Navigationsweiche Anfang

Navigationsweiche Ende



  • T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, vol. 272, Springer 2015.

Referierte Publikationen

  • C. Budde and B. Farkas and, Desch-Schappacher type perturbations of bi-continuous semigroups, Math. Nachr., to appear;  arXiv:1811.08455.
  • C. Budde and B. Farkas,  Intermediate and extrapolated spaces for bi-continuous operator semigroups, Journal of Evolution Equations, 19 (2019), no. 2, 321-359.
  • C. Cuny, T.Eisner, and B. Farkas,  Wiener's lemma along primes and other subsequences, Advances in Mathematics, 347 (2019), 340-383.
  • Bálint Farkas, Béla Nagy, Szilárd Révész,  A minimax problem for sums of translates on the torus, Transactions of the London Mathematical Society, 5 (2018), no.1, 1-46. 
  • András Bátkai, Petra Csomós, Bálint Farkas, Operator splitting for dissipative delay equations,  Semigroup Forum, 95 (2017), no.2, 345-365.
  • Bálint Farkas, Sven-Ake Wegner, Variations on Barbalat's lemma, Amer. Math. Monthly, 123 (2016), no. 8, 825-830.
  • Bálint Farkas, A note on the periodic decomposition problem for semigroups, Semigroup Forum, 92 (2016), no. 3, 587-597.
  • Bálint Farkas, Wiener's lemma and the Jacobs-de Leeuw-Glicksberg decomposition,  Annales Univ. Sci. Budapest, Sec.  Math., Sebestyén Festschrift, 58 (2015), 27-35.
  • Bálint Farkas, Béla Nagy, Szilárd Révész, The periodic decmposiion problem, In: Theory and applications of difference equations and discrete  dynamical systems, volume 102 of Springer Proc. Math. Stat., pages 143-169. Springer, Heidelberg, 2014.
  • B. Farkas, J. Pintz, Sz. Révész, On the optimal weight function in the Goldston-Pintz-Yildirim method for finding small gaps between consecutive primes, in: Number theory, Analysis, and Combinatorics, Proceedings of the Turan Memorial Conference, de Gryuter 2013. arxiv:1306.2133
  • A. Bátkai,P. Csomós, K.J. Engel, B. Farkas, Stability and convergence of product formulas for operator matrices, Int. Eq. Op. Th. 74(2) (2012), 281-299.
  • A. Bátkai,P. Csomós, B. Farkas, Operator splitting for nonautonomous delay equations, Comp. Math. with Appl., online first.
  • A. Bátkai, P. Csomós, B. Farkas, G. Nickel, Operator splitting with spatial-temporal discretization. Spectral theory, mathematical system theory, evolution equations, differential and difference equations, 161–171, Oper. Theory Adv. Appl., 221, Birkhäuser/Springer Basel AG, Basel, 2012.
  • A. Bátkai, P. Csomós, B. Farkas, G. Nickel, Operator splitting for non-autonomous evolution equations. J. Funct. Anal. 260 (2011), no. 7, 2163–2190.
  • B.Farkas, Adjoint bi-continuous semigroups and semigroups on the space of measures, Czechoslovak Math. J 61(136) (2011), no. 2, 309–322.
  • B. Farkas, L. Lorenzi, On a class of degenerate hypoelliptic operators with unbounded coefficientsin RN, Comm. Pure Appl. Anal. 8 (2009), 1159–1201. doi:10.3934/cpaa.2009.8.1159
  • B. Farkas, Sz. Gy. Révész, Positive bases in spaces of polynomials, Positivity 12 (2008),691–709. doi: 10.1007/s11117-008-2164-4.
  • B. Farkas, B. Nagy, Transfinite diameter, Chebyshev constant and capacity on locally compact spaces, Potential Analysis 28 (2008), 241–260.
  • B. Farkas, V. Harangi, T. Keleti, Sz. Gy. Révész, Invariant decomposition of functionswith respect to commuting invertible transformations, Proc. Amer. Math. Soc. 136 (2008), 1325–1336.
  • T. Eisner, B. Farkas, R. Nagel, A. Serény, Weak and almost weak stability of C0-semigroups, Int. J. Dyn. Syst. Diff. Eq. 1 (2007), 44–57.
  • T. Eisner, B. Farkas, Weak stability of orbits of C0-semigroups on Banach spaces, to appear. arXiv:0805.1039v1
  • B. Farkas, Sz. Gy. Révész, Decomposition as the sum of invariant functions with respect to commuting transformations, Aequationes Math. 73 (2007), 33–248.
  • A. Es–Sarhir and B. Farkas, Invariant measures and regularity properties of perturbed Ornstein-Uhlenbeck semigroups, J. Diff. Eq. 233 (2007), 87–104.
  • B. Farkas, M. Matolcsi, P. Móra, On Fuglede’s conjecture and the existence of universal spectra, J. Fourier Anal. Appl. 12 (2006), 483–494.
  • B. Farkas, A. Lunardi, Maximal regularity for degenerate Ornstein–Uhlenbeck operators in L2 spaces with respect to the invariant measure, J. Math. Pures. Appl. 86 (2006), 310–321.
  • B. Farkas, Sz. Gy. Révész, Potential theoretic approach to rendezvous numbers, Monatshefte Math. 148 (2006), 309–331.
  • B. Farkas, Sz. Gy. Révész, Tiles with no spectra in dimension 4, Acta Math. Scand. 98 (2006), 44–52.
  • B. Farkas, Sz. Gy. Révész, Rendezvous numbers of metric spaces – a potential theoretic approach, Arch. Math. (Basel) 86 (2006), 268–281.
  • A. Es–Sarhir and B. Farkas, Perturbation for a class of transition semigroups on theHölder space Cb;loc(H), J. Math. Anal. Appl. 315 (2006), 666–685.
  • B. Farkas, Sz. Gy. Révész, Rendezvous numbers in normed spaces, Bull. Austr. Math. Soc. 72 (2005), 423–440.
  • A. Es–Sarhir and B. Farkas, Positivity of perturbed Ornstein–Uhlenbeck semigroups on Cb(H), Semigroup Forum 70 (2005), 208–224.
  • B. Farkas, Perturbations for bi-continuous semigroups, Studia Math. 161 (2004), 147–161.
  • B. Farkas, Perturbations of bi-continuous semigroups on Cb(H) with applications to the Ornstein–Uhlenbeck semigroup, Semigroup Forum 68 (2004), 87-107.
  • A. Bátkai and B. Farkas, On the effect of small delays to the stability of feedback systems, Progress in Nonlinear Differential Equations and Their Applications, vol. 55, pp. 83–94., Birkhäuser, 2003,
  • B. Farkas, Duals of Lp spaces with 0<p<1, Acta. Math. (Budapest) 98 (2003), 71–77.
  • B. Farkas and M. Matolcsi, Positive forms on Banach spaces, Acta. Math. (Budapest) 99 (2003), 43–55.
  • B. Farkas and M. Matolcsi, Commutation properties of the form sum of positive, selfadjoint operators, Acta. Sci. Math. (Szeged) 67 (2001), 777–790.

Sonstige Publikationen

  • A. Bátkai, P. Csomós, K.-J. Engel, B. Farkas, Stability for Lie-Trotter products for some operator matrix semigroups, PAMM, Volume 14, Issue 1, pages 995–998 [pdf].
  • A. Bátkai, P. Csomós, B. Farkas, Operator splitting for dissipative delay equations, PAMM, Volume 14, Issue 1, pages 989–990 [pdf].