2) + h(−k2)(1− hk2) = (1− hk2)2 > 0.

It is easy to see that the numerical solution has the following form after n steps:

yn = (1− hk2)n.

For h > 1

k2
the value of yn changes sign at each step, i.e., (yn) is an alternating sequence for

n ∈ N. Moreover, in contrast to the boundedness of the exact solution y(t), the sequence
(
|yn|

)
is

unbounded for this particular choice of h. These phenomena suggest us (i) to choose the time step
carefully, or (ii) to modify Euler’s method.

Note that we have the freedom to choose the time level appearing in the argument of the function
f . Taking tn+1 instead of tn (i.e., we use the tangent at tn+1), we obtain the implicit Euler

method:
yn+1 = yn + hnf(tn+1, yn+1). (B.4)

For the implicit Euler method, the numerical solution of problem (B.3) after one step reads

y1 = y0 + h(−k2y1) =⇒ (1 + hk2)y1 = y0 =⇒ y1 =
1

1 + hk2
· y0 =

1

1 + hk2
.

The second step yields

y2 = y1 + h(−k2y2) =⇒ (1 + hk2)y2 = y1 =⇒ y2 =
1

1 + hk2
· y1 =

1

(1 + hk2)2
.

Hence, the numerical solution after n steps,

yn =
1

(1 + hk2)n

results in positive values for all choices of the step size h. Moreoverm it is bounded by 1.

The method is called implicit, because we have to solve a nonlinear system of equations to compute
yn+1. The question arises whether one can determine yn+1 from (B.4). It is, however, garanteed by
the implicit function theorem. We note that explicit and implicit Euler methods are often called
forward and backward Euler methods, respectively.
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B.2 Runge’s method

In order to derive the method introduced by C. Runge3 in 1905, let us consider the problem (B.1)
again, and integrate it between tn and tn+1 = tn + hn:

tn+hn∫

tn

y′(t) dt =

tn+hn∫

tn

f
(
t, y(t)

)
dt

y(tn + hn) = y(tn) +

tn+hn∫

tn

f
(
t, y(t)

)
dt. (B.5)

The question is now how to approximate the above integral. The first two possibilities

tn+hn∫

tn

f(t, y(t)) dt = hnf(tn, yn) +O(h2n)

= hnf(tn+1, yn+1) +O(h2n)or

yield the explicit and implicit Euler methods, respectively. Instead of using only the left or right
grid point, the function f can also be evaluated at the midpoint tn + hn

2
:

tn+hn∫

tn

f
(
t, y(t)

)
dt = hnf

(
tn + hn

2
, y(tn + hn

2
)
)
+O(h3n),

which is already of order 2. To approximate the unknown term y(tn+
hn

2
), we use Taylor’s formula:

y
(
tn + hn

2

)
= y(tn) +

hn

2
f(tn, yn) +O(h2n). (B.6)

We note that this corresponds to an explicit Euler step. Runge’s method for computing yn+1 is
then defined by

yn+1 = yn + hnf
(
tn + hn

2
, yn + hn

2
f(tn, yn)

)
. (B.7)

B.3 Runge–Kutta methods

Following the idea of the derivation of Runge’s method, one can generalise it by applying certain
quadrature rules, being common in numerical integration, to approximate the integral appearing in
formula (B.5). As already seen, application of left or right Riemann sums lead to explicit or implict
Euler method, respectively. The midpoint rule combined with (B.6) yields Runge’s method. For
the trapezoidal rule we obtain the Crank–Nicolson method

yn+1 = yn + hn

2

(
f(tn, yn) + f(tn+1, yn+1)

)
(B.8)

being of great importance in practice.

3C. Runge, “Über die numerische Auflösung totaler Differentialgleichungen”, Göttinger Nachr. (1905), 252–257.
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In case of general quadrature rules, for s ∈ N we define c1, ..., cs distinct real numbers between
0 and 1. Then we define the corresponding collocation polynomial u of degree s whose derivative
coincides with the function f at the collocation points tn + cihn for i = 1, ..., s, that is,

u′(tn + cjhn) = f
(
tn + cjhn, u(tn + cjhn)

)
, for j = 1, ..., s (B.9)

u(tn) = yn.with

The numerical solution yn+1 of problem (B.1) at time level tn+1 = tn + hn is then defined as

yn+1 := u(tn + hn). (B.10)

In order to compute u(tn + hn), let us denote kj := u′(tn + cjhn) for j = 1, ..., s. Note that the
Lagrange interpolation polynomials

li(τ) =

s∏

i=1
i 6=m

τ − cm

ci − cm

satisfy li(cj) = δij , where δij denotes the Kronecker delta. Therefore,
∑s

i=1
kili(cj) = kj , which

further equals to u′(tn + cjhn). By the Lagrange interpolation form, we obtain

u′(tn + τhn) =
s∑

i=1

kili(τ). (B.11)

Due to relation (B.10), the numerical solution yn+1 can be computed by integrating between 0 and
1 both sides of equation (B.11) above:

1∫

0

u′(tn + τhn) dτ =

1∫

0

s∑

i=1

kili(τ) dτ

1

hn

(
u(tn + τhn)

)∣
∣τ=1

τ=0
=

s∑

i=1

ki

1∫

0

li(τ) dτ

︸ ︷︷ ︸

=:bi

1

hn

(
u(tn + hn)− u(tn)

)
=

s∑

i=1

kibi.

Then we obtain

u(tn + hn) = u(tn) + hn

s∑

i=1

biki.

Since u(tn) = yn by construction, the numerical solution defined by (B.10) has the form

yn+1 = yn + hn

s∑

i=1

biki. (B.12)
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In order to determine the values of ki = f
(
u(tn+cihn, u(tn+cihn)

)
, i = 1, ..., s, we have to compute

u(tn + cihn). To this end, let us integrate (B.11) again, but this time between 0 and ci:

ci∫

0

u′(tn + τhn) dτ =

ci∫

0

s∑

j=1

kjlj(τ) dτ

1

hn

(
u(tn + τhn)

)∣
∣τ=ci

τ=0
=

s∑

j=1

kj

ci∫

0

lj(τ) dτ

︸ ︷︷ ︸

=:aij

1

hn

(
u(tn + cihn)− u(tn)

)
=

s∑

i=j

kjaij .

Hence, we obtain

u(tn + cihn) = u(tn) + hn

s∑

j=1

aijkj , for i = 1, ..., s.

This means, application of quadrature rules to approximate the integral in formula (B.5) leads
to collocation methods defined by

yn+1 = yn + hn

s∑

i=1

biki (B.13)

ki = f
(
tn + cihn, yn + hn

s∑

j=1

aijkj
)
, for i = 1, ..., swith (B.14)

bi =

1∫

0

li(τ) dτ and aij =

ci∫

0

lj(τ) dτ, for i, j = 1, ..., swhere

li(τ) =

s∏

i=1
i 6=m

τ − cm

ci − cm
are the Lagrange interpolation polynomials.and

We note here that for special choice of coefficients ci, i = 1, ..., s, the order of collocation methods
can even equal 2s.

One obtain a possible generalisation to collocation methods by choosing the coefficients aij , bi, ci
arbitrary, instead of assigning them the special values above. For a fixed s ∈ N and some coefficients
aij , bi, ci for i, j = 1, ..., s, time discretisation methods of the form (B.13), (B.14) are called s-stage

Runge–Kutta methods. We note that if aij = 0 for i ≤ j we have explicit, otherwise we have
implicit Runge–Kutta methods. Notice that all collocation methods are implicit Runge–Kutta
methods.

It is common to collect the coefficients aij , bi, ci of a Runge–Kutta method in the Butcher tableau
proposed by J. C. Butcher4 in 1964:

4J. C. Butcher, “On Runge–Kutta processes of high order”, J. Austral. Math. Soc. IV (1964), 179–194.
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c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

Example B.1. Examples for s-stage Runge–Kutta methods.

1. Explicit Euler method (s = 1):

0

1

2. Implicit Euler method (s = 1):

1 1

1

3. Runge–Kutta method based on Gaussian quadrature with one node (s = 1):

1/2 1/2

1

4. Runge’s method (s = 2):

0
1/2 1/2

0 1

5. Crank–Nicolson method (s = 2):

0 0 0
1 1/2 1/2

1/2 1/2

6. Runge–Kutta method based on Radau II A quadrature with two nodes (s = 2):

1/3 5/12 -1/12
1 3/4 1/4

3/4 1/4
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B.4 Exercises

1. Prove first- and second-order consistency of the explicit Euler method and the explicit method
of Runge, respectively.

2. Construct Euler’s number e with the help of Euler’s method.
Hint: Consider the differential equation y′ = y with the initial condition y(0) = 1.

3. Derive the Runge–Kutta methods based on Gaussian and Radau II A rules. Hint: For Gauß,

the nodes are c1 = 1

2
for s = 1 and c1,2 = 1

2
±
√
3

6
for s = 2. For Radau II A, the nodes are c1 = 1

for s = 1 and c1 =
1

3
, c2 = 1 for s = 2.

4. Analyse the Runge–Kutta methods based on Gaussian and Radau II A rules for the problem
y′ = −k2y. Are there any conditions for the step size?

5. Derive the Butcher Tableau for the Crank–Nicolson scheme (B.8).


